Automated Radiosynthesis of [18F]FluoFAPI and Its Dosimetry and Single Acute Dose Toxicological Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Organic Syntheses of [19F]FluoFAPI 1 and Me3SnFAPI 2
2.2. Radiosynthesis of [18F]FluoFAPI
2.3. Biodistribution and Dosimetry
2.4. Single Acute Dose Toxicological Evaluation
3. Materials and Methods
3.1. Organic Chemistry
3.1.1. General
3.1.2. Syntheses
General Procedure for the Synthesis of Quinoline-2,4-dicarboxylic Acid Derivatives
6-Fluoroquinoline-2,4-dicarboxylic Acid (4a). The desired product was obtained as a light-tan solid (2.58 g, 91% yield)
6-Iodoquinoline-2,4-dicarboxylic Acid (4b)
General Procedure for the Synthesis of Quinoline-4-carboxylic Acid Derivatives
6-Fluoroquinoline-4-carboxylic Acid (5a)
6-Iodoquinoline-4-carboxylic Acid (5b)
General Procedure for the Synthesis of (S)-N-(2-(2-Cyanopyrrolidin-1-yl)-2-oxoethyl)quinoline-4-carboxamide Derivatives
(S)-N-(2-(2-cyanopyrrolidin-1-yl)-2-oxoethyl)-6-fluoroquinoline-4-carboxamide (FluoFAPI 1)
(S)-N-(2-(2-cyanopyrrolidin-1-yl)-2-oxoethyl)-6-iodoquinoline-4-carboxamide (6b)
Synthesis of (S)-N-(2-(2-cyanopyrrolidin-1-yl)-2-oxoethyl)-6-(trimethylstannyl)quinoline-4-carboxamide (Me3SnFAPI 2)
3.2. Radiochemistry
3.2.1. General
3.2.2. Automated Radiosynthesis of [18F]FluoFAPI 1
3.3. Biodistribution and Dosimetry
3.4. Single Acute Dose Toxicological Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Rohrich, M.; Winter, H.; et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Hathi, D.K.; Jones, E.F. (68)Ga FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. Radiol. Imaging Cancer 2019, 1, e194003. [Google Scholar] [CrossRef] [PubMed]
- Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jager, D.; Mier, W.; Haberkorn, U. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J. Nucl. Med. 2018, 59, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Heirbaut, L.; Cheng, J.D.; Joossens, J.; Ryabtsova, O.; Cos, P.; Maes, L.; Lambeir, A.M.; De Meester, I.; Augustyns, K.; et al. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Med. Chem. Lett. 2013, 4, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J.D.; Joossens, J.; Cos, P.; Maes, L.; Lambeir, A.M.; De Meester, I.; Augustyns, K.; et al. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J. Med. Chem. 2014, 57, 3053–3074. [Google Scholar] [CrossRef] [PubMed]
- Zboralski, D.; Hoehne, A.; Bredenbeck, A.; Schumann, A.; Nguyen, M.; Schneider, E.; Ungewiss, J.; Paschke, M.; Haase, C.; von Hacht, J.L.; et al. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3651–3667. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, Z.; Ding, F.; Zhao, H.; Du, F.; Lv, C.; Li, L.; Huang, G.; Liu, J. Radiosynthesis and First Preclinical Evaluation of the Novel (11)C-Labeled FAP Inhibitor (11)C-FAPI: A Comparative Study of (11)C-FAPIs and ((68)Ga) Ga-DOTA-FAPI-04 in a High-FAP-Expression Mouse Model. Front. Chem. 2022, 10, 939160. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, F.; Pan, L.; Diao, W.; Su, F.; Huang, R.; Yang, B.; Li, Y.; Qi, Z.; Zhang, W.; et al. Synthesis, radiolabeling, and evaluation of a (4-quinolinoyl)glycyl-2-cyanopyrrolidine analogue for fibroblast activation protein (FAP) PET imaging. Front. Bioeng. Biotechnol. 2023, 11, 1167329. [Google Scholar] [CrossRef]
- Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl. Acad. Sci. USA 1990, 87, 7235–7239. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Lenter, M.C.; Zimmermann, R.N.; Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 1999, 274, 36505–36512. [Google Scholar] [CrossRef]
- Dohi, O.; Ohtani, H.; Hatori, M.; Sato, E.; Hosaka, M.; Nagura, H.; Itoi, E.; Kokubun, S. Histogenesis-specific expression of fibroblast activation protein and dipeptidylpeptidase-IV in human bone and soft tissue tumours. Histopathology 2009, 55, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Yu, D.H.; Chen, Y.; Zhao, C.Y.; Zhang, J.; Liu, Q.H.; Ni, C.R.; Zhu, M.H. Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J. Gastroenterol. 2012, 18, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Dendl, K.; Cardinale, J.; Kratochwil, C.; Giesel, F.L.; Haberkorn, U. FAPI PET: Fibroblast Activation Protein Inhibitor Use in Oncologic and Nononcologic Disease. Radiology 2023, 306, e220749. [Google Scholar] [CrossRef] [PubMed]
- van den Hoven, A.F.; Keijsers, R.G.M.; Lam, M.G.E.H.; Glaudemans, A.W.J.M.; Verburg, F.A.; Vogel, W.V.; Lavalaye, J. Current research topics in FAPI theranostics: A bibliometric analysis. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Loktev, A.; Lindner, T.; Burger, E.M.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Marmé, F.; Jäger, D.; Mier, W.; et al. Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention. J. Nucl. Med. 2019, 60, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Windisch, P.; Zwahlen, D.R.; Koerber, S.A.; Giesel, F.L.; Debus, J.; Haberkorn, U.; Adeberg, S. Clinical Results of Fibroblast Activation Protein (FAP) Specific PET and Implications for Radiotherapy Planning: Systematic Review. Cancers 2020, 12, 2629. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, X.; Shen, T.; Yao, Y.; Chen, M.; Li, Z.; Li, X.; Shen, J.; Kou, Y.; Chen, S.; et al. FAPI-04 PET/CT Using [(18)F]AlF Labeling Strategy: Automatic Synthesis, Quality Control, and In Vivo Assessment in Patient. Front. Oncol. 2021, 11, 649148. [Google Scholar] [CrossRef]
- Lindner, T.; Altmann, A.; Giesel, F.; Kratochwil, C.; Kleist, C.; Kramer, S.; Mier, W.; Cardinale, J.; Kauczor, H.U.; Jager, D.; et al. (18)F-labeled tracers targeting fibroblast activation protein. EJNMMI Radiopharm. Chem. 2021, 6, 26. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, K.; Fu, Z.; Zheng, J.; Mu, Z.; Zhao, C.; Liu, X.; Wang, S.; Yu, J.; Yuan, S. [(18)F]AlF-NOTA-FAPI-04 PET/CT uptake in metastatic lesions on PET/CT imaging might distinguish different pathological types of lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1671–1681. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, J.; Ma, L.; Liu, X.; Xu, S.; Wang, S.; Pei, J.; Cheng, K.; Yuan, S.; Yu, J. [(18)F]AlF-NOTA-FAPI-04: FAP-targeting specificity, biodistribution, and PET/CT imaging of various cancers. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2761–2773. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, R.F.; Yun, L.H.; Li, J. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation. Chin. Chem. Lett. 2010, 21, 35–38. [Google Scholar] [CrossRef]
- Makaravage, K.J.; Brooks, A.F.; Mossine, A.V.; Sanford, M.S.; Scott, P.J.H. Copper-Mediated Radiofluorination of Arylstannanes with [(18)F]KF. Org. Lett. 2016, 18, 5440–5443. [Google Scholar] [CrossRef] [PubMed]
- Stabin, M.G.; Siegel, J.A. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003, 85, 294–310. [Google Scholar] [CrossRef] [PubMed]
- Stabin, M.G.; Sparks, R.B.; Crowe, E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005, 46, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
18F-FluoFAPI | Gender-Averaged Dose |
---|---|
Target Organ | mSv/MBq |
Adrenals | 7.11 × 10−3 |
Brain | 2.03 × 10−3 |
Breasts | 8.25 × 10−3 |
Esophagus | 8.16 × 10−3 |
Eyes | 4.07 × 10−3 |
Gallbladder Wall | 1.09 × 10−2 |
Left colon | 1.42 × 10−2 |
Small Intestine | 1.96 × 10−2 |
Stomach Wall | 9.89 × 10−3 |
Right colon | 1.90 × 10−2 |
Rectum | 2.62 × 10−2 |
Heart Wall | 6.97 × 10−3 |
Kidneys | 1.18 × 10−2 |
Liver | 6.64 × 10−3 |
Lungs | 5.82 × 10−3 |
Ovaries | 1.86 × 10−2 |
Pancreas | 8.19 × 10−3 |
Prostate | 2.32 × 10−2 |
Salivary Glands | 8.38 × 10−3 |
Red Marrow | 9.49 × 10−3 |
Osteogenic Cells | 8.66 × 10−3 |
Spleen | 6.62 × 10−3 |
Testes | 8.35 × 10−3 |
Thymus | 8.98 × 10−3 |
Thyroid | 8.62 × 10−3 |
Urinary Bladder Wall | 2.27 × 10−1 |
Uterus | 3.12 × 10−2 |
Total Body | 1.10 × 10−2 |
Effective Dose: | 1.85 × 10−2 (mSv/MBq) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witek, J.A.; Brooks, A.F.; Kapila, S.M.; Winton, W.P.; Stauff, J.R.; Scott, P.J.H.; Viglianti, B.L. Automated Radiosynthesis of [18F]FluoFAPI and Its Dosimetry and Single Acute Dose Toxicological Evaluation. Pharmaceuticals 2024, 17, 833. https://doi.org/10.3390/ph17070833
Witek JA, Brooks AF, Kapila SM, Winton WP, Stauff JR, Scott PJH, Viglianti BL. Automated Radiosynthesis of [18F]FluoFAPI and Its Dosimetry and Single Acute Dose Toxicological Evaluation. Pharmaceuticals. 2024; 17(7):833. https://doi.org/10.3390/ph17070833
Chicago/Turabian StyleWitek, Jason A., Allen F. Brooks, Sahil M. Kapila, Wade P. Winton, Jenelle R. Stauff, Peter J. H. Scott, and Benjamin L. Viglianti. 2024. "Automated Radiosynthesis of [18F]FluoFAPI and Its Dosimetry and Single Acute Dose Toxicological Evaluation" Pharmaceuticals 17, no. 7: 833. https://doi.org/10.3390/ph17070833
APA StyleWitek, J. A., Brooks, A. F., Kapila, S. M., Winton, W. P., Stauff, J. R., Scott, P. J. H., & Viglianti, B. L. (2024). Automated Radiosynthesis of [18F]FluoFAPI and Its Dosimetry and Single Acute Dose Toxicological Evaluation. Pharmaceuticals, 17(7), 833. https://doi.org/10.3390/ph17070833