Gefitinib-Induced Severe Dermatological Adverse Reactions: A Case Report and Pharmacogenetic Profile
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; McGuinn, W.D.; Morse, D.; Abraham, S.; Rahman, A.; Liang, C.; Lostritto, R.; et al. United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin. Cancer Res. 2004, 10, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.; Yang, J.-J.; Lam, K.-C. Treating Patients with EGFR-Sensitizing Mutations: First Line or Second Line—Is There a Difference? J. Clin. Oncol. 2013, 31, 1081–1088. [Google Scholar] [CrossRef]
- Pastore, S.; Lulli, D.; Girolomoni, G. Epidermal growth factor receptor signalling in keratinocyte biology: Implications for skin toxicity of tyrosine kinase inhibitors. Arch. Toxicol. 2014, 88, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Hofheinz, R.-D.; Deplanque, G.; Komatsu, Y.; Kobayashi, Y.; Ocvirk, J.; Racca, P.; Guenther, S.; Zhang, J.; Lacouture, M.E.; Jatoi, A. Recommendations for the Prophylactic Management of Skin Reactions Induced by Epidermal Growth Factor Receptor Inhibitors in Patients with Solid Tumors. Oncologist 2016, 21, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, R.; Jiang, T.; Duan, D.; Wu, Y.; Li, C.; Li, Z.; Ni, R.; Li, L.; Liu, Y. Mechanism of Lethal Skin Toxicities Induced by Epidermal Growth Factor Receptor Inhibitors and Related Treatment Strategies. Front. Oncol. 2022, 12, 804212. [Google Scholar] [CrossRef]
- Nayak, S.; Acharjya, B. Adverse cutaneous drug reaction. Indian J. Dermatol. 2008, 53, 2–8. [Google Scholar] [CrossRef]
- Pichler, W.J. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019, 74, 1457–1471. [Google Scholar] [CrossRef] [PubMed]
- Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J.; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA 2003, 290, 2149–2158. [Google Scholar] [CrossRef]
- Fukuoka, M.; Yano, S.; Giaccone, G.; Tamura, T.; Nakagawa, K.; Douillard, J.-Y.; Nishiwaki, Y.; Vansteenkiste, J.; Kudoh, S.; Rischin, D.; et al. Multi-Institutional Randomized Phase II Trial of Gefitinib for Previously Treated Patients with Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2003, 41, 1162–1171. [Google Scholar] [CrossRef]
- Li, J.; Zhao, M.; He, P.; Hidalgo, M.; Baker, S.D. Differential Metabolism of Gefitinib and Erlotinib by Human Cytochrome P450 Enzymes. Clin. Cancer Res. 2007, 13, 3731–3737. [Google Scholar] [CrossRef]
- Tamura, M.; Kondo, M.; Horio, M.; Ando, M.; Saito, H.; Yamamoto, M.; Horio, Y.; Hasegawa, Y. Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (abcg2, abcb1) and gefitinib toxicity. Nagoya J. Med. Sci. 2012, 74, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Qin, G.; Yao, C. Correlation between adverse events after drug treatment and the MDR1 C3435T polymorphism in advanced non-small cell lung cancer patients in an Asian population: A meta-analysis. J. Int. Med. Res. 2019, 47, 3522–3533. [Google Scholar] [CrossRef]
- Wan, Z.; Guo, L.; Li, P.; Zhao, Z.; Xu, B.; Ren, L.; Yan, Y.; Liu, H.; Zhang, Y.; Liu, L. Determinants of gefitinib pharmacokinetics in healthy Chinese male subjects: A pharmacogenomic study of cytochrome p450 enzymes and transporters. J. Clin. Pharm. Ther. 2020, 45, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Pagliuca, S.; Gurnari, C.; Rubio, M.T.; Visconte, V.; Lenz, T.L. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front. Immunol. 2022, 13, 944872. [Google Scholar] [CrossRef] [PubMed]
- U.S Department of Health and Human Services; National Institute of Health NCI; U.S Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE); Version 5.0. 2018. Available online: https://nciterms.nci.nih.gov/ncitbrowser/pages/vocabulary.jsf?dictionary=CTCAE_v5&version=5.0 (accessed on 10 May 2024).
- Raehl, C.L.; Bond, C.A.; Woods, T.; Patry, R.A.; Sleeper, R.B. Individualized Drug Use Assessment in the Elderly. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2002, 22, 1239–1248. [Google Scholar] [CrossRef]
- Horne, R.; Weinman, J.; Hankins, M. The beliefs about medicines questionnaire: The development and evaluation of a new method for assessing the cognitive representation of medication. Psychol. Health 1999, 14, 1–24. [Google Scholar] [CrossRef]
- Salgado, T.; Marques, A.; Geraldes, L.; Benrimoj, S.; Horne, R.; Fernandez-Llimos, F.; Salgado, T.; Marques, A.; Geraldes, L.; Benrimoj, S.; et al. Cross-cultural adaptation of the Beliefs about Medicines Questionnaire into Portuguese. Sao Paulo Med. J. 2013, 131, 88–94. [Google Scholar] [CrossRef]
- Yasuda, K.; Ranade, A.; Venkataramanan, R.; Strom, S.; Chupka, J.; Ekins, S.; Schuetz, E.; Bachmann, K. A Comprehensive in Vitro and in Silico Analysis of Antibiotics That Activate Pregnane X Receptor and Induce CYP3A4 in Liver and Intestine. Drug Metab. Dispos. 2008, 36, 1689–1697. [Google Scholar] [CrossRef]
- Rocha-Lima, C.M.; Soares, H.P.; Raez, L.E.; Singal, R. EGFR targeting of solid tumors. Cancer Control 2007, 14, 295–304. [Google Scholar] [CrossRef]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non–Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. 2008, 83, 584. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, A.; Ready, N. Gefitinib therapy for non-small cell lung cancer. Curr. Treat. Options Oncol. 2005, 6, 75–81. [Google Scholar] [CrossRef]
- Cersosimo, R.J. Gefitinib: An adverse effects profile. Expert Opin. Drug Saf. 2006, 5, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; LoRusso, P.M.; Purdom, M.; Ward, D. Dermatologic Side Effects Associated with Gefitinib Therapy: Clinical Experience and Management. Clin. Lung Cancer 2003, 4, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Sunaga, N.; Tomizawa, Y.; Yanagitani, N.; Iijima, H.; Kaira, K.; Shimizu, K.; Tanaka, S.; Suga, T.; Hisada, T.; Ishizuka, T.; et al. Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. Lung Cancer 2007, 56, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Piraccini, B.M.; Alessandrini, A. Drug-related nail disease. Clin. Dermatol. 2013, 31, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.C.; Ghazarian, D.M.; Shaw, J.C. Scarring Alopecia Associated with Use of the Epidermal Growth Factor Receptor Inhibitor Gefitinib. Arch. Dermatol. 2008, 144, 1524–1525. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.E.; Jones, B.F.; Lind, A.C.; Heffernan, M.P. Nonscarring inflammatory alopecia associated with the epidermal growth factor receptor inhibitor gefitinib. J. Am. Acad. Dermatol. 2006, 55, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Sun, H.; Xue, D. A severe dermatologic adverse effect related with gefitinib: Case report and review of the literature. J. Cancer Res. Ther. 2013, 9 (Suppl. S2), 110–113. [Google Scholar] [CrossRef]
- Ferrazzi, A.; Russo, I.; Pasello, G.; Alaibac, M. Atypical skin reaction in a patient treated with gefitinib for advanced lung cancer: A case report and review of the literature. Exp. Ther. Med. 2016, 11, 197–200. [Google Scholar] [CrossRef]
- Rodriguez-Antona, C.; Savieo, J.L.; Lauschke, V.M.; Sangkuhl, K.; Drögemöller, B.I.; Wang, D.; van Schaik, R.H.N.; Gilep, A.A.; Peter, A.P.; Boone, E.C.; et al. PharmVar GeneFocus: CYP3A5. Clin. Pharmacol. Ther. 2022, 112, 1159–1171. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Yu, X.; Xu, L.-M.; Mei, J.; Tian, M.-L.; Xu, M.; Jin, Q.-Y.; Ye, L.-B.; Yang, S.-X. Effect of genetic polymorphisms on the pharmacokinetics of gefitinib in healthy Chinese volunteers. Xenobiotica 2024, 54, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Kwok, W.C.; Lam, D.C.L.; Ip, M.S.M.; Tam, T.C.C.; Ho, J.C.M. Association of genetic polymorphisms of CYP3A4 and CYP2D6 with gefitinib-induced toxicities. Anticancer. Drugs 2022, 33, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Mckillop, D.; McCormick, A.D.; Millar, A.; Miles, G.S.; Phillips, P.J.; Hutchison, M. Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 2005, 35, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Mckillop, D.; Mccormick, A.D.; Miles, G.S.; Phillips, P.J.; Pickup, K.J.; Bushby, N.; Hutchison, M. In vitro metabolism of gefitinib in human liver microsomes. Xenobiotica 2004, 34, 983–1000. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, E.; Umemura, S.; Nomura, S.; Kirita, K.; Matsumoto, S.; Yoh, K.; Niho, S.; Ohmatsu, H.; Tsuboi, M.; Ohe, Y.; et al. Impact of single nucleotide polymorphisms on severe hepatotoxicity induced by EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer harboring EGFR mutations. Lung Cancer 2015, 90, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Gow, J.M.; Hodges, L.M.; Chinn, L.W.; Kroetz, D.L. Substrate-Dependent Effects of Human ABCB1 Coding Polymorphisms. J. Pharmacol. Exp. Ther. 2008, 325, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Skinner, K.T.; Palkar, A.M.; Hong, A.L. Genetics of ABCB1 in Cancer. Cancers 2023, 15, 4236. [Google Scholar] [CrossRef] [PubMed]
- Fojo, A.T.; Ueda, K.S.D.J.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 1987, 84, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Mittal, B.; Tulsyan, S.; Mittal, R. The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmgenom. Pers. Med. 2016, 9, 47. [Google Scholar] [CrossRef]
- Gonzalez-Haba, E.; García, M.I.; Cortejoso, L.; López-Lillo, C.; Barrueco, N.; García-Alfonso, P.; Alvarez, S.; Jiménez, J.L.; Martín, M.L.; Muñóz-Fernández, M.A.; et al. ABCB1 gene polymorphisms are associated with adverse reactions in fluoropyrimidine-treated colorectal cancer patients. Pharmacogenomics 2010, 11, 1715–1723. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, S.; Huang, M.; Yang, Y.; Zhu, C.; Zhao, H.; Zhang, Y.; Chen, L.; Zhao, Y.; Li, J.; et al. Determinants of Gefitinib toxicity in advanced non-small cell lung cancer (NSCLC): A pharmacogenomic study of metabolic enzymes and transporters. Pharmacogenom. J. 2017, 17, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Morau, M.V.; Seguin, C.S.; Visacri, M.B.; Pincinato, E.d.C.; Moriel, P. Genetic Variants in the ABCB1 and ABCG2 Gene Drug Transporters Involved in Gefitinib-Associated Adverse Reaction: A Systematic Review and Meta-Analysis. Genes 2024, 15, 591. [Google Scholar] [CrossRef] [PubMed]
- Kukal, S.; Guin, D.; Rawat, C.; Bora, S.; Mishra, M.K.; Sharma, P.; Paul, P.R.; Kanojia, N.; Grewal, G.K.; Kukreti, S.; et al. Multidrug efflux transporter ABCG2: Expression and regulation. Cell. Mol. Life Sci. 2021, 78, 6887–6939. [Google Scholar] [CrossRef] [PubMed]
- Cusatis, G.; Gregorc, V.; Li, J.; Spreafico, A.; Ingersoll, R.G.; Verweij, J.; Ludovini, V.; Villa, E.; Hidalgo, M.; Sparreboom, A.; et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J. Natl. Cancer Inst. 2006, 98, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, K.; Kaburagi, T.; Yasuda, S.; Ohmori, K.; Abe, K.; Sagara, H.; Ueda, Y.; Nagao, K.; Imura, J.; Imai, Y. Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non–small-cell lung cancer. Cancer Chemother. Pharmacol. 2010, 66, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Horsey, A.J.; Cox, M.H.; Sarwat, S.; Kerr, I.D. The multidrug transporter ABCG2: Still more questions than answers. Biochem. Soc. Trans. 2016, 44, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.N.; Zhang, C.L.; He, H.R.; Pan, Z.Y.; Fan, D.; He, Y.L.; You, H.S.; Li, Y.J. Associations between ABCG2 gene polymorphisms and gefitinib toxicity in non-small cell lung cancer: A meta-analysis. Oncol. Targets. Ther. 2018, 11, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Nofziger, C.; Turner, A.J.; Sangkuhl, K.; Whirl-Carrillo, M.; Agúndez, J.A.G.; Black, J.L.; Dunnenberger, H.M.; Ruano, G.; Kennedy, M.A.; Phillips, M.S.; et al. PharmVar GeneFocus: CYP2D6. Clin. Pharmacol. Ther. 2020, 107, 154–170. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, J.P.; Peter, A.P.; Shaman, J.A. Consequences of CYP2D6 Copy-Number Variation for Pharmacogenomics in Psychiatry. Front. Psychiatry 2019, 10, 432. [Google Scholar] [CrossRef]
- Suzumura, T.; Kimura, T.; Kudoh, S.; Umekawa, K.; Nagata, M.; Kira, Y.; Nakai, T.; Matsuura, K.; Yoshimura, N.; Hirata, K. Reduced CYP2D6 Function Potentiates the Gefitinib-Induced Rash in Patients with Non-Small Cell Lung Cancer. Ann. Oncol. 2012, 23, ix79. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef] [PubMed]
Gene | Patient Genotype | Patient Phenotype |
---|---|---|
CYP2D6 | *1/*2 | normal metabolizer (CNV = 2) |
CYP3A4 | *1/*2 | normal metabolizer |
CYP3A5 | *3/*3 | poor metabolizer |
ABCB1 | ||
rs 1045642 (3435 A > C) | A/A | - |
rs 1128503 (c.1236A > G) | G/G | - |
rs 2032582 (2677 C > T/A) | C/C | - |
ABCG2 | ||
rs2231142 (c.421G > T) | G/T | - |
rs2622604 (c.-20 + 614 T > C) | C/T | - |
EGFR | ||
rs2227983 (1562 G > A) | G/G | - |
rs2293347 (c.2982 C > T) | C/C | - |
HLA | ||
A/B | Ref/Ref | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morau, M.V.; Seguin, C.S.; Perroud Junior, M.W.; Dagli-Hernandez, C.; Pincinato, E.d.C.; Moriel, P. Gefitinib-Induced Severe Dermatological Adverse Reactions: A Case Report and Pharmacogenetic Profile. Pharmaceuticals 2024, 17, 1040. https://doi.org/10.3390/ph17081040
Morau MV, Seguin CS, Perroud Junior MW, Dagli-Hernandez C, Pincinato EdC, Moriel P. Gefitinib-Induced Severe Dermatological Adverse Reactions: A Case Report and Pharmacogenetic Profile. Pharmaceuticals. 2024; 17(8):1040. https://doi.org/10.3390/ph17081040
Chicago/Turabian StyleMorau, Mariana Vieira, Cecilia Souto Seguin, Mauricio Wesley Perroud Junior, Carolina Dagli-Hernandez, Eder de Carvalho Pincinato, and Patricia Moriel. 2024. "Gefitinib-Induced Severe Dermatological Adverse Reactions: A Case Report and Pharmacogenetic Profile" Pharmaceuticals 17, no. 8: 1040. https://doi.org/10.3390/ph17081040
APA StyleMorau, M. V., Seguin, C. S., Perroud Junior, M. W., Dagli-Hernandez, C., Pincinato, E. d. C., & Moriel, P. (2024). Gefitinib-Induced Severe Dermatological Adverse Reactions: A Case Report and Pharmacogenetic Profile. Pharmaceuticals, 17(8), 1040. https://doi.org/10.3390/ph17081040