The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies
Abstract
:1. Introduction
2. Classification and Establishment of Preclinical Animal Models and Recent Progress
2.1. Rodentia (Mainly Mice)
2.1.1. Syngeneic and Xenotransplantation Models (Subcutaneous, Intraperitoneal, Intravenous, and Intramuscular)
2.1.2. In Situ Model
2.1.3. Genetically Engineered Mouse Model
- (1)
- Gene knockout mice: specific tumor suppressor genes are knocked out or oncogenes are overexpressed to induce spontaneous tumor formation, allowing for the systematic evaluation of oncogene and tumor suppressor function.
- (2)
- Humanized mouse model: mice are genetically modified to mimic human tumors by introducing human oncogenes or transplanting human tumor tissues, faithfully replicating the human tumor microenvironment and widely used for in vivo drug evaluation [59].
2.1.4. Patient-Derived Xenograft Model (PDX)
2.1.5. Carcinogen-Induced Models
2.2. Large Animals (Lagomorphs, Suids, Scandentia, Carnivores, Primates, etc.)
2.2.1. Lagomorphs (Mainly Rabbit)
2.2.2. Suids (Mainly Miniature Pigs)
2.2.3. Scandentia (Mainly Tree Shrews)
2.2.4. Carnivores (Mainly Beagle Dogs and Cats)
2.2.5. Primates (Mainly Cynomolgus Monkeys)
3. Application of Preclinical Animal Models in Cancer Therapy
3.1. Study of the Characteristics of Different Stages of Tumor Development and Anti-Cancer Drug Development (Mainly Mice)
3.1.1. Sustaining Proliferative Signaling
3.1.2. Evading Growth Suppressors
3.1.3. Resisting Cell Death
3.1.4. Enabling Replicative Immortality
3.1.5. Inducing Angiogenesis
3.1.6. Activating Invasion and Metastasis
3.1.7. Deregulating Cellular Energetics
3.1.8. Avoiding Immune Destruction
3.1.9. Tumor-Promoting Inflammation
3.1.10. Genome Instability and Mutation
3.2. Guiding and Development of Personalized Cancer Therapy Strategies (Synthetic Lethality)
3.2.1. PARP Inhibitors (PARPis)
3.2.2. Protein Arginine Methyltransferase 5 (PRMT) Inhibitors
3.2.3. Wee1 Inhibitors
3.3. Selection of Safety Evaluation Experiments
3.3.1. Acute Toxicity Test
3.3.2. Subchronic Toxicity Test
3.3.3. Chronic Toxicity Test
3.3.4. Reproductive Toxicity Test
3.3.5. Drug Dependence Test
3.3.6. Carcinogenicity Test
3.3.7. Genotoxicity Test
4. Prospects and Challenges of Preclinical Animal Models
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, Y.; Shi, J.; Wang, J.; Xun, Z.; Yu, Z.; Sun, H.; Bao, R.; Zheng, J.; Li, Z.; Ye, Y. Integration of Pan-Cancer Single-Cell and Spatial Transcriptomics Reveals Stromal Cell Features and Therapeutic Targets in Tumor Microenvironment. Cancer Res. 2023, 84, 192–210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tao, C.; Yuan, J.; Pan, F.; Wang, R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed. Pharmacother. 2023, 165, 115251. [Google Scholar] [CrossRef] [PubMed]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.-W.; Kuboki, Y.; et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef] [PubMed]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.M.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: A randomised, open-label, phase 3 trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kang, R.; Tang, D. The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2021, 29, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Sonis, S.T.; Anderson, C.M. Avasopasem for the treatment of radiotherapy-induced severe oral mucositis. Expert. Opin. Investig. Drugs 2023, 32, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Singh, A.; Singh, K.K. Vincristine-based nanoformulations: A preclinical and clinical studies overview. Drug Deliv. Transl. Res. 2023, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Wang, X.; Qie, R. Immunotherapy-associated cardiovascular toxicities: Insights from preclinical and clinical studies. Front. Oncol. 2024, 14, 1347140. [Google Scholar] [CrossRef] [PubMed]
- Minnar, C.M.; Lui, G.; Gulley, J.L.; Schlom, J.; Gameiro, S.R. Preclinical and clinical studies of a tumor targeting IL-12 immunocytokine. Front. Oncol. 2024, 13, 1321318. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Gordeev, M.F.; Yuan, H. Preclinical toxicity evaluation of novel antibacterial contezolid acefosamil in rats and dogs. J. Appl. Toxicol. 2024, 44, 770–783. [Google Scholar] [CrossRef]
- Jin, S.E.; Lee, M.Y.; Ha, H.; Shin, H.K.; Seo, C.S. Safety evaluation of Gamisoyo-san: Genotoxicity, acute toxicity, and influence on drug-metabolizing enzymes. Drug Chem. Toxicol. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.; Loibl, S.; Turner, N.C. The CDK4/6 inhibitor revolution—A game-changing era for breast cancer treatment. Nat. Rev. Clin. Oncol. 2024, 21, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Cherifi, F.; Da Silva, A.; Martins-Branco, D.; Awada, A.; Nader-Marta, G. Pharmacokinetics and pharmacodynamics of antibody-drug conjugates for the treatment of patients with breast cancer. Expert Opin. Drug Metab. Toxicol. 2024, 20, 45–59. [Google Scholar] [CrossRef]
- Lynch, C.; Sakamuru, S.; Ooka, M.; Huang, R.; Klumpp-Thomas, C.; Shinn, P.; Gerhold, D.; Rossoshek, A.; Michael, S.; Casey, W.; et al. High-Throughput Screening to Advance In Vitro Toxicology: Accomplishments, Challenges, and Future Directions. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Manavi, M.A.; Nasab, M.H.F.; Jafari, R.M.; Dehpour, A.R. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. J. Chemother. 2024, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Reyes, D.R.; Esch, M.B.; Ewart, L.; Nasiri, R.; Herland, A.; Sung, K.; Piergiovanni, M.; Lucchesi, C.; Shoemaker, J.T.; Vukasinovic, J.; et al. From animal testing to in vitro systems: Advancing standardization in microphysiological systems. Lab. Chip 2024, 24, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Walrath, J.C.; Hawes, J.J.; Van Dyke, T.; Reilly, K.M. Genetically engineered mouse models in cancer research. Adv. Cancer Res. 2010, 106, 113–164. [Google Scholar] [PubMed]
- Nadal-Bufi, F.; Mason, J.M.; Chan, L.Y.; Craik, D.J.; Kaas, Q.; Henriques, S.T. Designed β-Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. J. Med. Chem. 2021, 64, 3767–3779. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Wang, L.; Zhang, H.; Wang, Q.; Li, W. Amplifying T cell-mediated antitumor immune responses in nonsmall cell lung cancer through photodynamic therapy and anti-PD1. Cell Biochem. Funct. 2024, 42, e3925. [Google Scholar] [CrossRef]
- Bhambhani, C.; Sandford, E.; Haring, C.T.; Brummel, C.; Tuck, K.L.; Olesnavich, M.; Bhangale, A.D.; Walline, H.M.; Dermody, S.M.; Spector, M.E.; et al. Development of a high-performance multi-probe droplet digital PCR assay for high-sensitivity detection of human papillomavirus circulating tumor DNA from plasma. Oral Oncol. 2023, 143, 106436. [Google Scholar] [CrossRef]
- Muj, C.; Mukhopadhyay, S.; Jana, P.; Kondapi, A.K. Synergistic action of lactoferrin in enhancing the safety and effectiveness of docetaxel treatment against prostate cancer. Cancer Chemother. Pharmacol. 2023, 91, 375–387. [Google Scholar] [CrossRef]
- Katti, A.; Vega-Pérez, A.; Foronda, M.; Zimmerman, J.; Zafra, M.P.; Granowsky, E.; Goswami, S.; Gardner, E.E.; Diaz, B.J.; Simon, J.M.; et al. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat. Biotechnol. 2024, 42, 437–447. [Google Scholar] [CrossRef]
- Xin, T.; Cheng, L.; Zhou, C.; Zhao, Y.; Hu, Z.; Wu, X. In-Vivo Induced CAR-T Cell for the Potential Breakthrough to Overcome the Barriers of Current CAR-T Cell Therapy. Front. Oncol. 2022, 12, 809754. [Google Scholar] [CrossRef]
- Zanella, E.R.; Grassi, E.; Trusolino, L. Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. 2022, 19, 719–732. [Google Scholar] [CrossRef]
- Melero, I.; Castanon, E.; Alvarez, M.; Champiat, S.; Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 2021, 18, 558–576. [Google Scholar] [CrossRef]
- Bürtin, F.; Mullins, C.S.; Linnebacher, M. Mouse models of colorectal cancer: Past, present and future perspectives. World J. Gastroenterol. 2020, 26, 1394–1426. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Tian, D.-A.; Li, P.-Y.; He, X.-X. Mouse models of liver cancer: Progress and recommendations. Oncotarget 2015, 6, 23306–23322. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.P. Gene knockout and transgenic technologies in risk assessment: The next generation. Mol. Carcinog. 1997, 20, 262–274. [Google Scholar] [CrossRef]
- Miller, F.R.; Soule, H.D.; Tait, L.; Pauley, R.J.; Wolman, S.R.; Dawson, P.J.; Heppner, G.H. Xenograft model of progressive human proliferative breast disease. JNCI J. Natl. Cancer Inst. 1993, 85, 1725–1732. [Google Scholar] [CrossRef]
- Double, J.A. Human tumour xenografts. Biomedicine 1975, 22, 461–465. [Google Scholar]
- Jia, B.; Zhao, C.; Bayerl, M.; Shike, H.; Claxton, D.F.; Ehmann, W.C.; Mineishi, S.; Schell, T.D.; Zheng, P.; Zhang, Y.; et al. A novel clinically relevant graft-versus-leukemia model in humanized mice. J. Leukoc. Biol. 2021, 111, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, A.; Rahavi, M.; Jo, S.; Jalili, R.; Lim, C.J.; Ghahsary, A.; Reid, G.S.D. Inflammatory Immune Responses Trigger Rejection of Allogeneic Fibroblasts Transplanted into Mouse Skin. Cell Transplant. 2022, 31, 09636897221113803. [Google Scholar] [CrossRef]
- Staffeldt, L.; Mattert, G.; Riecken, K.; Rövenstrunk, G.; Volkmar, A.; Heumann, A.; Moustafa, M.; Jücker, M.; Fehse, B.; Schumacher, U.; et al. Generating Patient-Derived HCC Cell Lines Suitable for Predictive In Vitro and In Vivo Drug Screening by Orthotopic Transplantation. Cells 2023, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yan, L.; An, Q.; Zhang, S.; Guan, X.; Wang, Z.; Lv, A.; Liu, D.; Liu, F.; Dong, B.; et al. Establishment and evaluation of retroperitoneal liposarcoma patient-derived xenograft models: An ideal model for preclinical study. Int. J. Med. Sci. 2022, 19, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.; Li, Y.; Lin, Y.; Liu, E.T.; Patnaik, A. Mouse Models for Cancer Immunotherapy Research. Cancer Discov. 2018, 8, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, B.A.; Camp, F.; Miknyoczki, S. Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem. Pharmacol. 2014, 87, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Chulpanova, D.S.; Kitaeva, K.V.; Rutland, C.S.; Rizvanov, A.A.; Solovyeva, V.V. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int. J. Mol. Sci. 2020, 21, 4118. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, H.; Shen, X.; Liu, K.; Feng, H.; Cui, J.; Wei, W.; Sun, X.; Fan, Q.; Bao, W.; et al. A pH-responsive cetuximab-conjugated DMAKO-20 nano-delivery system for overcoming K-ras mutations and drug resistance in colorectal carcinoma. Acta Biomater. 2024, 177, 456–471. [Google Scholar] [CrossRef] [PubMed]
- Saleh, J. Murine models of melanoma. Pathol.-Res. Pract. 2018, 214, 1235–1238. [Google Scholar] [CrossRef]
- Loeuillard, E.; Fischbach, S.R.; Gores, G.J.; Ilyas, S.I. Animal models of cholangiocarcinoma. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865, 982–992. [Google Scholar] [CrossRef]
- Jacoby, E.; Chien, C.D.; Fry, T.J. Murine models of acute leukemia: Important tools in current pediatric leukemia research. Front. Oncol. 2014, 4, 95. [Google Scholar] [CrossRef] [PubMed]
- Blanquart, C.; Jaurand, M.-C.; Jean, D. The Biology of Malignant Mesothelioma and the Relevance of Preclinical Models. Front. Oncol. 2020, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Mak, I.W.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014, 6, 114–118. [Google Scholar] [PubMed]
- Bhowmick, N.A.; Neilson, E.G.; Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 2004, 432, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Schuh, J.C. Trials, tribulations, and trends in tumor modeling in mice. Toxicol. Pathol. 2004, 32, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Tsumura, R.; Koga, Y.; Hamada, A.; Kuwata, T.; Sasaki, H.; Doi, T.; Aikawa, K.; Ohashi, A.; Katano, I.; Ikarashi, Y.; et al. Report of the use of patient-derived xenograft models in the development of anticancer drugs in Japan. Cancer Sci. 2020, 111, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Nolan-Stevaux, O.; Li, C.; Liang, L.; Zhan, J.; Estrada, J.; Osgood, T.; Li, F.; Zhang, H.; Case, R.; Murawsky, C.M.; et al. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov. 2023, 14, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Jeon, J.; Park, G.; Do, H.-K.; Kang, J.; Ahn, K.J.; Ma, S.Y.; Choi, Y.M.; Kim, D.; Youn, B.; et al. Aerobic Exercise Improves Radiation Therapy Efficacy in Non-Small Cell Lung Cancer: Preclinical Study Using a Xenograft Mouse Model. Int. J. Mol. Sci. 2024, 25, 2757. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Yang, Y.; Zhang, M.; Li, J.; Song, H.; Zhao, H.; Mou, Y.; Li, Y.; Song, X. Establishment of an in situ model to explore the tumor immune microenvironment in head and neck squamous cell carcinoma. Head. Neck 2024, 46, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.L.; Bartlett, A.P.; Harman, R.M.; Majhi, P.D.; Jerry, D.J.; Van de Walle, G.R. Induced mammary cancer in rat models: Pathogenesis, genetics, and relevance to female breast cancer. J. Mammary Gland. Biol. Neoplasia 2022, 27, 185–210. [Google Scholar] [CrossRef]
- Kazemizadeh, H.; Kashefizadeh, A. CRISPR-Cas9-mediated gene therapy in lung cancer. Clin. Transl. Oncol. 2023, 25, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- McMillin, D.W.; Negri, J.M.; Mitsiades, C.S. The role of tumour–stromal interactions in modifying drug response: Challenges and opportunities. Nat. Rev. Drug Discov. 2013, 12, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Yao, W.; Fang, M.; Ren, J.; Tu, L.; Fan, R.; Zhang, Y. Boris knockout eliminates AOM/DSS-induced in situ colorectal cancer by suppressing DNA damage repair and inflammation. Cancer Sci. 2023, 114, 1972–1985. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, M.; Wang, X.; Fei, B. MiR-597-5p inhibits carcinogenesis and macrophage recruitment in colitis-related colorectal cancer via reducing the expression of CXCL5. Cancer Biol. Ther. 2023, 24, 2274122. [Google Scholar] [CrossRef] [PubMed]
- Medeiros-Fonseca, B.; Mestre, V.F.; Estêvão, D.; Sanchez, D.F.; Cañete-Portillo, S.; Fernández-Nestosa, M.J.; Casaca, F.; Silva, S.; Brito, H.; Félix, A.; et al. HPV16 induces penile intraepithelial neoplasia and squamous cell carcinoma in transgenic mice: First mouse model for HPV-related penile cancer. J. Pathol. 2020, 251, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Roussel-Gervais, A.; Naciri, I.; Kirsh, O.; Kasprzyk, L.; Velasco, G.; Grillo, G.; Dubus, P.; Defossez, P.A. Loss of the Methyl-CpG-Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis. Cancer Res. 2017, 77, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, G.; Tian, Y.; Wang, X.; Xu, J.; Liu, R.; Deng, M.; Shao, C.; Pan, Y.; Li, M.; et al. Identifying the E2F3-MEX3A-KLF4 signaling axis that sustains cancer cells in undifferentiated and proliferative state. Theranostics 2022, 12, 6865–6882. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.; Ragdale, H.S.; Garcia-Diaz, C.; Parrinello, S. Generation of immunocompetent somatic glioblastoma mouse models through in situ transformation of subventricular zone neural stem cells. STAR Protoc. 2024, 5, 102928. [Google Scholar] [CrossRef]
- Chuprin, J.; Buettner, H.; Seedhom, M.O.; Greiner, D.L.; Keck, J.G.; Ishikawa, F.; Shultz, L.D.; Brehm, M.A. Humanized mouse models for immuno-oncology research. Nat. Rev. Clin. Oncol. 2023, 20, 192–206. [Google Scholar] [CrossRef]
- Revskij, D.; Runst, J.; Umstätter, C.; Ehlers, L.; Rohde, S.; Zechner, D.; Bastian, M.; Müller-Hilke, B.; Fuellen, G.; Henze, L.; et al. Uncoupling protein 2 deficiency of non-cancerous tissues inhibits the progression of pancreatic cancer in mice. Hepatobiliary Pancreat. Dis. Int. 2023, 22, 190–199. [Google Scholar] [CrossRef]
- Yue, H.; Bai, L. Progress, implications, and challenges in using humanized immune system mice in CAR-T therapy-Application evaluation and improvement. Animal Models Exp. Med. 2024, 7, 3–11. [Google Scholar] [CrossRef]
- Higuchi, T.; Igarashi, K.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Bouvet, M.; Tsuchiya, H.; Hoffman, R.M. Review: Precise sarcoma patient-derived orthotopic xenograft (PDOX) mouse models enable identification of novel effective combination therapies with the cyclin-dependent kinase inhibitor palbociclib: A strategy for clinical application. Front. Oncol. 2022, 12, 957844. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Lin, K.; Wang, X.; Tu, Y.; Zhuo, Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Anim. Model. Exp. Med. 2023, 6, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, W.; Cai, C.; Zhang, H.; Shen, H.; Han, Y. Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct. Target. Ther. 2023, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wu, D.; Zhang, K.; Hu, G.; Liu, Y.; Jiang, Y.; Wang, C.; Zheng, Y. ARID1A loss induces P4HB to activate fibroblasts to support lung cancer cell growth, invasion, and chemoresistance. Cancer Sci. 2024, 115, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Dankner, M.; Maritan, S.M.; Priego, N.; Kruck, G.; Nkili-Meyong, A.; Nadaf, J.; Zhuang, R.; Annis, M.G.; Zuo, D.; Nowakowski, A.; et al. Invasive growth of brain metastases is linked to CHI3L1 release from pSTAT3-positive astrocytes. Neuro-Oncology 2024, 26, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Nithya, G.; Santhanasabapathy, R.; Vanitha, M.K.; Anandakumar, P.; Sakthisekaran, D. Antioxidant, antiproliferative, and apoptotic activity of thymoquinone against benzo(a)pyrene-induced experimental lung cancer. J. Biochem. Mol. Toxicol. 2023, 37, e23230. [Google Scholar] [CrossRef] [PubMed]
- Oz, E.; Aoudeh, E.; Murkovic, M.; Toldra, F.; Gomez-Zavaglia, A.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. Heterocyclic aromatic amines in meat: Formation mechanisms, toxicological implications, occurrence, risk evaluation, and analytical methods. Meat Sci. 2023, 205, 109312. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, H.; Lin, S.; Liao, L.; Cai, L.; Zhang, X.; Tan, Y.; Shen, M. Study on the levels of N-nitrosamine compounds and untargeted metabolomics in patients with colorectal cancer. Anal. Bioanal. Chem. 2022, 414, 3483–3496. [Google Scholar] [CrossRef]
- Sotty, J.; Bablon, P.; Weiss, P.H.; Soussan, P. Diethylnitrosamine Induction of Hepatocarcinogenesis in Mice. Methods Mol. Biol. 2024, 2769, 15–25. [Google Scholar]
- Singh, V.K.; Seed, T.M. How necessary are animal models for modern drug discovery? Expert Opin. Drug Discov. 2021, 16, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ge, X.; Li, Z.; Zhou, Z.; Wu, K.; Li, Y.; Ji, T.; Wang, C.; Guo, K.; Ren, J.; et al. Application of temperature-sensitive liquid embolic agent loaded with oxaliplatin in the TACE procedure for rabbit VX2 gastric cancer. Drug Deliv. Transl. Res. 2024, 14, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Katam, T.; Hegde, A.; Cheng, J.; Prather, R.S.; Whitworth, K.; Wells, K.; Bryan, J.N.; Hoffman, T.; Telugu, B.P.; et al. Pigs: Large Animal Preclinical Cancer Models. World J. Oncol. 2024, 15, 149–168. [Google Scholar] [CrossRef]
- Segatto, N.V.; Simoes, L.D.; Bender, C.B.; Sousa, F.S.; Oliveira, T.L.; Paschoal, J.D.F.; Pacheco, B.S.; Lopes, I.; Seixas, F.K.; Qazi, A.; et al. Oncopig bladder cancer cells recapitulate human bladder cancer treatment responses in vitro. Front. Oncol. 2024, 14, 1323422. [Google Scholar] [CrossRef]
- Donninger, H.; Hobbing, K.; Schmidt, M.L.; Walters, E.; Rund, L.; Schook, L.; Clark, G.J. A porcine model system of BRCA1 driven breast cancer. Front. Genet. 2015, 6, 269. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Huang, Z.-Y.; Cao, C.-C.; Chen, C.-S.; Chen, Y.-X.; Fan, D.-D.; He, J.; Hou, H.-L.; Hu, L.; Hu, X.-T.; et al. Genome of the Chinese tree shrew. Nat. Commun. 2013, 4, 1426. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhang, H.-Y.; Yang, C.-Y.; Cheng, Z.; Jiang, Q.-Y.; Luo, Y.; Li, Y.; Li, F.-B.; Chen, C.-S. Generation of a tree shrew breast cancer model using lentivirus expressing PIK3CA-H1047R. Zool. Res. 2023, 44, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Gardner, H.L.; Fenger, J.M.; London, C.A. Dogs as a Model for Cancer. Annu. Rev. Anim. Biosci. 2016, 4, 199–222. [Google Scholar] [CrossRef] [PubMed]
- Massière, F.; Wiedemann, N.; Borrego, I.; Hoehne, A.; Osterkamp, F.; Paschke, M.; Zboralski, D.; Schumann, A.; Bredenbeck, A.; Brichory, F.; et al. Preclinical Characterization of DPI-4452: A (68)Ga/(177)Lu Theranostic Ligand for Carbonic Anhydrase IX. J. Nucl. Med. 2024, 65, 761–767. [Google Scholar] [CrossRef]
- Thomsen, M.K.; Busk, M. Pre-Clinical Models to Study Human Prostate Cancer. Cancers 2023, 15, 4212. [Google Scholar] [CrossRef]
- Liu, P.; Sun, Y.; Liu, S.; Niu, J.; Liu, X.; Chu, Q. SY-707, an ALK/FAK/IGF1R inhibitor, suppresses growth and metastasis of breast cancer cells. Acta Biochim. Biophys. Sin. 2022, 54, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Dagher, E.; Abadie, J.; Loussouarn, D.; Fanuel, D.; Campone, M.; Nguyen, F. Bcl-2 expression and prognostic significance in feline invasive mammary carcinomas: A retrospective observational study. BMC Veter-Res. 2019, 15, 25. [Google Scholar] [CrossRef]
- Deycmar, S.; Gomes, B.; Charo, J.; Ceppi, M.; Cline, J.M. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J. Immunother. Cancer 2023, 11, e005514. [Google Scholar] [CrossRef]
- Bu, W.; Li, Y. Advances in Immunocompetent Mouse and Rat Models. Cold Spring Harb. Perspect. Med. 2024, 14, a041328. [Google Scholar] [CrossRef] [PubMed]
- Arató, V.; Képes, Z.; Szabó, J.P.; Farkasinszky, G.; Sass, T.; Dénes, N.; Kis, A.; Opposits, G.; Jószai, I.; Kálmán, F.K.; et al. Acute Myelomonoblastic Leukemia (My1/De): A Preclinical Rat Model. In Vivo 2024, 38, 1064–1073. [Google Scholar] [CrossRef]
- Wei, W.-Z.; Jones, R.F.; Juhasz, C.; Gibson, H.; Veenstra, J. Evolution of animal models in cancer vaccine development. Vaccine 2015, 33, 7401–7407. [Google Scholar] [CrossRef] [PubMed]
- Wypij, J.M. A Naturally Occurring Feline Model of Head and Neck Squamous Cell Carcinoma. Pathol. Res. Int. 2013, 2013, 502197. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Duan, F.; Zhang, J.-L.; Zhang, H.; Wang, M.-Q. Establishment of hormone-induced canine benign prostatic hyperplasia model: A prospective, controlled study. Heliyon 2022, 8, e11352. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liao, L. Research Progress of the Molecular Mechanism of Antithyroid Cancer Activity of Shikonin. Curr. Mol. Pharmacol. 2024, 17, e040923220678. [Google Scholar] [CrossRef]
- Yu, T.-W.; Yamamoto, H.; Morita, S.; Fukushima, R.; Elbadawy, M.; Usui, T.; Sasaki, K. Comparative pharmacokinetics of tyrosine kinase inhibitor, lapatinib, in dogs and cats following single oral administration. J. Veter-Med. Sci. 2024, 86, 317–321. [Google Scholar] [CrossRef]
- Khabbaz, R.C.; Huang, Y.H.; Smith, A.A.; Garcia, K.D.; Lokken, R.P.; Gaba, R.C. Development and Angiographic Use of the Rabbit VX2 Model for Liver Cancer. J. Vis. Exp. 2019, 7, 143. [Google Scholar]
- Yao, M.; Lei, Z.; Peng, F.; Wang, D.; Li, M.; Zhong, G.; Shao, H.; Zhou, J.; Du, C.; Zhang, Y. Establishment of orthotopic osteosarcoma animal models in immunocompetent rats through muti-rounds of in-vivo selection. BMC Cancer 2024, 24, 703. [Google Scholar] [CrossRef]
- Frances, N.; Bacac, M.; Bray-French, K.; Christen, F.; Hinton, H.; Husar, E.; Quackenbush, E.; Schäfer, M.; Schick, E.; Van De Vyver, A.; et al. Novel in Vivo and in Vitro Pharmacokinetic/Pharmacodynamic-Based Human Starting Dose Selection for Glofitamab. J. Pharm. Sci. 2021, 111, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Li, G.; Guo, J.; Yu, S.-F.; Fields, C.T.; Lee, G.; Zhang, D.; Dragovich, P.S.; Pillow, T.; Wei, B.; et al. The HER2-directed antibody-drug conjugate DHES0815A in advanced and/or metastatic breast cancer: Preclinical characterization and phase 1 trial results. Nat. Commun. 2024, 15, 466. [Google Scholar] [CrossRef] [PubMed]
- Mrázek, J.; Mekadim, C.; Kučerová, P.; Švejstil, R.; Salmonová, H.; Vlasáková, J.; Tarasová, R.; Čížková, J.; Červinková, M. Melanoma-related changes in skin microbiome. Folia Microbiol. 2019, 64, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Böhnke, N.; Indrevoll, B.; Hammer, S.; Papple, A.; Kristian, A.; Briem, H.; Celik, A.; Mumberg, D.; Cuthbertson, A.; Zitzmann-Kolbe, S. Mono- and multimeric PSMA-targeting small molecule-thorium-227 conjugates for optimized efficacy and biodistribution in preclinical models. Eur. J. Nucl. Med. 2024, 51, 669–680. [Google Scholar] [CrossRef]
- Yi, J.; Lei, X.; Guo, F.; Chen, Q.; Chen, X.; Zhao, K.; Zhu, C.; Cheng, X.; Lin, J.; Yin, H.; et al. Co-delivery of Cas9 mRNA and guide RNAs edits hepatitis B virus episomal and integration DNA in mouse and tree shrew models. Antivir. Res. 2023, 215, 105618. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Ren, L.; Li, J.; Lin, W.; Lou, L.; Wang, M.; Li, C.; Jiang, Y. Proteomic analysis of DEN and CCl4-induced hepatocellular carcinoma mouse model. Sci. Rep. 2024, 14, 8013. [Google Scholar] [CrossRef]
- Song, P.; Li, X.; Chen, S.; Gong, Y.; Zhao, J.; Jiao, Y.; Dai, Y.; Yang, H.; Qian, J.; Li, Y.; et al. YTHDF1 mediates N-methyl-N-nitrosourea-induced gastric carcinogenesis by controlling HSPH1 translation. Cell Prolif. 2024, 57, e13619. [Google Scholar] [CrossRef]
- Prasad, R.R.; Mishra, N.; Kant, R.; Fox, J.T.; Shoemaker, R.H.; Agarwal, C.; Raina, K.; Agarwal, R. Effect of nonsteroidal anti-inflammatory drugs (aspirin and naproxen) on inflammation-associated proteomic profiles in mouse plasma and prostate during TMPRSS2-ERG (fusion)-driven prostate carcinogenesis. Mol. Carcinog. 2024, 63, 1188–1204. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, J.; Wang, H.; Chiu, Y.; Kingsley, C.V.; Fry, D.; Delaney, S.N.; Wei, S.C.; Zhang, J.; Maitra, A.; et al. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer. Gastroenterology 2020, 159, 306–319.e12. [Google Scholar] [CrossRef] [PubMed]
- Saba, E.; Farhat, M.; Daoud, A.; Khashan, A.; Forkush, E.; Menahem, N.H.; Makkawi, H.; Pandi, K.; Angabo, S.; Kawasaki, H.; et al. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024, 73, 770–786. [Google Scholar] [CrossRef]
- Baldan, J.; Camacho-Roda, J.; Ballester, M.; Høj, K.; Kurilla, A.; Maurer, H.C.; Arcila-Barrera, S.; Lin, X.; Pan, Z.; Castro, J.L.; et al. Resolution of Acinar Dedifferentiation Regulates Tissue Remodeling in Pancreatic Injury and Cancer Initiation. Gastroenterology 2024, 24, 04911-4. [Google Scholar] [CrossRef]
- Feng, J.; Hu, Z.; Xia, X.; Liu, X.; Lian, Z.; Wang, H.; Wang, L.; Wang, C.; Zhang, X.; Pang, X. Feedback activation of EGFR/wild-type RAS signaling axis limits KRAS(G12D) inhibitor efficacy in KRAS(G12D)-mutated colorectal cancer. Oncogene 2023, 42, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Morales, M.; Sánchez-García, F.J.; Golán-Cancela, I.; Hernández-Pedro, N.; Costoya, J.A.; de la Cruz, V.P.; Moreno-Jiménez, S.; Sotelo, J.; Pineda, B. RB mutation and RAS overexpression induce resistance to NK cell-mediated cytotoxicity in glioma cells. Cancer Cell Int. 2015, 15, 57. [Google Scholar] [CrossRef]
- Dietrich, C.; Trub, A.; Ahn, A.; Taylor, M.; Ambani, K.; Chan, K.T.; Lu, K.-H.; Mahendra, C.A.; Blyth, C.; Coulson, R.; et al. INX-315, a Selective CDK2 Inhibitor, Induces Cell Cycle Arrest and Senescence in Solid Tumors. Cancer Discov. 2024, 14, 446–467. [Google Scholar] [CrossRef]
- Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007, 26, 1324–1337. [Google Scholar] [CrossRef]
- Vo, T.T.; Letai, A. BH3-only proteins and their effects on cancer. Adv. Exp. Med. Biol. 2010, 687, 49–63. [Google Scholar] [PubMed]
- Diepstraten, S.T.; Young, S.; La Marca, J.E.; Wang, Z.; Kluck, R.M.; Strasser, A.; Kelly, G.L. Lymphoma cells lacking pro-apoptotic BAX are highly resistant to BH3-mimetics targeting pro-survival MCL-1 but retain sensitivity to conventional DNA-damaging drugs. Cell Death Differ. 2023, 30, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 2005, 6, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Mertens, J.; Otte, F.; Roderwieser, A.; Rosswog, C.; Kahlert, Y.; Werr, L.; Hellmann, A.-M.; Berding, M.; Chiu, B.; Bartenhagen, C.; et al. Telomerase-targeting compounds Imetelstat and 6-thio-dG act synergistically with chemotherapy in high-risk neuroblastoma models. Cell Oncol. 2022, 45, 991–1003. [Google Scholar] [CrossRef]
- Ferrara, N. Vascular endothelial growth factor. Arterioscler Thromb. Vasc. Biol. 2009, 29, 789–791. [Google Scholar] [CrossRef]
- Huang, C.; Li, H.; Xu, Y.; Xu, C.; Sun, H.; Li, Z.; Ge, Y.; Wang, H.; Zhao, T.; Gao, S.; et al. BICC1 drives pancreatic cancer progression by inducing VEGF-independent angiogenesis. Signal Transduct. Target. Ther. 2023, 8, 271. [Google Scholar] [CrossRef] [PubMed]
- Berx, G.; van Roy, F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol. 2009, 1, a003129. [Google Scholar] [CrossRef] [PubMed]
- Charan, M.; Dravid, P.; Cam, M.; Audino, A.; Gross, A.C.; Arnold, M.A.; Roberts, R.D.; Cripe, T.P.; Pertsemlidis, A.; Houghton, P.J.; et al. GD2-directed CAR-T cells in combination with HGF-targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. Int. J. Cancer 2020, 146, 3184–3195. [Google Scholar] [CrossRef]
- Huang, Y.; Xiong, C.; Wang, C.; Deng, J.; Zuo, Z.; Wu, H.; Xiong, J.; Wu, X.; Lu, H.; Hao, Q.; et al. p53-responsive CMBL reprograms glucose metabolism and suppresses cancer development by destabilizing phosphofructokinase PFKP. Cell Rep. 2023, 42, 113426. [Google Scholar] [CrossRef]
- Vajdic, C.M.; van Leeuwen, M.T. Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer 2009, 125, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Bulaon, C.J.I.; Khorattanakulchai, N.; Rattanapisit, K.; Sun, H.; Pisuttinusart, N.; Phoolcharoen, W. Development of Plant-Derived Bispecific Monoclonal Antibody Targeting PD-L1 and CTLA-4 against Mouse Colorectal Cancer. Planta Medica 2024, 90, 305–315. [Google Scholar] [CrossRef] [PubMed]
- DeNardo, D.G.; Andreu, P.; Coussens, L.M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 2010, 29, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Koerner, J.; Horvath, D.; Oliveri, F.; Li, J.; Basler, M. Suppression of prostate cancer and amelioration of the immunosuppressive tumor microenvironment through selective immunoproteasome inhibition. OncoImmunology 2023, 12, 2156091. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability—An evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Xu, S.; Shi, Y.; Cheng, X.; Zhang, Y.; Roy, S.; Namjoshi, S.; Longo, M.A.; Link, T.M.; Schlacher, K.; et al. GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer. Nat. Commun. 2024, 15, 2132. [Google Scholar] [CrossRef]
- Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224. [Google Scholar] [CrossRef]
- Wullich, B.; Taubert, H.; Goebell, P.J.; Kuwert, T. Individualized precision medicine. Urologie 2023, 62, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Topatana, W.; Juengpanich, S.; Li, S.; Cao, J.; Hu, J.; Lee, J.; Suliyanto, K.; Ma, D.; Zhang, B.; Chen, M.; et al. Advances in synthetic lethality for cancer therapy: Cellular mechanism and clinical translation. J. Hematol. Oncol. 2020, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009, 361, 123–134. [Google Scholar] [CrossRef]
- Liu, X.; Tang, R.; Xu, J.; Tan, Z.; Liang, C.; Meng, Q.; Lei, Y.; Hua, J.; Zhang, Y.; Liu, J.; et al. CRIP1 fosters MDSC trafficking and resets tumour microenvironment via facilitating NF-κB/p65 nuclear translocation in pancreatic ductal adenocarcinoma. Gut 2023, 72, 2329–2343. [Google Scholar] [CrossRef]
- Zhang, C.-D.; Jiang, L.-H.; Zhou, X.; He, Y.-P.; Liu, Y.; Zhou, D.-M.; Lv, Y.; Wu, B.-Q.; Zhao, Z.-Y. Synergistic antitumor efficacy of rMV-Hu191 and Olaparib in pancreatic cancer by generating oxidative DNA damage and ROS-dependent apoptosis. Transl. Oncol. 2024, 39, 101812. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Chang, X.; Qu, F.; Bian, J.; Wang, J.; Li, Z.; Xu, X. Overview of the development of protein arginine methyltransferase modulators: Achievements and future directions. Eur. J. Med. Chem. 2024, 267, 116212. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xia, T.; Chen, D.-Q.; Xiong, X.; Shi, L.; Zuo, Y.; Xiao, H.; Liu, L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist. Updat. 2024, 72, 101016. [Google Scholar] [CrossRef] [PubMed]
- Marjon, K.; Cameron, M.J.; Quang, P.; Clasquin, M.F.; Mandley, E.; Kunii, K.; McVay, M.; Choe, S.; Kernytsky, A.; Gross, S.; et al. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis. Cell Rep. 2016, 15, 574–587. [Google Scholar] [CrossRef]
- Bedard, G.T.; Gilaj, N.; Peregrina, K.; Brew, I.; Tosti, E.; Shaffer, K.; Tyler, P.C.; Edelmann, W.; Augenlicht, L.H.; Schramm, V.L. Combined inhibition of MTAP and MAT2a mimics synthetic lethality in tumor models via PRMT5 inhibition. J. Biol. Chem. 2024, 300, 105492. [Google Scholar] [CrossRef] [PubMed]
- Djajawi, T.M.; Pijpers, L.; Srivaths, A.; Chisanga, D.; Chan, K.F.; Hogg, S.J.; Neil, L.; Rivera, S.M.; Bartonicek, N.; Ellis, S.L.; et al. PRMT1 acts as a suppressor of MHC-I and anti-tumor immunity. Cell Rep. 2024, 43, 113831. [Google Scholar] [CrossRef] [PubMed]
- Hogg, S.J.; Beavis, P.A.; Dawson, M.A.; Johnstone, R.W. Targeting the epigenetic regulation of antitumour immunity. Nat. Rev. Drug Discov. 2020, 19, 776–800. [Google Scholar] [CrossRef] [PubMed]
- Takado, M.; Yamamoto, T.G.; Chikashige, Y.; Matsumoto, T. Fission yeast Wee1 is required for stable kinetochore-microtubule attachment. Open Biol. 2024, 14, 230379. [Google Scholar] [CrossRef]
- Chao, Y.; Chen, Y.; Zheng, W.; Demanelis, K.; Liu, Y.; Connelly, J.A.; Wang, H.; Li, S.; Wang, Q.J. Synthetic lethal combination of CHK1 and WEE1 inhibition for treatment of castration-resistant prostate cancer. Oncogene 2024, 43, 789–803. [Google Scholar] [CrossRef]
- Mohammad, F.K.; A Mohammed, A.; A Faris, G.; Al-Baggou, B.; Mousa, Y.J. Antidotal Effects of the Antihistamine Diphenhydramine Against Cholinesterase Inhibitor Poisoning: A Meta-Analysis of Median Lethal Doses in Experimental Animals. Cureus 2024, 16, e54403. [Google Scholar] [CrossRef]
- Bernhard, W.; Barreto, K.; El-Sayed, A.; Gonzalez, C.; Viswas, R.S.; Toledo, D.; Casaco, A.; DeCoteau, J.; Fonge, H.; Geyer, C.R. Pre-clinical study of IRDye800CW-nimotuzumab formulation, stability, pharmacokinetics, and safety. BMC Cancer 2021, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Han, B.; Zhang, B.; Zou, B.; Hu, M.; Liu, H.; Zhou, C.; Qian, F.; Wang, S.; Zhang, Y.; et al. PEG2000-PLA-based nanoscale polymeric micelles reduce paclitaxel-related toxicity in beagle dogs. J. Control. Release 2023, 362, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Li, P.; Yuan, N.; Liu, L.; Wang, B.; Zhang, C.; Hu, S.; Liu, S.; Li, L.; Dong, S. Toxicological safety evaluation of zengye granule through acute and 30-day toxicity studies in rats. J. Ethnopharmacol. 2024, 318 Pt A, 116884. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.; Sun, H.; Huang, T.; Chen, T.; Jiang, Y.; Yang, Q.; Yan, X.; Wu, M. Decreasing acute toxicity and suppressing colorectal carcinoma using Sorafenib-loaded nanoparticles. Pharm. Dev. Technol. 2020, 25, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Wood, F.L.; Shepherd, S.; Hayes, A.; Liu, M.; Grira, K.; Mok, Y.; Atrash, B.; Faisal, A.; Bavetsias, V.; Linardopoulos, S.; et al. Metabolism of the dual FLT-3/Aurora kinase inhibitor CCT241736 in preclinical and human in vitro models: Implication for the choice of toxicology species. Eur. J. Pharm. Sci. 2019, 139, 104899. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, X.; Mao, Y.; Lu, G.; Huang, M.; Yuan, B. Acute toxicity of a single dose DATR, recombinant soluble human TRAIL mutant, in rodents and crab-eating macaques. Hum. Exp. Toxicol. 2010, 29, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.S.; Klowe, W.M. Preclinical Toxicological Evaluation of Sertraline Hydrochloride. Drug Chem. Toxicol. 1998, 21, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Botham, P.A. Acute Systemic Toxicity. ILAR J. 2002, 43, S27–S30. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.; Clippinger, A.J.; Brown, J.; Allen, D.; Jacobs, A.; Matheson, J.; Lowit, A.; Reinke, E.N.; Johnson, M.S.; Quinn, M.J.; et al. Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regul. Toxicol. Pharmacol. 2018, 94, 183–196. [Google Scholar] [CrossRef]
- Mecklenburg, L.; Lenz, S.; Hempel, G. How important are concurrent vehicle control groups in (sub)chronic non-human primate toxicity studies conducted in pharmaceutical development? An opportunity to reduce animal numbers. PLoS ONE 2023, 18, e0282404. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Song, Z.-Y.; Gan, H.-L.; Zheng, M.-H.; Liu, Q.; Meng, X.-T.; Pan, T.; Li, Z.-Y.; Peng, R.-X.; Liu, K.; et al. Non-clinical safety evaluation of salvianolic acid A: Acute, 4-week intravenous toxicities and genotoxicity evaluations. BMC Pharmacol. Toxicol. 2022, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Goltsev, A.; Babenko, N.; Gaevska, Y.; Bondarovych, M.; Dubrava, T.; Ostankova, L.; Volkova, N.; Klochkov, V. Toxicity of Nanocomplexes Containing Gadolinium Orthovanadate Nanoparticles and Cholesterol. Biol. Trace Element Res. 2022, 200, 4339–4354. [Google Scholar] [CrossRef]
- Treshchalin, M.I.; Treshalina, H.M.; Golibrodo, V.A.; Shchekotikhin, A.E.; Pereverzeva, E.R. Subchronic Toxicity Study of Oral Anthrafuran on Rabbits. Pharmaceuticals 2021, 14, 900. [Google Scholar] [CrossRef] [PubMed]
- Buss, N.; Ryan, P.; Baughman, T.; Roy, D.; Patterson, C.; Gordon, C.; Dixit, R. Nonclinical safety and pharmacokinetics of Miglyol 812: A medium chain triglyceride in exenatide once weekly suspension. J. Appl. Toxicol. 2018, 38, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Feng, Y.; Li, Y.; Xu, Y.; Shi, N.; Hu, G.F.; Wu, Y. Sub-chronic 90-day toxicity of neamine in SD rats and its anti-liver cancer activity in vitro and in vivo. Toxicol. Appl. Pharmacol. 2017, 315, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W. Final report on the safety assessment of Ricinus Communis (Castor) Seed Oil, Hydrogenated Castor Oil, Glyceryl Ricinoleate, Glyceryl Ricinoleate SE, Ricinoleic Acid, Potassium Ricinoleate, Sodium Ricinoleate, Zinc Ricinoleate, Cetyl Ricinoleate, Ethyl Ricinoleate, Glycol Ricinoleate, Isopropyl Ricinoleate, Methyl Ricinoleate, and Octyldodecyl Ricinoleate. Int. J. Toxicol. 2007, 26 (Suppl. S3), 31–77. [Google Scholar]
- Dent, M. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility. Regul. Toxicol. Pharmacol. 2007, 48, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Grindon, C.; Combes, R.; Cronin, M.T.; Roberts, D.W.; Garrod, J.F. An Integrated Decision-tree Testing Strategy for Repeat Dose Toxicity with Respect to the Requirements of the EU REACH Legislation. Altern. Lab. Anim. 2008, 36, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ryabova, Y.V.; Sutunkova, M.P.; Minigalieva, I.A.; Shabardina, L.V.; Filippini, T.; Tsatsakis, A. Toxicological effects of selenium nanoparticles in laboratory animals: A review. J. Appl. Toxicol. 2024, 44, 4–16. [Google Scholar] [CrossRef]
- Ballesteros-Ramírez, R.; Lasso, P.; Urueña, C.; Saturno, J.; Fiorentino, S. Assessment of Acute and Chronic Toxicity in Wistar Rats (Rattus norvegicus) and New Zealand Rabbits (Oryctolagus cuniculus) of an Enriched Polyphenol Extract Obtained from Caesalpinia spinosa. J. Toxicol. 2024, 2024, 3769933. [Google Scholar] [CrossRef]
- Furukawa, Y.; Hirai, S.; Kasai, T.; Senoh, H.; Takanobu, K.; Sasaki, T.; Kano, H.; Matsumoto, M.; Aiso, S. Carcinogenicity and chronic toxicity of butyl methacrylate in rats and mice by a two-year inhalation study. J. Toxicol. Sci. 2023, 48, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Hollingshead, B.D.; Khan, N.; Schuler, M.; Radi, Z. Development challenges for carcinogenicity risk assessments of topical drugs. J. Toxicol. Sci. 2022, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wallery, J.J.; Kale, V.P.; Novak, J.; Gibbs, S.; Do, M.-H.T.; McKew, J.C.; Terse, P.S. Evaluation of chronic toxicity of cyclocreatine in beagle dogs after oral gavage administration for up to 23 weeks. Toxicol. Appl. Pharmacol. 2021, 430, 115680. [Google Scholar] [CrossRef] [PubMed]
- Rosol, T.J.; Witorsch, R.J. Ethyl acrylate (EA) exposure and thyroid carcinogenicity in rats and mice with relevance to human health. Regul. Toxicol. Pharmacol. 2021, 124, 104961. [Google Scholar] [CrossRef] [PubMed]
- Loberg, L.I.; Chhaya, M.; Ibraghimov, A.; Tarcsa, E.; Striebinger, A.; Popp, A.; Huang, L.; Oellien, F.; Barghorn, S. Off-target binding of an anti-amyloid beta monoclonal antibody to platelet factor 4 causes acute and chronic toxicity in cynomolgus monkeys. mAbs 2021, 13, 1887628. [Google Scholar] [CrossRef]
- Henderson, R.G.; Welsh, B.T.; Rogers, J.M.; Borghoff, S.J.; Trexler, K.R.; Bonn-Miller, M.O.; Lefever, T.W. Reproductive and developmental toxicity evaluation of cannabidiol. Food Chem. Toxicol. 2023, 176, 113786. [Google Scholar] [CrossRef]
- Kobayashi, N.; Izumi, H.; Morimoto, Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health 2017, 59, 394–407. [Google Scholar] [CrossRef]
- Jarvis, P.; Srivastav, S.; Vogelwedde, E.; Stewart, J.; Mitchard, T.; Weinbauer, G.F. The cynomolgus monkey as a model for developmental toxicity studies: Variability of pregnancy losses, statistical power estimates, and group size considerations. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2010, 89, 175–187. [Google Scholar] [CrossRef]
- Bode, G.; Clausing, P.; Gervais, F.; Loegsted, J.; Luft, J.; Nogues, V.; Sims, J. The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods 2010, 62, 196–220. [Google Scholar] [CrossRef]
- Foote, R.H.; Carney, E.W. The rabbit as a model for reproductive and developmental toxicity studies. Reprod. Toxicol. 2000, 14, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Frohberg, H. Preclinical research—Toxicology. Arzneim.-Forsch. 1975, 25, 1101–1110. [Google Scholar]
- Cameron, L.P.; Tombari, R.J.; Lu, J.; Pell, A.J.; Hurley, Z.Q.; Ehinger, Y.; Vargas, M.V.; McCarroll, M.N.; Taylor, J.C.; Myers-Turnbull, D.; et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 2021, 589, 474–479. [Google Scholar] [CrossRef]
- Walgren, J.L.; Carfagna, M.A.; Koger, D.; Sgro, M.; Kallman, M.J. Withdrawal Assessment Following Subchronic Oral Ketamine Administration in Cynomolgus macaques. Drug Dev. Res. 2014, 75, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Su, R.-B.; Lu, X.-Q.; Huang, Y.; Liu, Y.; Gong, Z.-H.; Wei, X.-L.; Wu, N.; Li, J. Effects of intragastric agmatine on morphine-induced physiological dependence in beagle dogs and rhesus monkeys. Eur. J. Pharmacol. 2008, 587, 155–162. [Google Scholar] [CrossRef]
- Lenoir, M.; Serre, F.; Cantin, L.; Ahmed, S.H. Intense Sweetness Surpasses Cocaine Reward. PLoS ONE 2007, 2, e698. [Google Scholar] [CrossRef]
- Czerniak, R. Gender-Based Differences in Pharmacokinetics in Laboratory Animal Models. Int. J. Toxicol. 2001, 20, 161–163. [Google Scholar] [CrossRef]
- Enzmann, H.; Iatropoulos, M.; Brunnemann, K.D.; Bomhard, E.; Ahr, H.J.; Schlueter, G.; Williams, G.M. Short- and intermediate-term carcinogenicity testing—A review. Part 2: Available experimental models. Food Chem Toxicol. 1998, 36, 997–1013. [Google Scholar] [CrossRef]
- Shirai, T. Review Article: A Medium-Term Rat Liver Bioassay as a Rapid In Vivo Test for Carcinogenic Potential: A Historical Review of Model Development and Summary of Results from 291 Tests. Toxicol. Pathol. 1997, 25, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Fuentes, J.L.; Krishnan, A.; Singh, N.; Vohora, D. Guidance for the use and interpretation of assays for monitoring anti-genotoxicity. Life Sci. 2024, 337, 122341. [Google Scholar] [CrossRef]
- Antoniou, E.E.; Rooseboom, M.; Kocabas, N.A.; North, C.M.; Zeegers, M.P. Micronuclei in human peripheral blood and bone marrow as genotoxicity markers: A systematic review and meta-analysis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023, 891, 503689. [Google Scholar] [CrossRef]
- Park, S.J.; Park, H.; Back, S.-M.; Lee, Y.J.; Seo, J.-W.; Kim, D.; Lee, J.H.; Kwak, C.; Han, K.-H.; Son, H.-Y.; et al. Genotoxicity and safety pharmacology of the rVSVInd(GML)-mspSGtc vaccine against SARS-CoV-2 in Sprague-Dawley rats and Beagle dogs. Arch. Toxicol. 2024, 98, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Han, E.H.; Lim, M.K.; Lee, S.H.; Rahman, M.; Lim, Y.-H. An oral toxicity test in rats and a genotoxicity study of extracts from the stems of Opuntia ficus-indica var. saboten. BMC Complement. Altern. Med. 2019, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D.; Adamson, R.H.; Snyderwine, E.G. Studies on the mutagenic activation of heterocyclic amines by cynomolgus monkey, rat and human microsomes show that cynomolgus monkeys have a low capacity to N-oxidize the quinoxaline-type heterocyclic amines. Cancer Lett. 1993, 73, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Styles, J.; Penman, M. Evaluation of its performance in identifying chemical mutagens and carcinogens. Mutat. Res. Genet. Toxicol. 1985, 154, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Ekman, L.; Hansson, E.; Havu, N.; Carlsson, E.; Lundberg, C. Toxicological studies on omeprazole. Scand. J. Gastroenterol. Suppl. 1985, 108, 53–69. [Google Scholar] [PubMed]
- Mahmoudian, R.A.; Farshchian, M.; Golyan, F.F.; Mahmoudian, P.; Alasti, A.; Moghimi, V.; Maftooh, M.; Khazaei, M.; Hassanian, S.M.; Ferns, G.A.; et al. Preclinical tumor mouse models for studying esophageal cancer. Crit. Rev. Oncol. Hematol. 2023, 189, 104068. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhao, X.; Wen, T.; Qu, X. Unveiling the role of KRAS in tumor immune microenvironment. Biomed. Pharmacother. 2024, 171, 116058. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.K.; Mittal, K.R.; Jain, N.; Sharma, N.; Jain, C.K. KRAS Pathways: A Potential Gateway for Cancer Therapeutics and Diagnostics. Recent. Patents Anti-Cancer Drug Discov. 2024, 19, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, Y.; Zhou, X.; Wen, J.; Zheng, P.; Zhu, W. Research Progress on Small Molecule Inhibitors Targeting KRAS G12C with Acrylamide Structure and the Strategies for Solving KRAS Inhibitor Resistance. Bioorganic Med. Chem. 2024, 100, 117627. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, Z.; Duan, W.; Yao, G.; Sheng, S.; Zong, S.; Zhang, X.; Li, C.; Liu, Y.; Ou, F.; et al. DR30318, a novel tri-specific T cell engager for Claudin 18.2 positive cancers immunotherapy. Cancer Immunol. Immunother. 2024, 73, 82. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Li, T.; Wang, Y.; Liu, X.; Bai, Y.; Wang, C.; Ju, S.; Huang, S.; Yang, C.; et al. A VEGFR targeting peptide-drug conjugate (PDC) suppresses tumor angiogenesis in a TACE model for hepatocellular carcinoma therapy. Cell Death Discov. 2022, 8, 411. [Google Scholar] [CrossRef]
- Gameiro, A.; Nascimento, C.; Correia, J.; Ferreira, F. HER2-Targeted Immunotherapy and Combined Protocols Showed Promising Antiproliferative Effects in Feline Mammary Carcinoma Cell-Based Models. Cancers 2021, 13, 2007. [Google Scholar] [CrossRef]
- Gameiro, A.; Almeida, F.; Nascimento, C.; Correia, J.; Ferreira, F. Tyrosine Kinase Inhibitors Are Promising Therapeutic Tools for Cats with HER2-Positive Mammary Carcinoma. Pharmaceutics 2021, 13, 346. [Google Scholar] [CrossRef]
- Padilha, E.C.; Shah, P.; Wang, A.Q.; Singleton, M.D.; Hughes, E.A.; Li, D.; Rice, K.A.; Konrath, K.M.; Patnaik, S.; Marugan, J.; et al. Metabolism and pharmacokinetics characterization of metarrestin in multiple species. Cancer Chemother. Pharmacol. 2020, 85, 805–816. [Google Scholar] [CrossRef]
Model Type | Areas of Application | Advantages | Disadvantages | Recent Advances in the Treatment of Specific Cancers |
---|---|---|---|---|
Transplantation model (homologous, xenogeneic) | Evaluate tumor immunotherapy in tumor-bearing mice | Homologous: Origin is consistent. Xenogeneic: A variety of animal models. | Homologous: not universal, immune difference, and results change frequently. Xenogeneic: limitations of species differences, clinical application of low success rate, and key differences between species. | Homology: AMG509 mouse model—metastatic castration-resistant prostate cancer [47]. Xenogeneic: Mouse models of NSCLC—aerobic lung cancer [48]. |
In situ model | Evaluate growth in the appropriate microenvironment/ local tumor invasion/ preclinical survival end points | Chemical carcinogen induction method: commonly used DMBA, AOM, etc. Gene-editing technology, such as CRISPER. | Chemical carcinogen induction: toxic to normal cells. Gene-editing technology: high cost, complex methods, and low success rate. | Chemical carcinogen induction: AOM-DSS mouse model—colorectal cancer [57]. Gene editing technology: CRISPR-Cas9-mediated somatic glioblastoma (GBM) mouse models [58]. |
Genetic engineering mouse model | Identify potential tumor genes and drug targets, analyze the effects of the tumor microenvironment, and evaluate drug resistance mechanisms | Gene knockout mice: evaluate the function of oncogenes and tumor suppressor genes. Humanized mice: a real simulated microenvironment. | Model is expensive, the production cycle is long, and the single model lacks representativeness. | Gene knockout mice: Ucp2 KO mouse model—pancreatic ductal adenocarcinoma (PDAC) [60]. Humanized mice: The HIS (humanized immune system) mouse model for CAR-T therapy [61]. |
Primary tumor xenograft model | Clinical relevance and predictive value, drug screening and development, and tumor biology research | Preserving the genetic and epigenetic diversity of the tumor in vivo. | Cannot be repeatedly obtained, long time, and unstable success rate. | NOD-SCID-IL2RgammaC-null (NSG) mice—lung cancer [65]. PDX mouse models of highly invasive (HI) and minimally invasive brain metastases (MI BrM) [66]. |
Chemical carcinogenesis model | Developmental sequelae that are molecularly, biochemically, and histopathologically similar to specific human cancers | Simple operation, low time cost, and play interventions before cancer occurs. | Mechanism has not been elucidated; toxicity of carcinogens; a gap between experimental differentiated tumors and human tumors. | Diethylnitrosamine (DEN)—hepatocarcinogenesis [70]. Benzo(a)pyrene—lung cancer [67]. |
Cancer Hallmarks | New Drugs | Mouse Model—Cancer—Drug/Protocol Name |
---|---|---|
Sustaining Proliferative Signaling | Epidermal growth factor receptor inhibitor | Xenotransplantation mice—KRAS mutation CRC—MRTX1133 [107] |
Evading Growth Suppressors | Cell cycle-dependent kinase inhibitor | Transgenic mice—breast cancer—INX-315 [109] |
Resisting Cell Death | BH3 analogue | Homologous transplantation mice—lymphoma—Vnetoclax [112] |
Enabling Replicative Immortality | Telomerase inhibitor | Xenotransplantation mice—High-risk neuroblastoma—Imetelstat [114] |
Inducing Angiogenesis | VEGF inhibitor | Xenotransplantation mice—pancreatic cancer—Gmcitabine [116] |
Activating Invasion and Metastasis | HGF/c-MET inhibitor | Homologous transplantation mice—Ewing sarcoma tumors—CAR-T therapy+AMG102 [118] |
Deregulating Cellular Energetics | Aerobic glycolytic inhibitor | Xenotransplantation mice—colorectal cancer—CMBL [119] |
Avoiding Immune Destruction | CTLA-4 monoclonal antibody | Xenotransplantation mice—colorectal cancer—Dual variable domain immunoglobulin atezolizumab × 2C8 [121] |
Tumor-promoting Inflammation | Anti-inflammatory drug | Transgenic mice—prostate cancer—Immunoproteasome [123] |
Genome Instability and Mutation | PARP inhibitor | Homologous transplantation mice—ovarian cancer—GRB2+(Olaparib/Talazoparib) [125] |
Test Types | Acute Toxicity Test | Subchronic Toxicity TEST | Chronic toxicity Test | Reproductive Toxicity Test | Drug Dependence Test | Carcinogenicity Test | Genotoxicity Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Animal Species | |||||||||||||||
Mouse | ✓✓ | [144] | ✓✓ | [152] | ✓✓ | [161] | ✓ | [167] | ✓✓✓ | [172] | ✓✓✓ | [177] | ✓✓✓ | [184] | |
Rat | ✓✓✓ | [143] | ✓✓✓ | [155] | ✓✓✓ | [164] | ✓✓✓ | [166] | ✓✓✓ | [175] | ✓✓✓ | [178] | ✓✓✓ | [182] | |
Beagle dog | ✓✓✓ | [142] | ✓✓✓ | [151] | ✓✓✓ | [163] | ✓✓ | [171] | ✓✓ | [174] | NR | ✓ | [181] | ||
Rabbit | ✓ | [147] | ✓✓✓ | [153] | ✓ | [160] | ✓✓✓ | [170] | ✓ | [176] | NR | ✓ | [185] | ||
Cynomolgus monkey | ✓✓✓ | [146] | ✓✓✓ | [154] | ✓✓✓ | [165] | ✓✓ | [168] | ✓✓✓ | [173] | NR | ✓ | [183] | ||
Miniature pig | ✓ | [145] | ✓ | [156] | ✓✓✓ | [162] | ✓✓ | [169] | NR | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Xu, X.; Zhang, J.; Du, Y.; Yang, X.; He, Z.; Zhao, L.; Liang, T.; Guo, L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals 2024, 17, 1048. https://doi.org/10.3390/ph17081048
Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals. 2024; 17(8):1048. https://doi.org/10.3390/ph17081048
Chicago/Turabian StyleGuo, Haochuan, Xinru Xu, Jiaxi Zhang, Yajing Du, Xinbing Yang, Zhiheng He, Linjie Zhao, Tingming Liang, and Li Guo. 2024. "The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies" Pharmaceuticals 17, no. 8: 1048. https://doi.org/10.3390/ph17081048
APA StyleGuo, H., Xu, X., Zhang, J., Du, Y., Yang, X., He, Z., Zhao, L., Liang, T., & Guo, L. (2024). The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals, 17(8), 1048. https://doi.org/10.3390/ph17081048