The Antagonistic and Synergistic Role of Fe3+ Compounds in Chemo- and Electrochemotherapy in Human Colon Cancer In Vitro
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of Composition of Iron (III) Citrate and Iron (III)–EDTA Solutions
2.2. MTT Assay—Drug Exposure and Interaction
2.3. Membrane Electropermeabilization by Flow Cytometry
2.4. Mixed Electrochemotherapy in Colon Cancer Efficacy by Viability Assay
2.5. Mixed Electrochemotherapy in Colon Cancer, Fluorescent Staining of Frataxin
3. Discussion
4. Materials and Methods
4.1. Drug Solution Preparation
4.2. Cell Culture
4.3. MTT Viability Assay
4.4. Cell Membrane Permeabilization—Flow Cytometry Studies of Yo-Pro-1 Uptake
4.5. ECT Experiment
4.6. Confocal Microscopy Immunofluorescence Studies
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Przegla̜d Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Tumwine, L.K.; Kagimu, M.; Ocama, P.; Segamwenge, I.; Masiira-Mukasa, N.; Wamala, D.; Dworak, O.; Opio, C.K. Atypical Presentation of Colon Adenocarcinoma: A Case Report. J. Med. Case Rep. 2012, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Bourroul, G.M.; Fragoso, H.J.; Gomes, J.W.F.; Bourroul, V.S.O.; Oshima, C.T.F.; Gomes, T.S.; Saba, G.T.; Palma, R.T.; Waisberg, J. The Destruction Complex of Beta-Catenin in Colorectal Carcinoma and Colonic Adenoma. Einstein 2016, 14, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Voorham, Q.J.M.; Carvalho, B.; Spiertz, A.J.; Van Grieken, N.C.T.; Mongera, S.; Rondagh, E.J.A.; Van De Wiel, M.A.; Jordanova, E.S.; Ylstra, B.; Kliment, M.; et al. Chromosome 5q Loss in Colorectal Flat Adenomas. Clin. Cancer Res. 2012, 18, 4560–4569. [Google Scholar] [CrossRef] [PubMed]
- Ly, P.; Eskiocak, U.; Kim, S.B.; Roig, A.I.; Hight, S.K.; Lulla, D.R.; Zou, Y.S.; Batten, K.; Wright, W.E.; Shay, J.W. Cterization of Aneuploid Populations with Trisomy 7 and 20 Derived from Diploid Human Colonic Epithelial Cells. Neoplasia 2011, 13, 348–357. [Google Scholar] [CrossRef]
- Takayama, T.; Ohi, M.; Hayashi, T.; Miyanishi, K.; Nobuoka, A.; Nakajima, T.; Satoh, T.; Takimoto, R.; Kato, J.; Sakamaki, S.; et al. Analysis of K-Ras, APC, and β-Catenin in Aberrant Crypt Foci in Sporadic Adenoma, Cancer, and Familial Adenomatous Polyposis. Gastroenterology 2001, 121, 599–611. [Google Scholar] [CrossRef]
- Pretlow, T.P.; Pretlow, T.G. Mutant KRAS in Aberrant Crypt Foci (ACF): Initiation of Colorectal Cancer? Biochim. Biophys. Acta Rev. Cancer 2005, 1756, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, P.; Molenaar, L.; Elsinga, J.; Morreau, H.; Van der Klift, H.; Struijk, A.; Jagmohan-Changur, S.; Smits, R.; Van Kranen, H.; Van Ommen, G.J.B.; et al. Serrated Adenomas and Mixed Polyposis Caused by a Splice Acceptor Deletion in the Mouse Smad4 Gene. Genes Chromosomes Cancer 2003, 36, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Salovaara, R.; Roth, S.; Loukola, A.; Launonen, V.; Sistonen, P.; Avizienyte, E.; Kristo, P.; Järvinen, H.; Souchelnytskyi, S.; Sarlomo-Rikala, M.; et al. Frequent Loss of SMAD4/DPC4 Protein in Colorectal Cancers. Gut 2002, 51, 56–59. [Google Scholar] [CrossRef]
- Tabach, Y.; Kogan-Sakin, I.; Buganim, Y.; Solomon, H.; Goldfinger, N.; Hovland, R.; Ke, X.-S.; Oyan, A.M.; Kalland, K.-H.; Rotter, V.; et al. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer. PLoS ONE 2011, 6, e14632. [Google Scholar] [CrossRef]
- Postma, C.; Terwischa, S.; Hermsen, M.A.J.A.; Van Der Sijp, J.R.M.; Meijer, G.A. Gain of Chromosome 20q Is an Indicator of Poor Prognosis in Colorectal Cancer. Cell. Oncol. 2007, 29, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Bertorelle, R.; Rampazzo, E.; Pucciarelli, S.; Nitti, D.; De Rossi, A. Telomeres, Telomerase and Colorectal Cancer. World J. Gastroenterol. 2014, 20, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Oshima, M. Mutant P53 in Colon Cancer. J. Mol. Cell Biol. 2019, 11, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.V.; Swamy, M.V.; Patlolla, J.M.R.; Kopelovich, L. Suppression of Familial Adenomatous Polyposis by CP-31398, a TP53 Modulator, in APCmin/+ Mice. Cancer Res. 2008, 68, 7670–7675. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.P.; Frayling, I.M.; Sgouros, J.G.; Du, M.Q.; Willcocks, T.C.; Talbot, I.C.; Tomlinson, I.P.M. The Spectrum of P53 Mutations in Colorectal Adenomas Differs from That in Colorectal Carcinomas. Gut 2002, 50, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, B.; Chen, X.; Bae, S.; Singh, K.; Washington, M.K.; Datta, P.K. Loss of Smad4 in Colorectal Cancer Induces Resistance to 5-Fluorouracil through Activating Akt Pathway. Br. J. Cancer 2014, 110, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Papageorgis, P.; Cheng, K.; Ozturk, S.; Gong, Y.; Lambert, A.W.; Abdolmaleky, H.M.; Zhou, J.R.; Thiagalingam, S. Smad4 Inactivation Promotes Malignancy and Drug Resistance of Colon Cancer. Cancer Res. 2011, 71, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Adloff, M.; Arnaud, J.P.; Thebault, Y.; Ollier, J.C.; Schloegel, M. Hepatic Metastases from Colorectal Cancers. Chirurgie 1990, 116, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Tejani, M. Current Treatment Strategies for Elderly Patients with Metastatic Colon Cancer. Cureus 2019, 11, e4713. [Google Scholar] [CrossRef]
- Villeneuve, P.J.; Sundaresan, R.S. Surgical Management of Colorectal Lung Metastasis. Clin. Colon Rectal Surg. 2009, 22, 233–241. [Google Scholar] [CrossRef]
- Nadler, A.; McCart, J.A.; Govindarajan, A. Peritoneal Carcinomatosis from Colon Cancer: A Systematic Review of the Data for Cytoreduction and Intraperitoneal Chemotherapy. Clin. Colon Rectal Surg. 2015, 28, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Guend, H.; Patel, S.; Nash, G.M. Abdominal Metastases from Colorectal Cancer: Intraperitoneal Therapy. J. Gastrointest. Oncol. 2015, 6, 693–698. [Google Scholar] [PubMed]
- Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, Present and Future. Cell Death Dis. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.; Kagan, V.E.; Bayir, H.; Pagnussat, G.C.; Head, B.; Traber, M.G.; Stockwell, B.R. Regulation of Lipid Peroxidation and Ferroptosis in Diverse Species. Genes Dev. 2018, 32, 602–619. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and Function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, W.; Zhang, M.; Yu, W.; Gao, F.; Li, C.; Wang, S.B.; Feng, J.; Zhang, X.Z. Ferrous-Supply-Regeneration Nanoengineering for Cancer-Cell-Specific Ferroptosis in Combination with Imaging-Guided Photodynamic Therapy. ACS Nano 2018, 12, 12181–12192. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. Molecular Mechanisms of Ferroptosis and Its Role in Cancer Therapy. J. Cell Mol. Med. 2019, 23, 4900–4912. [Google Scholar] [CrossRef]
- Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019, 35, 830–849. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Bai, T.; Sun, Y. Mechanisms of Ferroptosis and Relations with Regulated Cell Death: A Review. Front. Physiol. 2019, 10, 139. [Google Scholar] [CrossRef]
- Turchi, R.; Tortolici, F.; Guidobaldi, G.; Iacovelli, F.; Falconi, M.; Rufini, S.; Faraonio, R.; Casagrande, V.; Federici, M.; De Angelis, L.; et al. Frataxin Deficiency Induces Lipid Accumulation and Affects Thermogenesis in Brown Adipose Tissue. Cell Death Dis. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Du, J.; Zhou, Y.; Li, Y.; Xia, J.; Chen, Y.; Chen, S.; Wang, X.; Sun, W.; Wang, T.; Ren, X.; et al. Identification of Frataxin as a Regulator of Ferroptosis. Redox Biol. 2020, 32, 101483. [Google Scholar] [CrossRef] [PubMed]
- Grazia Cotticelli, M.; Xia, S.; Lin, D.; Lee, T.; Terrab, L.; Wipf, P.; Huryn, D.M.; Wilson, R.B. Ferroptosis as a Novel Therapeutic Target for Friedreich’s Ataxia. J. Pharmacol. Exp. Ther. 2019, 369, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.F. The Regulation of Iron Absorption and Homeostasis. Clin. Biochem. Rev. 2016, 37, 51–62. [Google Scholar] [PubMed]
- Lane, D.J.R.; Bae, D.H.; Merlot, A.M.; Sahni, S.; Richardson, D.R. Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation. Nutrients 2015, 7, 2274–2296. [Google Scholar] [CrossRef] [PubMed]
- Garrick, M.D.; Singleton, S.T.; Vargas, F.; Kuo, H.C.; Zhao, L.; Knöpfel, M.; Davidson, T.; Costa, M.; Paradkar, P.; Roth, J.A.; et al. DMT1: Which Metals Does It Transport? Biol. Res. 2006, 39, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.H. Iron-Binding Proteins. Acta Paediatr. 1989, 78, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Frazer, D.M.; Wilkins, S.J.; Darshan, D.; Mirciov, C.S.G.; Dunn, L.A.; Anderson, G.J. Ferroportin Is Essential for Iron Absorption during Suckling, but Is Hyporesponsive to the Regulatory Hormone Hepcidin. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Fuqua, B.K.; Lu, Y.; Darshan, D.; Frazer, D.M.; Wilkins, S.J.; Wolkow, N.; Bell, A.G.; Hsu, J.; Yu, C.C.; Chen, H.; et al. The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice. PLoS ONE 2014, 9, e98792. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Cai, C.; Tu, J.; Guo, X.; Zhang, D. Sonoporation-Induced Cell Membrane Permeabilization and Cytoskeleton Disassembly at Varied Acoustic and Microbubble-Cell Parameters. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Delemotte, L.; Tarek, M. Molecular Dynamics Simulations of Lipid Membrane Electroporation Insecticide Effect on Voltage-Gated Sodium Channel View Project TRPV1 Activation View Project Molecular Dynamics Simulations of Lipid Membrane Electroporation. J. Membr. Biol. 2012, 245, 531–543. [Google Scholar] [CrossRef]
- Cha, E.; Daud, A. Plasmid IL-2 Electroporation in Melanoma. Hum. Vaccin. Immunother. 2012, 8, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Molina, J.; Danielpour, M.; Breunig, J.J. Neonatal Pial Surface Electroporation. J. Vis. Exp. 2014, 87, e51319. [Google Scholar] [CrossRef] [PubMed]
- Kurata, K.; Ueno, R.; Matsushita, M.; Fukunaga, T.; Takamatsu, H. Experimental and Analytical Studies on Contact Irreversible Electroporation for Superficial Tumor Treatment. J. Biomech. Sci. Eng. 2013, 8, 306–318. [Google Scholar] [CrossRef]
- Romeo, S.; Sannino, A.; Scarfı, M.R.; Vernier, P.T.; Cadossi, R.; Gehl, J.; Zeni, O. ESOPE-Equivalent Pulsing Protocols for Calcium Electroporation: An In Vitro Optimization Study on 2 Cancer Cell Models. Technol. Cancer Res. Treat. 2018, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sersa, G. The State-of-the-Art of Electrochemotherapy before the ESOPE Study; Advantages and Clinical Uses. Eur. J. Cancer Suppl. 2006, 4, 52–59. [Google Scholar] [CrossRef]
- Marty, M.; Sersa, G.; Garbay, J.R.; Gehl, J.; Collins, C.G.; Snoj, M.; Billard, V.; Geertsen, P.F.; Larkin, J.O.; Miklavcic, D.; et al. Electrochemotherapy—An Easy, Highly Effective and Safe Treatment of Cutaneous and Subcutaneous Metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) Study. Eur. J. Cancer Suppl. 2006, 4, 3–13. [Google Scholar] [CrossRef]
- Sharma, V.; Chouhan, P.; Pandey, R.K.; Prajapati, V.K. Recent Therapeutic Strategies for the Treatment of Colon Cancer. In Colon Cancer Diagnosis and Therapy; Vishvakarma, N.K., Nagaraju, G.P., Shukla, D., Eds.; Springer: Cham, Switzertland, 2021; Volume 2, pp. 73–90. [Google Scholar] [CrossRef]
- He, L.; Zhu, H.; Zhou, S.; Wu, T.; Wu, H.; Yang, H.; Mao, H.; SekharKathera, C.; Janardhan, A.; Edick, A.M.; et al. Wnt Pathway Is Involved in 5-FU Drug Resistance of Colorectal Cancer Cells. Exp. Mol. Med. 2018, 50, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Y.; Zhang, E.; Yan, H.; Lv, N.; Cai, Z. The Synergistic Effect of PFK15 with Metformin Exerts Anti-Myeloma Activity via PFKFB3. Biochem. Biophys. Res. Commun. 2019, 515, 332–338. [Google Scholar] [CrossRef]
- Scheers, N.M.; Pereira, D.I.A.; Faria, N.; Powell, J.J. Ferric Citrate and Ferric EDTA but Not Ferrous Sulfate Drive Amphiregulin-Mediated Activation of the MAP Kinase ERK in Gut Epithelial Cancer Cells. Oncotarget 2018, 9, 17066–17077. [Google Scholar] [CrossRef]
- Millero, F. Speciation of Metals in Natural Waters. Geochem. Trans. 2001, 2, 1–8. [Google Scholar] [CrossRef]
- Atkins, P.W.; Peter, W.; De Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2010; ISBN 9780199543373. [Google Scholar]
- Raaflaub, J. Applications of Metal Buffers and Metal Indicators in Biochemistry. In Methods of Biochemical Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Volume 3, pp. 301–325. [Google Scholar]
- Ren, J.G.; Seth, P.; Ye, H.; Guo, K.; Hanai, J.I.; Husain, Z.; Sukhatme, V.P. Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Icard, P.; Poulain, L.; Lincet, H. Understanding the Central Role of Citrate in the Metabolism of Cancer Cells. Biochim. Biophys. Acta Rev. Cancer 2012, 1825, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, L.; Hou, S.; Yuan, Z.; Li, C.; Zhang, W.; Zheng, L.; Li, X. The Role of Iron in Cancer Progression. Front. Oncol. 2021, 11, 778492. [Google Scholar] [CrossRef] [PubMed]
- Hosny, W.M. Formation of Fe(III) Ternary Complexes with Related Bio-Relevant Ligands. In Descriptive Inorganic Chemistry Researches of Metal Compounds; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Weaver, J.C. Electroporation: A General Phenomenon for Manipulating Cells and Tissues. J. Cell Biochem. 1993, 51, 426–435. [Google Scholar] [CrossRef]
- Rodaite-Riseviciene, R.; Saule, R.; Snitka, V.; Saulis, G. Release of Iron Ions from the Stainless Steel Anode Occurring during High-Voltage Pulses and Its Consequences for Cell Electroporation Technology. IEEE Trans. Plasma Sci. 2014, 42, 249–254. [Google Scholar] [CrossRef]
- Ho, M.P. Combining Electrolysis and Electroporation for Tissue Ablation. In Handbook of Electroporation; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–21. [Google Scholar]
- Adam, F.I.; Bounds, P.L.; Kissner, R.; Koppenol, W.H. Redox Properties and Activity of Iron-Citrate Complexes: Evidence for Redox Cycling. Chem. Res. Toxicol. 2015, 28, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Straub, K.L.; Benz, M.; Schink, B. Iron Metabolism in Anoxic Environments at near Neutral PH. FEMS Microbiol. Ecol. 2001, 34, 181–186. [Google Scholar] [CrossRef]
- Wallace, D.C. Mitochondria and Cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef]
- Silva, A.M.N.; Kong, X.; Hider, R.C. Determination of the PKa Value of the Hydroxyl Group in the α-Hydroxycarboxylates Citrate, Malate and Lactate by 13C NMR: Implications for Metal Coordination in Biological Systems. BioMetals 2009, 22, 771–778. [Google Scholar] [CrossRef]
- Königsberger, L.C.; Königsberger, E.; May, P.M.; Hefter, G.T. Complexation of Iron(III) and Iron(II) by Citrate. Implications for Iron Speciation in Blood Plasma. J. Inorg. Biochem. 2000, 78, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Oades, R.D. Handbook of the Behavioral Neurobiology of Serotonin; Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2010; Volume 21, ISBN 9780123746344. [Google Scholar]
- Gomathl, H. Chemistry and Electrochemistry of Iron Complexes. Bull. Electrochem. 2000, 16, 459–465. [Google Scholar]
- Stefánsson, A. Iron(III) Hydrolysis and Solubility at 25 °C. Environ. Sci. Technol. 2007, 41, 6117–6123. [Google Scholar] [CrossRef] [PubMed]
- Kulbacka, J.; Rembiałkowska, N.; Szewczyk, A.; Rossowska, J.; Drąg-Zalesińska, M.; Kulbacki, M.; Choromańska, A. Nanosecond PEF Induces Oxidative Stress and Apoptosis via Proteasomal Activity Inhibition in Gastric Adenocarcinoma Cells with Drug Resistance. Int. J. Mol. Sci. 2022, 23, 12943. [Google Scholar] [CrossRef] [PubMed]
Initial Concentration [µM] | Non-Complexed Iron Concentration [µM] | Complexed Iron Concentration [µM] | |
---|---|---|---|
Iron (III) citrate | 250 | 249.4859 | 0.514115313 |
500 | 499.5986 | 0.401381669 | |
750 | 749.7114 | 0.288648026 | |
Iron (III)–EDTA | 250 | 0.000165 | 249.9998345 |
500 | 0.000237 | 499.9997631 | |
750 | 0.000287 | 749.9997129 |
Incubation Time [h] | Fe(III) Citrate [µM] | 5-FU [µM] | CI * | Interaction Type | Fe (III)–EDTA [µM] | 5-FU [µM] | CI * | Interaction Type |
---|---|---|---|---|---|---|---|---|
24 | 250 | 0.1 | 2.39725 | A | 250 | 0.1 | 4.53018 | A |
0.5 | 2.31710 | A | 0.5 | 4.81550 | A | |||
1.0 | 4.54515 | A | 1.0 | 5.10450 | A | |||
10.0 | 5.57859 | A | 10.0 | 7.94892 | A | |||
500 | 0.1 | 5.36120 | A | 500 | 0.1 | 8.73229 | A | |
0.5 | 4.67136 | A | 0.5 | 7.71052 | A | |||
1.0 | 8.08965 | A | 1.0 | 6.82734 | A | |||
10.0 | 3.18717 | A | 10.0 | 7.41533 | A | |||
750 | 0.1 | 11.1007 | A | 750 | 0.1 | 6.59179 | A | |
0.5 | 6.85439 | A | 0.5 | 6.39788 | A | |||
1.0 | 6.55002 | A | 1.0 | 6.20665 | A | |||
10.0 | 13.1310 | A | 10.0 | 6.20246 | A | |||
48 | 250 | 0.1 | 2.81920 | A | 250 | 0.1 | 4.55482 | A |
0.5 | 2.47332 | A | 0.5 | 4.95817 | A | |||
1.0 | 2.38075 | A | 1.0 | 5.53480 | A | |||
10.0 | 9.81364 | A | 10.0 | 15.5189 | A | |||
500 | 0.1 | 4.61703 | A | 500 | 0.1 | 8.31723 | A | |
0.5 | 4.92391 | A | 0.5 | 7.54574 | A | |||
1.0 | 5.24156 | A | 1.0 | 4.50101 | A | |||
10.0 | 15.4676 | A | 10.0 | 5.76203 | A | |||
750 | 0.1 | 9.18624 | A | 750 | 0.1 | 9.40481 | A | |
0.5 | 8.98559 | A | 0.5 | 8.87111 | A | |||
1.0 | 7.86185 | A | 1.0 | 6.21390 | A | |||
10.0 | 3.18740 | A | 10.0 | 4.86205 | A |
Fe(III) Citrate 250 [µM] /5-FU 10 [µM] | 24 h CI * | 48 h CI * | Interaction Type | Fe (III)–EDTA 250 [µM] /5-FU 10 [µM] | 24 h CI * | 48 h CI * | Interaction Type |
---|---|---|---|---|---|---|---|
EP0 | 5.57859 | 9.81364 | A | EP0 | 7.94892 | 15.5189 | A |
nsEP1 | 0.03492 | 0.47368 | S | nsEP1 | 1.85407 | 1.79286 | A |
nsEP2 | 7.37 × 10−9 | 7.04 × 10−7 | S | nsEP2 | 0.02511 | 0.01177 | S |
ESOPE | 4.84 × 10−6 | 1.80 × 10−4 | S | ESOPE | 0.44229 | 0.34419 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlasa, W.; Mazurek, W.; Szewczyk, A.; Rembiałkowska, N.; Tunikowska, J.; Kulbacka, J. The Antagonistic and Synergistic Role of Fe3+ Compounds in Chemo- and Electrochemotherapy in Human Colon Cancer In Vitro. Pharmaceuticals 2024, 17, 651. https://doi.org/10.3390/ph17050651
Szlasa W, Mazurek W, Szewczyk A, Rembiałkowska N, Tunikowska J, Kulbacka J. The Antagonistic and Synergistic Role of Fe3+ Compounds in Chemo- and Electrochemotherapy in Human Colon Cancer In Vitro. Pharmaceuticals. 2024; 17(5):651. https://doi.org/10.3390/ph17050651
Chicago/Turabian StyleSzlasa, Wojciech, Wiktoria Mazurek, Anna Szewczyk, Nina Rembiałkowska, Joanna Tunikowska, and Julita Kulbacka. 2024. "The Antagonistic and Synergistic Role of Fe3+ Compounds in Chemo- and Electrochemotherapy in Human Colon Cancer In Vitro" Pharmaceuticals 17, no. 5: 651. https://doi.org/10.3390/ph17050651
APA StyleSzlasa, W., Mazurek, W., Szewczyk, A., Rembiałkowska, N., Tunikowska, J., & Kulbacka, J. (2024). The Antagonistic and Synergistic Role of Fe3+ Compounds in Chemo- and Electrochemotherapy in Human Colon Cancer In Vitro. Pharmaceuticals, 17(5), 651. https://doi.org/10.3390/ph17050651