Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization—WHO. Available online: https://www.who.int/health-topics/cancer (accessed on 31 August 2023).
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, B.; Geyer, F.C.; Reis-filho, J.S. Histological Types of Breast Cancer: How Special Are They? Mol. Oncol. 2010, 4, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Salles, M.D.A.; Perez, A.A.; Gomes, D.S.; Gobbi, H. Contribuição Da Imuno-Histoquímica Na Avaliação de Fatores Prognósticos e Preditivos Do Câncer de Mama e No Diagnóstico de Lesões Mamárias. J. Bras. Patol. Med. Lab. 2009, 45, 213–222. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, M.; Hristeva, S.; Bielska, M.; Ortega, R.; Kumar, K. Highly Stereoselective Synthesis of a Compound Collection Based on the Bicyclic Scaffolds of Natural Products. Molecules 2017, 22, 827. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, E.; Sankari, L.; Malathi, L.; Krupaa, J. Naturally Occurring Products in Cancer Therapy. J. Pharm. Bioallied Sci. 2015, 7, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.C.; Hsu, C.L.; Lin, H.T.; Yen, G.C. Anticancer Effects of Flavonoid Derivatives Isolated from Millettia Reticulata Benth in Sk-Hep-1 Human Hepatocellular Carcinoma Cells. J. Agric. Food Chem. 2010, 58, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Pesrspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef] [PubMed]
- Tiemy, J.; Siraichi, G.; Felipe, D.F.; Zampar, L.; Brambilla, S.; Terra, A.; Cecchini, A.L.; Elaine, L.; Cortez, R. Antioxidant Capacity of the Leaf Extract Obtained from Arrabidaea Chica Cultivated in Southern Brazil. PLoS ONE 2013, 8, 1–9. [Google Scholar]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the Biotechnological Glycosylation of Valuable Flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef]
- Suzart, L.R.; De, J.F.; Daniel, S.; de Carvalho, M.G.; Auxiliadora, M.; Kaplan, C. Flavonoidic biodiversiy and pharmacologic aspects in the species of the Ouratea and Luxemburgia genera (Ochnaceae). Quim. Nova. 2007, 30, 984–987. [Google Scholar] [CrossRef]
- He, X.; Yang, F.; Huang, X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021, 26, 6088. [Google Scholar] [CrossRef]
- Mercader, A.; Pomilio, A. Naturally-Occurring Dimers of Flavonoids as Anticarcinogens. Anti-Cancer Agents Med. Chem. 2013, 13, 1217–1235. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Park, H.; Son, K.H.; Chang, H.W.; Kang, S.S. Biochemical Pharmacology of Biflavonoids: Implications for Anti-Inflammatory Action. Arch. Pharmacal Res. 2008, 31, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, V.S.; dos Santos, M.H.; Viegas, C., Jr. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review. Mini-Rev. Med. Chem. 2016, 17, 834–862. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.F.; Wong, I.L.K.; Kan, J.W.Y.; Yan, C.S.W.; Chow, L.M.C.; Chan, T.H. Amine Linked Flavonoid Dimers as Modulators for P-Glycoprotein-Based Multidrug Resistance: Structure-Activity Relationship and Mechanism of Modulation. J. Med. Chem. 2012, 55, 1999–2014. [Google Scholar] [CrossRef]
- Dury, L.; Nasr, R.; Lorendeau, D.; Comsa, E.; Falson, P.; di Pietro, A.; Baubichon-Cortay, H.; Wong, I.; Zhu, X.; Chan, K.F.; et al. Flavonoid Dimers Are Highly Potent Killers of Multidrug Resistant Cancer Cells Overexpressing MRP1. Biochem. Pharmacol. 2017, 124, 10–18. [Google Scholar] [CrossRef]
- Liu, Y.; Kelsang, N.; Lu, J.; Zhang, Y.; Liang, H.; Tu, P.; Kong, D.; Zhang, Q. Oxytrodiflavanone A and Oxytrochalcoflavanones A, B: New Biflavonoids from Oxytropis chiliophylla. Molecules 2019, 24, 1468. [Google Scholar] [CrossRef]
- Groshi, A.A.; Jasim, H.A.; Evans, A.R.; Ismail, F.M.D.; Dempster, N.M.; Nahar, L.; Sarker, S.D. Growth inhibitory activity of biflavonoids and diterpenoids from the leaves of the Libyan Juniperus phoenicea against human cancer cells. Phytother. Res. 2019, 33, 2075–2082. [Google Scholar] [CrossRef]
- Banzato, T.; Gubiani, J.; Bernardi, D.; Nogueira, C.; Monteiro, A.; Juliano, F.; Alencar, S.; Pilli, R.; Lima, C.; Longato, G.; et al. Antiproliferative Flavanoid Dimers Isolated from Brazilian Red Propolos. J. Nat. Prod. 2020, 83, 1784–1793. [Google Scholar] [CrossRef]
- Liu, Q.; Cheung, F.W.K.; Liu, B.P.L.; Li, C.; Ye, W.; Che, C. Involvement of p21 and FasL in Induction of Cell Cycle Arrest and Apoptosis by Neochamaejasmin A in Human Prostate LNCaP Cancer Cells. J. Nat. Prod. 2008, 71, 842–846. [Google Scholar] [CrossRef] [PubMed]
- You, O.H.; Kim, S.; Kim, B.; Sohn, E.J.; Lee, H.; Shim, B.; Yun, M.; Kwon, B.; Kim, S. Ginkgetin induces apoptosis via activation of caspase and inhibition of survival genes in PC-3 prostate cancer cells. Bioorganic Med. Chem. Lett. 2013, 23, 2692–2695. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Jung, S.; Yun, J.; Lee, C.W.; Choi, J.; Lee, Y.; Han, D.C.; Kwon, B. Ginkgetin inhibits the growth of DU 145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity. Cancer Sci. 2015, 106, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Cubero, M.; Rodrigues, C.; Franco, Y.; Nascimento, J.; Vendramini-Costa, D.; da Rocha, C.; Longato, G. Antiproliferative Activity of Two Unusual Dimeric Flavonoids, Brachydin E and Brachydin F, Isolated from Fridericia platyphylla (Cham.) L.G.Lohmann: In Vitro and Molecular Docking Evaluation. BioMed Res. Int. 2022, 2022, 3319203. [Google Scholar] [CrossRef] [PubMed]
- Nunes, H.; Tuttisa, K.; Serpelonia, J.; Nascimento, J.; da Rocha, C.; Silva, V.; Lengert, A.; Reis, R.; Colus, I. Characterization of the in vitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. J. Toxicol. Environ. Health 2020, 83, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Tuttis, K.; Gomes, I.; Oliveira, L.; Serpeloni, J.; Lengert, A.; Reis, R.; Colus, I.; da Rocha, C.; Antunes, L. The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022, 14, 963. [Google Scholar] [CrossRef]
- Serpeloni, J.; Ribeiro, D.; Weiss, G.; Oliveira, L.; Fujiike, A.; Nunes, H.; da Rocha, C.; Guembarovski, R.; Colus, I. Flavonoid brachydin B decreases viability, proliferation, and migration in human metastatic prostate (DU145) cells grown in 2D and 3D culture models. Toxicol. Res. 2023, 12, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Ribeiro, D.; Nascimento, J.; da Rocha, C.; Colus, I.; Serpeloni, J. Anticancer activities of Brachydin C in human prostate tumor cells (DU145) grown in 2D and 3D models: Stimulation of cell death and downregulation of metalloproteinases in spheroids. Chem. Biol. Drug Des. 2022, 100, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Maciel-Silva, V.L.; Da Rocha, C.Q.; Alencar, L.M.R.; Castelo-Branco, P.V.; Sousa, I.H.; Azevedo-Santos, A.P.; Vale, A.A.M.; Monteiro, S.G.; Soares, R.P.; Guimarães, S.J.A.; et al. Unusual dimeric flavonoids (brachydins) induce ultrastructural membrane alterations associated with antitumor activity in cancer cell lines. Drug Chem. Toxicol. 2022, 46, 665–676. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, X.; Li, J.; Yao, X.; Liu, W.; Kang, F.; Zou, Z.; Xu, K.; Xu, P.; Tan, G. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorganic Chem. 2021, 109, 104744. [Google Scholar] [CrossRef]
- Chen, T.; Yang, P.; Chen, H.; Huang, B. A new biflavonoids from Aster tataricus induced non-apoptotic cell death in A549 cells. Nat. Prod. Res. 2021, 36, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Kalenga, T.M.; Ndoile, M.M.; Atilaw, Y.; Munissi, J.J.E.; Gilissen, P.J.; Rudenko, A.; Bourgard, C.; Sunnerhagen, P.; Nyandoro, S.S.; Erdelyi, M. Antibacterial and cytotoxic biflavonoids from the root bark of Ochna kirkii. Fitoterapia 2021, 151, 104857. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zhang, S.; Tan, J.; Chen, D.; Xu, Y.; Xu, K.; Tan, G.S. Two new biflavonoids from Selaginella doederleinii. Phytochem. Lett. 2020, 40, 126–129. [Google Scholar] [CrossRef]
- Augusta, D.D.; Dianhar, H.; Rahayu, D.U.C.; Suparto, I.H.; Sugita, P. Anticancer and Antivirus Activities of two Biflavonoids from Indonesian Araucaria hunsteinii K Schum Leaves. J. Hunan Univ. Nat. Sci. 2022, 49, 168–177. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Z.; He, Z.; Xu, J.; Xu, W.; Yang, X. Flavonoids dimers from the fruits of Psoralea corylifolia and their cytotoxicity against MCF-7 cells. Bioorg. Chem. 2023, 130, 1–14. [Google Scholar]
- Zhang, G.; Jing, Y.; Zhang, H.; Ma, E.; Guan, J.; Xue, F.; Liu, H.; Sun, X. Isolation and cytotoxic activity of selaginellin derivatives and biflavonoids from Selaginella tamariscina. Planta Medica 2012, 78, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, C.; Liu, F.; Liu, Z.; Lai, G.; Yi, J. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Cell Biochem. Funct. 2020, 38, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Shin, S.; Lee, H.; Chun, H.; Chung, A. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt–dependent matrix metalloproteinase-9 expression. Mol. Cancer Ther. 2006, 5, 2666–2675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, H.; Dong, G.; Cai, L.; Bai, Y. Chamaejasmine Arrests Cell Cycle, Induces Apoptosis and Inhibits Nuclear NF-κB Translocation in the Human Breast Cancer Cell Line MDA-MB-231. Molecules 2013, 18, 845–858. [Google Scholar] [CrossRef]
- Adem, A.; Mbaveng, A.T.; Kuete, V.; Heydenreich, M.; Ndakala, A.; Irungu, B.; Yenesew, A.; Efferth, T. Cytotoxicity of isoflavones and biflavonoids from Ormocarpum kirkii towards multi-factorial drug resistant cancer. Phytomedicine 2019, 58, 152853. [Google Scholar] [CrossRef]
- Yeh, P.; Shieh, Y.; Hsu, L.; Kuo, L.Y.; Lin, J.; Liaw, C.; Kuo, Y. Naturally Occurring Cytotoxic [3′ → 8″]-Biflavonoids from Podocarpus nakaii. J. Tradit. Complement. Med. 2012, 2, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Liu, C.; Hsu, Y.; Lin, L.; Wang, S.; Chun, J.; Bau, D.; Lin, S. Amentoflavone Induces Cell-cycle Arrest and Apoptosis in MCF-7 Human Breast Cancer Cells via Mitochondria-dependent Pathway. In Vivo 2012, 26, 963–970. [Google Scholar] [PubMed]
- Park, Y.; Woo, S.H.; Seo, S.; Kim, H.; Noh, W.C.; Lee, J.K.; Kwon, B.; Min, K.N.; Choes, T.; Park, I. Ginkgetin induces cell death in breast cancer cells via downregulation of the estrogen receptor. Oncol. Lett. 2017, 14, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Wong, R. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [PubMed]
- Chaabane, W.; User, S.; El-Gazzah, M.; Jaksik, R.; Sajjadi, E.; Rzeszowska-Wolny, J.; Los, M. Autophagy, Apoptosis, Mitoptosis and Necrosis: Interdependence Between Those Pathways and Effects on Cancer. Arch. Immunol. Ther. Exp 2013, 61, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, Z.; Pan, K.; Li, J.; Chen, Q. The function and mechanism of ferroptosis in cancer. Apoptosis 2020, 25, 786–798. [Google Scholar] [CrossRef]
- Radha, G.; Raghavan, S. BCL2: A promising cancer therapeutic target. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2017, 1868, 309–314. [Google Scholar] [CrossRef]
Biflavonoids | Subtype | Monomer Type | Cell Lines | Assays | *IC50/#EC50/@TGI | Authors |
---|---|---|---|---|---|---|
Oxitrodiflavanone A (1) | C-C | BB | PC-3 | MTT (cell viability) | 6.64 μΜ (1) | [19] |
Cupressuflavone (2) | C-C | AA | PC-3 | MTT (cell viability) | 19.9 μΜ (2) | [20] |
Propolone B (3) Propolone A (4) | C-linear fragment-C | EE | PC-3 | MTT (cell viability) | 19.1 μM (3) 21.9 μM (4) | [21] |
Neochamaejasmin A (5) | C-C | AA | LNCaP | MTT (cell viability) Western blot analysis Cell cycle analysis | 12.5 μg/mL (5) | [22] |
Ginkgetin (6) | C-C | BB | PC-3 | MTT (cell viability) Western blot analysis Cell cycle analysis | 15–30 μM (6) | [23] |
Ginkgetin (6) | C-C | BB | DU-145 | MTT (cell viability) Western blot analysis Cell cycle analysis Mouse xenograft in vivo | 5 μM (6) | [24] |
Brachydin E (7) Brachydin F (8) | Complex | GG | PC-3 | MTT (cell viability), Molecular docking, Wound healing assay, Clonogenic assay, Phosphatidylserine (PS) Externalization assay, In silico pharmacodynamics | 6.9 μM (7) 37.1 μM (8) | [25] |
Brachydin A (9) Brachydin B (10) Brachydin C (11) | Complex | GG | PC-3 | MTT (cell viability) Neutral red assay, LDH activity release assay, Cell death assay, Comet assay, Western blot analysis | 23.41 μM (9) 4.28 μM (10) 4.44 μM (11) | [26] |
Brachydin A (9) | Complex | GG | DU145 | Cytotoxicity assay, Tumor spheroids, Clonogenicity, Cell migration, Cell death assay, Protein Expression | 60.0–100.0 μM (9) | [27] |
Brachydin B (10) | Complex | GG | DU145 | MTT (cell viability), Clonogenicity, Cell death assay, LDH, Cell migration | 7.45 μM (10) | [28] |
Brachydin C (11) | Complex | GG | DU145 | Cytotoxicity assay, Cell migration, Clonogenicity, Protein expression | 47.31 μM (11) | [29] |
DCMF containing Brachydin A (9) Brachydin B (10) Brachydin C (11) | Complex | GG | DU145 | Sulforhodamine B (cell viability), Comet (genotoxicity), Clonogenicity (reproductive capacity) and Wound healing (cell migration) assays, and Atomic force microscopy (AFM) for ultrastructural cell membrane alterations | 2.51 μg/mL (9–11) | [30] |
Biflavonoids | Subtype | Monomer Type | Cell Lines | Assays | *IC50/#EC50/@TGI | Authors |
---|---|---|---|---|---|---|
DCMF containing Brachydin A (9) Brachydin B (10) Brachydin C (11) | Complex | GG | MCF7 | Sulforhodamine B (cell viability), Comet (genotoxicity), Clonogenicity (reproductive capacity), Wound healing (cell migration) assays, and Atomic force microscopy (AFM) for ultrastructural cell membrane alterations | 2.77 μg/mL (9–11) | [30] |
Robustaflavone (12) | C-C | BB | MCF7 | MTT (cell viability), Detection of apoptotic cells, RNA extraction and sequencing, ROS, Molecular docking, Western blot | 11.89 μΜ (12) | [31] |
(2R,2′R′)-7-O-methyl-2,3,2″,3″-tetrahydrorobustaflavone (13) | C-C | AA | MCF7 | MTT (cell viability) | 5.4 μΜ (13) | [32] |
Calodenin B (14) Lophirone A (15) | C-C (14) Complex (15) | AA (14) EG (15) | MCF7 | Cytotoxicity assay | 219.3 μM (14) 19.2 μM (15) | [33] |
7-O-methyl-2,3,2″,3″-tetrahydro-3′,3‴-biapigenin (16) 4′-O-methylrobustaflavone (17) | C-C | BB | MCF7 | MTT (cell viability) | 41.44 μM (16) 16.68 μM (17) | [34] |
4′,7,7″-tri-O-methylcupressuflavone (18) 4‴,7,7″-tri-O-methylagathisflavone (19) | C-C | BB | MCF7 | MTT (cell viability) | 91.74 μg/mL (18) 314.44 μg/mL (19) | [35] |
Amentoflavone (20) Cupressuflavone (2) | C-C | AA | MDA-MB-231 | MTT (cell viability) | 16.1 μM (20) 12.7 μM (2) | [20] |
Psocorylin R (21) Psocorylin S (22) Psocorylin U (23) Psocorylin V (24) Psocorylin W (25) Psocorylin Y (26) | C-C or C-linear fragment-C | GG | MCF7 | Cytotoxicity assay and Apoptosis assay | 7.35 μM (21) 17.40 μM (22) 10.01μM (23) 21.98 μM (24) 8.42 μM (25) 9.01 μM (26) | [36] |
Neocryptomerin (27) Hinokiflavone (28) | C-linear fragment | BB | MCF7 | MTT (cell viability) | 30.09 µg/mL (27) 39.32 µg/mL (28) | [37] |
Hinokiflavone (28) | C-linear fragment | BB | MDA-MB-231 | MTT (cell viability), Clonogenicity (reproductive capacity), Western blot, cell migration, In vivo tumor model in mice | 40 μM (28) | [38] |
Isoginkgetin (29) | C-C | BB | MDA-MB-231 | Cytotoxicity assay Western blot | 20 μM (29) | [39] |
Chamaejasmin (30) | C-C | AA | MDA-MB-231 | MTT (cell viability), Western blot, Cell cycle analysis | 5.11 μM (30) | [40] |
7,7″-di-O-methylchamaejasmin (31) | C-C | AA | MDA-MB-231 | Cytotoxicity assay, Western blot, Apoptosis assay | 7.76 μM (31) | [41] |
Podocarpusflavone-A (32) II-4″,I-7-Dimethoxyamentoflavone (33) | C-C | BB | MCF7 | MTT (cell viability), Cell cycle Topoisomerase I assay | 16.24 µg/mL (32) 15.17 µg/mL (33) | [42] |
Amentoflavone (20) | C-C | AA | MCF7 | MTT (cell viability), Cell cycle Western blot Cometa assay | 150 μM (20) | [43] |
Ginkgetin (6) | C-C | BB | MCF7 | MTT (cell viability), Cell cycle Western blot Apoptosis assay ER-α expression | 10 µM (6) | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, C.A.d.; Maquedano, L.K.; Jaalouk, L.S.; Santos, D.C.d.; Longato, G.B. Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy. Pharmaceuticals 2024, 17, 874. https://doi.org/10.3390/ph17070874
Lima CAd, Maquedano LK, Jaalouk LS, Santos DCd, Longato GB. Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy. Pharmaceuticals. 2024; 17(7):874. https://doi.org/10.3390/ph17070874
Chicago/Turabian StyleLima, Carolina Afonso de, Larissa Kaori Maquedano, Luiza Sertek Jaalouk, Dina Cardoso dos Santos, and Giovanna Barbarini Longato. 2024. "Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy" Pharmaceuticals 17, no. 7: 874. https://doi.org/10.3390/ph17070874
APA StyleLima, C. A. d., Maquedano, L. K., Jaalouk, L. S., Santos, D. C. d., & Longato, G. B. (2024). Biflavonoids: Preliminary Reports on Their Role in Prostate and Breast Cancer Therapy. Pharmaceuticals, 17(7), 874. https://doi.org/10.3390/ph17070874