Evaluating the Antihyperalgesic Potential of Sildenafil–Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats
Abstract
:1. Introduction
2. Results
2.1. Blood Glucose Levels
2.2. Tests for the Evaluation of Antihyperalgesic Effect
2.2.1. Heat Hypersensitivity
2.2.2. Cold Hypersensitivity
2.2.3. Tactile Hypersensitivity
2.3. Biochemical Assay of Rat Brain and Liver Homogenates
2.3.1. Assessment of TNF-α and Il-6
2.3.2. Assessment of NOS Activity
2.3.3. Assessment of Total Thiols
3. Discussions
4. Materials and Methods
4.1. Experimental Animals
4.2. Induction of Diabetes Mellitus and Treatments
4.3. Blood Glucose Levels
4.4. Tests for the Evaluation of Antihyperalgesic Effect
4.4.1. Heat Hypersensitivity
4.4.2. Cold Hypersensitivity
4.4.3. Tactile Hypersensitivity
4.5. Biochemical Assay of Rat Brain and Liver Homogenates
4.5.1. Assessment of TNF-α and Il-6
4.5.2. Assessment of NOS Activity
4.5.3. Assessment of Total Thiols
4.5.4. Protein Content
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oshitari, T. Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int. J. Mol. Sci. 2023, 24, 2927. [Google Scholar] [CrossRef]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic Neuropathy. Nat. Rev. Dis. Prim. 2019, 5, 41. [Google Scholar] [CrossRef]
- Hansen, C.S.; Määttä, L.L.; Andersen, S.T.; Charles, M.H. The Epidemiology of Diabetic Neuropathy. In Diabetic Neuropathy: Advances in Pathophysiology and Clinical Management; Contemporary Diabetes Series; Humana: Cham, Switzerland, 2023; pp. 5–36. [Google Scholar]
- Pușcașu, C.; Ungurianu, A.; Șeremet, O.C.; Andrei, C.; Mihai, D.P.; Negreș, S. The Influence of Sildenafil–Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. Medicina 2023, 59, 1375. [Google Scholar] [CrossRef]
- Li, C.; Wang, W.; Ji, Q.; Ran, X.; Kuang, H.; Yu, X.; Fang, H.; Yang, J.; Liu, J.; Xue, Y.; et al. Prevalence of Painful Diabetic Peripheral Neuropathy in Type 2 Diabetes Mellitus and Diabetic Peripheral Neuropathy: A Nationwide Cross-Sectional Study in Mainland China. Diabetes Res. Clin. Pract. 2023, 198, 110602. [Google Scholar] [CrossRef]
- Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.M.; Ward, J.D.; Manes, C.; Ionescu-Tirgoviste, C.; Witte, D.R.; Fuller, J.H. Vascular Risk Factors and Diabetic Neuropathy. N. Engl. J. Med. 2005, 352, 341–350. [Google Scholar] [CrossRef]
- Yovera-Aldana, M.; Velásquez-Rimachi, V.; Huerta-Rosario, A.; More-Yupanqui, M.D.; Osores-Flores, M.; Espinoza, R.; Gil-Olivares, F.; Quispe-Nolazco, C.; Quea-Vélez, F.; Morán-Mariños, C.; et al. Prevalence and Incidence of Diabetic Peripheral Neuropathy in Latin America and the Caribbean: A Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0251642. [Google Scholar] [CrossRef] [PubMed]
- Alleman, C.J.M.; Westerhout, K.Y.; Hensen, M.; Chambers, C.; Stoker, M.; Long, S.; van Nooten, F.E. Humanistic and Economic Burden of Painful Diabetic Peripheral Neuropathy in Europe: A Review of the Literature. Diabetes Res. Clin. Pract. 2015, 109, 215–225. [Google Scholar] [CrossRef]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.-D. Challenges of Neuropathic Pain: Focus on Diabetic Neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Mishra, S.; Swarnkar, P.; Patel, P.; Das Kurmi, B.; Das Gupta, G.; Singh, A. Understanding the Role of Hyperglycemia and the Molecular Mechanism Associated with Diabetic Neuropathy and Possible Therapeutic Strategies. Biochem. Pharmacol. 2023, 215, 115723. [Google Scholar] [CrossRef]
- Hills, C.E.; Brunskill, N.J. Cellular and Physiological Effects of C-Peptide. Clin. Sci. 2009, 116, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Sima, A.; Stevens, M. Diabetic Neuropathy and Oxidative Stress. Diabetes. Metab. Res. Rev. 2006, 22, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Van Campenhout, A.; Van Campenhout, C.; Lagrou, A.R.; Abrams, P.; Moorkens, G.; Van Gaal, L.; Manuel-y-Keenoy, B. Impact of Diabetes Mellitus on the Relationships between Iron-, Inflammatory- and Oxidative Stress Status. Diabetes Metab. Res. Rev. 2006, 22, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Schultheis, B.C.; Hanes, M.C.; Jolly, S.M.; Chakravarthy, K.V.; Deer, T.R.; Levy, R.M.; Hunter, C.W. A Comprehensive Algorithm for Management of Neuropathic Pain. Pain Med. 2019, 20, S2–S12. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.J.; Yoon, M.H.; Choi, J.I.; Kim, W.M.; Lee, H.G.; Kim, Y.O. Effect of Sildenafil on Neuropathic Pain and Hemodynamics in Rats. Yonsei Med. J. 2010, 51, 82. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chopp, M.; Szalad, A.; Liu, Z.; Bolz, M.; Ãlvarez, F.M.; Lu, M.; Zhang, L.; Cui, Y.; Zhang, R.L.; et al. Phosphodiesterase-5 Is a Therapeutic Target for Peripheral Neuropathy in Diabetic Mice. Neuroscience 2011, 193, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Deftu, A.-F.; Chu Sin Chung, P.; Laedermann, C.J.; Gillet, L.; Pertin, M.; Kirschmann, G.; Decosterd, I. The Antidiabetic Drug Metformin Regulates Voltage-Gated Sodium Channel Na V 1.7 via the Ubiquitin-Ligase NEDD4-2. Eneuro 2022, 9, ENEURO.0409-21.2022. [Google Scholar] [CrossRef]
- Ge, A.; Wang, S.; Miao, B.; Yan, M. Effects of Metformin on the Expression of AMPK and STAT3 in the Spinal Dorsal Horn of Rats with Neuropathic Pain. Mol. Med. Rep. 2018, 17, 5229–5237. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic Pain: An Updated Grading System for Research and Clinical Practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Haroutounian, S.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpaa, M.; Jensen, T.S.; Kamerman, P.R.; McNicol, E.; Moore, A.; et al. Neuropathic Pain Clinical Trials: Factors Associated with Decreases in Estimated Drug Efficacy. Pain 2018, 159, 2339–2346. [Google Scholar] [CrossRef]
- Moisset, X.; Bouhassira, D.; Avez Couturier, J.; Alchaar, H.; Conradi, S.; Delmotte, M.H.; Lanteri-Minet, M.; Lefaucheur, J.P.; Mick, G.; Piano, V.; et al. Pharmacological and Non-Pharmacological Treatments for Neuropathic Pain: Systematic Review and French Recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.A.A.; Baptista, A.F.; Sá, K.N.; Barbosa, L.M.; do Nascimento, O.J.M.; Listik, C.; Moisset, X.; Teixeira, M.J.; de Andrade, D.C. Pharmacological Treatment of Central Neuropathic Pain: Consensus of the Brazilian Academy of Neurology. Arq. Neuropsiquiatr. 2020, 78, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Holbech, J.V.; Jung, A.; Jonsson, T.; Wanning, M.; Bredahl, C.; Bach, F. Combination Treatment of Neuropathic Pain: Danish Expert Recommendations Based on a Delphi Process. J. Pain Res. 2017, 10, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Gilron, I.; Jensen, T.S.; Dickenson, A.H. Combination Pharmacotherapy for Management of Chronic Pain: From Bench to Bedside. Lancet Neurol. 2013, 12, 1084–1095. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Suzan, E. Drug Combinations in the Treatment of Neuropathic Pain. Curr. Pain Headache Rep. 2014, 18, 463. [Google Scholar] [CrossRef]
- Iannaccone, P.M.; Jacob, H.J. Rats! Dis. Model. Mech. 2009, 2, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T. The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas. Physiol. Res. 2001, 50, 536–546. [Google Scholar]
- Radenković, M.; Stojanović, M.; Prostran, M. Experimental Diabetes Induced by Alloxan and Streptozotocin: The Current State of the Art. J. Pharmacol. Toxicol. Methods 2016, 78, 13–31. [Google Scholar] [CrossRef]
- Lenzen, S. The Mechanisms of Alloxan- and Streptozotocin-Induced Diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef]
- Kottaisamy, C.P.D.; Raj, D.S.; Prasanth Kumar, V.; Sankaran, U. Experimental Animal Models for Diabetes and Its Related Complications—A Review. Lab. Anim. Res. 2021, 37, 23. [Google Scholar] [CrossRef]
- Swanson, L.W.; Swanson, L.W. Brain Maps III: Structure of the Rat Brain: An Atlas with Printed and Electronic Templates for Data, Models, and Schematics; Gulf Professional Publishing: San Diego, CA, USA, 2004; p. 215. [Google Scholar]
- Sadler, K.E.; Mogil, J.S.; Stucky, C.L. Innovations and Advances in Modelling and Measuring Pain in Animals. Nat. Rev. Neurosci. 2022, 23, 70–85. [Google Scholar] [CrossRef]
- Jacob, H.J.; Kwitek, A.E. Rat Genetics: Attachign Physiology and Pharmacology to the Genome. Nat. Rev. Genet. 2002, 3, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kukkar, A.; Bali, A.; Singh, N.; Jaggi, A.S. Implications and Mechanism of Action of Gabapentin in Neuropathic Pain. Arch. Pharm. Res. 2013, 36, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Saleem Mir, M.; Maqbool Darzi, M.; Musadiq Khan, H.; Ahmad Kamil, S.; Hassan Sofi, A.; Ahmad Wani, S. Pathomorphological Effects of Alloxan Induced Acute Hypoglycaemia in Rabbits. Alex. J. Med. 2013, 49, 343–353. [Google Scholar] [CrossRef]
- Olivenza, R.; Moro, M.A.; Lizasoain, I.; Lorenzo, P.; Fernández, A.P.; Rodrigo, J.; Boscá, L.; Leza, J.C. Chronic Stress Induces the Expression of Inducible Nitric Oxide Synthase in Rat Brain Cortex. J. Neurochem. 2001, 74, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Sun, W.; Zhang, Q.; Zhang, Y.; Ji, L.; Liu, X.; Zhu, X.; Ye, H.; Xiong, Q.; Li, Y.; et al. Proinflammatory Cytokines Predict the Incidence of Diabetic Peripheral Neuropathy over 5 Years in Chinese Type 2 Diabetes Patients: A Prospective Cohort Study. EClinicalMedicine 2021, 31, 100649. [Google Scholar] [CrossRef]
- Fischer, R.; Maier, O. Interrelation of Oxidative Stress and Inflammation in Neurodegenerative Disease: Role of TNF. Oxid. Med. Cell. Longev. 2015, 2015, 610813. [Google Scholar] [CrossRef] [PubMed]
- Herder, C.; Bongaerts, B.W.C.; Rathmann, W.; Heier, M.; Kowall, B.; Koenig, W.; Thorand, B.; Roden, M.; Meisinger, C.; Ziegler, D. Association of Subclinical Inflammation with Polyneuropathy in the Older Population. Diabetes Care 2013, 36, 3663–3670. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, S. Inflammation: Therapeutic Targets for Diabetic Neuropathy. Mol. Neurobiol. 2014, 49, 536–546. [Google Scholar] [CrossRef]
- Feldman, E.; Sullivan, K.; Lentz, S.; Roberts, J., Jr. Criteria for Creating and Assessing Mouse Models of Diabetic Neuropathy. Curr. Drug Targets 2008, 9, 3–13. [Google Scholar] [CrossRef]
- Islam, M.S. Animal Models of Diabetic Neuropathy: Progress Since 1960s. J. Diabetes Res. 2013, 2013, 149452. [Google Scholar] [CrossRef] [PubMed]
- Somani, R.; Shaikh, A. Animal Models and Biomarkers of Neuropathy in Diabetic Rodents. Indian J. Pharmacol. 2010, 42, 129. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.V.; Lemos, B.M.S.; da Silva, M.V.; de Campos Lima, T.; de Oliveira Santos, D.; Lemes, J.B.P.; da Cruz Lotufo, C.M. Alloxan as a Better Option than Streptozotocin for Studies Involving Painful Diabetic Neuropathy. J. Pharmacol. Toxicol. Methods 2021, 112, 107090. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.T.; Lei, C.L.; Bi, C.C.; Chen, Z.L.; Zhang, L. Effect of Alloxan Time AdministerDrug on Establishing Diabetic Rabbit Model. Int. J. Ophthalmol. 2010, 3, 200. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493. [Google Scholar] [CrossRef]
- Rojas, L.B.A.; Gomes, M.B. Metformin: An Old but Still the Best Treatment for Type 2 Diabetes. Diabetol. Metab. Syndr. 2013, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Hatzimouratidis, K.; Amar, E.; Eardley, I.; Giuliano, F.; Hatzichristou, D.; Montorsi, F.; Vardi, Y.; Wespes, E. Guidelines on Male Sexual Dysfunction: Erectile Dysfunction and Premature Ejaculation. Eur. Urol. 2010, 57, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Mather, K.J.; Verma, S.; Anderson, T.J. Improved Endothelial Function with Metformin in Type 2 Diabetes Mellitus. J. Am. Coll. Cardiol. 2001, 37, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.; Soto, N.; Arredondo, M. Efecto de Metformina Sobre La Expresión Del Factor de Necrosis Tumoral-α, Los Receptores Toll-like 2/4 y La PCR Ultra Sensible En Sujetos Obesos Con Diabetes Tipo 2. Rev. Med. Chil. 2012, 140, 1377–1382. [Google Scholar] [CrossRef]
- Hyun, B.; Shin, S.; Lee, A.; Lee, S.; Song, Y.; Ha, N.-J.; Cho, K.-H.; Kim, K. Metformin Down-Regulates TNF-α Secretion via Suppression of Scavenger Receptors in Macrophages. Immune Netw. 2013, 13, 123. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Lian, G.; Wang, X.; Zhang, H.; Yao, X.; Yang, J.; Wu, C. Sildenafil Attenuates LPS-Induced pro-Inflammatory Responses through down-Regulation of Intracellular ROS-Related MAPK/NF-ΚB Signaling Pathways in N9 Microglia. Int. Immunopharmacol. 2011, 11, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Karakoyun, B.; Uslu, U.; Ercan, F.; Aydin, M.S.; Yuksel, M.; Ogunc, A.V.; Alican, I. The Effect of Phosphodiesterase-5 Inhibition by Sildenafil Citrate on Inflammation and Apoptosis in Rat Experimental Colitis. Life Sci. 2011, 89, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Hube, F.; Lee, Y.-M.; Röhrig, K.; Hauner, H. The Phosphodiesterase Inhibitor IBMX Suppresses TNF-α Expression in Human Adipocyte Precursor Cells: A Possible Explanation for Its Adipogenic Effect. Horm. Metab. Res. 1999, 31, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Meller, S.T.; Pechman, P.S.; Gebhart, G.F.; Maves, T.J. Nitric Oxide Mediates the Thermal Hyperalgesia Produced in a Model of Neuropathic Pain in the Rat. Neuroscience 1992, 50, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.S.; Padi, S.V.; Singh, V.P.; Kulkarni, S.K. Sildenafil Induces Hyperalgesia via Activation of the NO-CGMP Pathway in the Rat Neuropathic Pain Model. Inflammopharmacology 2006, 14, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, V.; Oyster, N.M.; Fitch, A.C.; Wijngaarden, M.A.; Neumann, D.; Schlattner, U.; Pearce, D.; Hallows, K.R. AMP-Activated Kinase Inhibits the Epithelial Na+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2. J. Biol. Chem. 2006, 281, 26159–26169. [Google Scholar] [CrossRef] [PubMed]
- Pușcașu, C.; Văleanu, A.; Ștefănescu, E.; Mirela Blebea, N.; Negreș, S. Evaluating the synergism between sildenafil and metformin in an animal model of diabetic neuropathy induced by alloxan. Farmacia 2023, 71, 4. [Google Scholar] [CrossRef]
- Wang, J.; Gallagher, D.; DeVito, L.M.; Cancino, G.I.; Tsui, D.; He, L.; Keller, G.M.; Frankland, P.W.; Kaplan, D.R.; Miller, F.D. Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation. Cell Stem Cell 2012, 11, 23–35. [Google Scholar] [CrossRef]
- Ebenezer, G.J.; O’Donnell, R.; Hauer, P.; Cimino, N.P.; McArthur, J.C.; Polydefkis, M. Impaired Neurovascular Repair in Subjects with Diabetes Following Experimental Intracutaneous Axotomy. Brain 2011, 134, 1853–1863. [Google Scholar] [CrossRef]
- Ortiz, M.I.; Cariño-Cortés, R.; Castañeda-Hernández, G.; Medina-Solís, C.E. Effect of Nitric Oxide–Cyclic GMP–K + Channel Pathway Blockers, Naloxone and Metformin, on the Antinociception Induced by the Diuretic Pamabrom. Can. J. Physiol. Pharmacol. 2023, 101, 41–51. [Google Scholar] [CrossRef]
- Cameron, N.E.; Eaton, S.E.M.; Cotter, M.A.; Tesfaye, S. Vascular Factors and Metabolic Interactions in the Pathogenesis of Diabetic Neuropathy. Diabetologia 2001, 44, 1973–1988. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of Hepatic Glutathione Synthesis: Current Concepts and Controversies. FASEB J. 1999, 13, 1169–1183. [Google Scholar] [CrossRef]
- Ewis, S.A.; Abdel-Rahman, M.S. Effect of Metformin on Glutathione and Magnesium in Normal and Streptozotocin-Induced Diabetic Rats. J. Appl. Toxicol. 1995, 15, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Fooladian, F.; Emami, B.; Zafari, K.; Bahreini-Moghadam, A. Protection by Sildenafil and Theophylline of Lead Acetate-Induced Oxidative Stress in Rat Submandibular Gland and Saliva. Hum. Exp. Toxicol. 2003, 22, 587–592. [Google Scholar] [CrossRef]
- Hüsamettin Baran, A.; Berk, A.; Bahadır Kaymaz, M.; Aktay, G. Antioxidant Effect of Sildenafil on Cadmium-Induced Liver, Lung and Kidney Injury. J. Pharm. Sci 2020, 45, 37–44. [Google Scholar]
- Forouzanfar, F.; Tanha, N.K.; Pourbagher-Shahri, A.M.; Mahdianpour, S.; Esmaeili, M.; Ghazavi, H. Synergistic Effect of Ellagic Acid and Gabapentin in a Rat Model of Neuropathic Pain. Metab. Brain Dis. 2023, 38, 1421–1432. [Google Scholar] [CrossRef]
- Negreş, S.; Chiriţă, C.; Moroşan, E.; Arsene, A.L. Experimental pharmacological model of diabetes induction with aloxan in rat. Farmacia 2013, 61, 313–323. [Google Scholar]
- Gilron, I.; Max, M.B. Combination Pharmacotherapy for Neuropathic Pain: Current Evidence and Future Directions. Expert Rev. Neurother. 2005, 5, 823–830. [Google Scholar] [CrossRef] [PubMed]
- New, R.A.T. Screening Methods in Pharmacology. Yale J. Biol. Med. 1965, 38, 309. [Google Scholar]
- Tsagareli, M.G.; Tsiklauri, N.; Zanotto, K.L.; Carstens, M.I.; Klein, A.H.; Sawyer, C.M.; Gurtskaia, G.; Abzianidze, E.; Carstens, E. Behavioral Evidence of Thermal Hyperalgesia and Mechanical Allodynia Induced by Intradermal Cinnamaldehyde in Rats. Neurosci. Lett. 2010, 473, 233–236. [Google Scholar] [CrossRef]
- Akiyama, T.; Carstens, M.I.; Carstens, E. Spontaneous Itch in the Absence of Hyperalgesia in a Mouse Hindpaw Dry Skin Model. Neurosci. Lett. 2010, 484, 62–65. [Google Scholar] [CrossRef]
- Dixon, W.J. The Up-and-Down Method for Small Samples. J. Am. Stat. Assoc. 1965, 60, 967–978. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative Assessment of Tactile Allodynia in the Rat Paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, D.; Margina, D.; Borsa, C.; Ionescu, C.; Ilie, M.; Costache, M.; Dinischiotu, A.; Prada, G.I. Adiponectin: Possible Link between Metabolic Stress and Oxidative Stress in the Elderly. Aging Clin. Exp. Res. 2017, 29, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. Nitric Oxide Biol. Chem. 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.; Mihai, D.P.; Nicorescu, I.M.; Olaru, O.T.; Ungurianu, A.; Zanfirescu, A.; Nitulescu, G.M.; Margina, D. Discovery of Natural Naphthoquinones as Sortase A Inhibitors and Potential Anti-infective Solutions against Staphylococcus aureus. Drug Dev. Res. 2019, 80, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Mihai, D.P.; Ungurianu, A.; Ciotu, C.I.; Fischer, M.J.M.; Olaru, O.T.; Nitulescu, G.M.; Andrei, C.; Zbarcea, C.E.; Zanfirescu, A.; Seremet, O.C.; et al. Effects of Venlafaxine, Risperidone and Febuxostat on Cuprizone-induced Demyelination, Behavioral Deficits and Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 7183. [Google Scholar] [CrossRef]
Experimental Group | Acronyms |
---|---|
Non-diabetic control | ND |
Diabetic control | D |
Gabapentin 30 mg · kg−1 | G30 |
Gabapentin 90 mg · kg−1 | G90 |
Gabapentin 150 mg · kg−1 | G150 |
Sildenafil 2 mg · kg−1 + Metformin 100 mg · kg−1 | S2 + M100 |
Sildenafil 2.5 mg · kg−1 + Metformin 300 mg · kg−1 | S2.5 + M300 |
Sildenafil 3 mg · kg−1 + Metformin 500 mg · kg−1 | S3 + M500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pușcașu, C.; Negreș, S.; Zbârcea, C.E.; Ungurianu, A.; Ștefănescu, E.; Blebea, N.M.; Chiriță, C. Evaluating the Antihyperalgesic Potential of Sildenafil–Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats. Pharmaceuticals 2024, 17, 783. https://doi.org/10.3390/ph17060783
Pușcașu C, Negreș S, Zbârcea CE, Ungurianu A, Ștefănescu E, Blebea NM, Chiriță C. Evaluating the Antihyperalgesic Potential of Sildenafil–Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats. Pharmaceuticals. 2024; 17(6):783. https://doi.org/10.3390/ph17060783
Chicago/Turabian StylePușcașu, Ciprian, Simona Negreș, Cristina Elena Zbârcea, Anca Ungurianu, Emil Ștefănescu, Nicoleta Mirela Blebea, and Cornel Chiriță. 2024. "Evaluating the Antihyperalgesic Potential of Sildenafil–Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats" Pharmaceuticals 17, no. 6: 783. https://doi.org/10.3390/ph17060783
APA StylePușcașu, C., Negreș, S., Zbârcea, C. E., Ungurianu, A., Ștefănescu, E., Blebea, N. M., & Chiriță, C. (2024). Evaluating the Antihyperalgesic Potential of Sildenafil–Metformin Combination and Its Impact on Biochemical Markers in Alloxan-Induced Diabetic Neuropathy in Rats. Pharmaceuticals, 17(6), 783. https://doi.org/10.3390/ph17060783