Evaluation of the Effect of Loratadine versus Diosmin/Hesperidin Combination on Vinca Alkaloids-Induced Neuropathy: A Randomized Controlled Clinical Trial
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics and Clinical Characteristics
2.2. Biochemical Tests for the Three Groups at Baseline and after the End of Every Cycle of Vinca Alkaloid Chemotherapy
2.3. Assessment of Vinca Alkaloid-Induced Neuropathy Results
2.3.1. Subjective Assessment Scores at Baseline and after Treatment
2.3.2. Serum Biomarker Levels at Baseline and after Treatment
2.3.3. Treatment-Induced Adverse Drug Effects
2.3.4. Neuropathy-Related Adverse Drug Effects Timing
2.4. Response to Vinca Alkaloids after Treatment
2.5. Encountered Drug–Drug Interactions during Therapy
2.6. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Ethical Consideration
4.3. Patients
4.4. Methods
4.5. Sample Size Calculation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med. 2013, 4, 1231–1235. [Google Scholar] [PubMed]
- Martino, E.; Casamassima, G.; Castiglione, S.; Cellupica, E.; Pantalone, S.; Papagni, F.; Rui, M.; Siciliano, A.M.; Collina, S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018, 28, 2816–2826. [Google Scholar] [CrossRef]
- Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013, 71, 555–564. [Google Scholar] [CrossRef]
- Quintão, N.L.M.; Santin, J.R.; Stoeberl, L.C.; Corrêa, T.P.; Melato, J.; Costa, R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front. Neurosci. 2019, 13, 475298. [Google Scholar] [CrossRef] [PubMed]
- Vilholm, O.J.; Christensen, A.A.; Zedan, A.H.; Itani, M. Drug-Induced Peripheral Neuropathy. Basic Clin. Pharmacol. Toxicol. 2014, 115, 185–192. [Google Scholar] [CrossRef]
- Li, G.-Z.; Hu, Y.-H.; Li, D.-Y.; Zhang, Y.; Guo, H.-L.; Li, Y.-M.; Chen, F.; Xu, J. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020, 81, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.W.; Helweg-Larsen, S.; Trojaborg, W. Long-term neurotoxicity in patients treated with cisplatin, vinblastine, and bleomycin for metastatic germ cell cancer. J. Clin. Oncol. 1989, 7, 1457–1461. [Google Scholar] [CrossRef]
- Geisler, S. Vincristine- and bortezomib-induced neuropathies—From bedside to bench and back. Exp. Neurol. 2021, 336, 113519. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Hanafusa, T.; Sakurada, T.; Teraoka, K.; Kujime, T.; Abe, M.; Shinohara, Y.; Kawazoe, K.; Minakuchi, K. Risk factors for early-onset peripheral neuropathy caused by vincristine in patients with a first administration of R-CHOP or R-CHOP-like chemotherapy. J. Clin. Med. Res. 2014, 6, 252. [Google Scholar] [CrossRef]
- Carlson, K.; Ocean, A.J. Peripheral Neuropathy with Microtubule-Targeting Agents: Occurrence and Management Approach. Clin. Breast Cancer 2011, 11, 73–81. [Google Scholar] [CrossRef]
- Mora, E.; Smith, E.M.L.; Donohoe, C.; Hertz, D.L. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am. J. Cancer Res. 2016, 6, 2416–2430. [Google Scholar]
- Gomber, S.; Dewan, P.; Chhonker, D. Vincristine induced neurotoxicity in cancer patients. Indian J. Pediatr. 2010, 77, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Aydin Köker, S.; Gözmen, S.; Demirağ, B.; Ünalp, A.; Karapinar, T.H.; Oymak, Y.; Gürbüz, G.; Öner, E.İ.; Vergin, R.C. Effect of pyridoxine plus pyridostigmine treatment on vincristine-induced peripheral neuropathy in pediatric patients with acute lymphoblastic leukemia: A single-center experience. Neurol. Sci. 2021, 42, 3681–3686. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef] [PubMed]
- Jordan, B.; Margulies, A.; Cardoso, F.; Cavaletti, G.; Haugnes, H.; Jahn, P.; Le Rhun, E.; Preusser, M.; Scotté, F.; Taphoorn, M. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO–EONS–EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann. Oncol. 2020, 31, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- Zafari, N.; Velayati, M.; Maftooh, M.; Khazaei, M.; Nassiri, M.; Hassanian, S.M.; Ghayour-Mobarhan, M.; Ferns, G.A.; Avan, A. Mechanism-Based Pharmacological Management of Chemotherapy-Induced Neuropathic Pain from Preclinical Studies to Clinical Prospective: Platinum-based drugs, Taxanes, and Vinca Alkaloids. Curr. Pharm. Des. 2023, 29, 1245–1265. [Google Scholar] [CrossRef] [PubMed]
- Manuel y Keenoy, B.; Vertommen, J.; De Leeuw, I. The effect of flavonoid treatment on the glycation and antioxidant status in Type 1 diabetic patients. Diabetes Nutr. Metab. 1999, 12, 256–263. [Google Scholar] [PubMed]
- Carballo-Villalobos, A.I.; González-Trujano, M.E.; Pellicer, F.; Alvarado-Vásquez, N.; López-Muñoz, F.J. Central and peripheral anti-hyperalgesic effects of diosmin in a neuropathic pain model in rats. Biomed. Pharmacother. 2018, 97, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Adamante, G.; de Almeida, A.S.; Rigo, F.K.; da Silva Silveira, E.; Coelho, Y.O.; De Prá, S.D.-T.; Milioli, A.M.; Camponogara, C.; Casoti, R.; Bellinaso, F.; et al. Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice. Life Sci. 2019, 216, 215–226. [Google Scholar] [CrossRef]
- Sawmiller, D.; Habib, A.; Li, S.; Darlington, D.; Hou, H.; Tian, J.; Shytle, R.D.; Smith, A.; Giunta, B.; Mori, T.; et al. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J. Neuroimmunol. 2016, 299, 98–106. [Google Scholar] [CrossRef]
- Bhargava, P.; Verma, V.K.; Malik, S.; Khan, S.I.; Bhatia, J.; Arya, D.S. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties. J. Biochem. Mol. Toxicol. 2019, 33, e22283. [Google Scholar] [CrossRef] [PubMed]
- Moukharskaya, J.; Abrams, D.M.; Ashikaga, T.; Khan, F.; Schwartz, J.; Wilson, K.; Verschraegen, C.; Openshaw, T.; Valentine, J.; Eneman, J.; et al. Randomized phase II study of loratadine for the prevention of bone pain caused by pegfilgrastim. Support. Care Cancer 2016, 24, 3085–3093. [Google Scholar] [CrossRef]
- Jang, J.; Hunto, S.T.; Kim, J.W.; Lee, H.P.; Kim, H.G.; Cho, J.Y. Anti-Inflammatory Activities of an Anti-Histamine Drug, Loratadine, by Suppressing TAK1 in AP-1 Pathway. Int. J. Mol. Sci. 2022, 23, 3986. [Google Scholar] [CrossRef] [PubMed]
- Obara, I.; Telezhkin, V.; Alrashdi, I.; Chazot, P.L. Histamine, histamine receptors, and neuropathic pain relief. Br. J. Pharmacol. 2020, 177, 580–599. [Google Scholar] [CrossRef] [PubMed]
- Ashmawi, H.A.; Braun, L.M.; Sousa, A.M.; Posso Ide, P. Analgesic effects of H1 receptor antagonists in the rat model of formalin-induced pain. Rev. Bras. Anestesiol. 2009, 59, 461–470. [Google Scholar] [CrossRef]
- Yu, J.; Lou, G.D.; Yue, J.X.; Tang, Y.Y.; Hou, W.W.; Shou, W.T.; Ohtsu, H.; Zhang, S.H.; Chen, Z. Effects of histamine on spontaneous neuropathic pain induced by peripheral axotomy. Neurosci. Bull. 2013, 29, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, A.S.; Kaur, G.; Bali, A.; Singh, N. Pharmacological investigations on mast cell stabilizer and histamine receptor antagonists in vincristine-induced neuropathic pain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Kirshner, J.J.; McDonald, M.C.; Kruter, F.; Guinigundo, A.S.; Vanni, L.; Maxwell, C.L.; Reiner, M.; Upchurch, T.E.; Garcia, J.; Morrow, P.K. NOLAN: A randomized, phase 2 study to estimate the effect of prophylactic naproxen or loratadine vs. no prophylactic treatment on bone pain in patients with early-stage breast cancer receiving chemotherapy and pegfilgrastim. Support. Care Cancer 2018, 26, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Romeo, C.; Li, Q.; Copeland, L. Severe pegfilgrastim-induced bone pain completely alleviated with loratadine: A case report. J. Oncol. Pharm. Pract. 2015, 21, 301–304. [Google Scholar] [CrossRef]
- Maihöfner, C.; Diel, I.; Tesch, H.; Quandel, T.; Baron, R. Chemotherapy-induced peripheral neuropathy (CIPN): Current therapies and topical treatment option with high-concentration capsaicin. Support. Care Cancer 2021, 29, 4223–4238. [Google Scholar] [CrossRef]
- Kerckhove, N.; Tougeron, D.; Lepage, C.; Pezet, D.; Le Malicot, K.; Pelkowski, M.; Pereira, B.; Balayssac, D. Efficacy of donepezil for the treatment of oxaliplatin-induced peripheral neuropathy: DONEPEZOX, a protocol of a proof of concept, randomised, triple-blinded and multicentre trial. BMC Cancer 2022, 22, 742. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.L.; Lopez, V.; Lam, S.C.; Leung, A.K.T.; Li, Y.C.; Wong, K.H.; Au, J.S.K.; Sundar, R.; Chan, A.; De Ng, T.R.; et al. Psychometric testing of the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group—Neurotoxicity (FACT/GOG-Ntx) subscale in a longitudinal study of cancer patients treated with chemotherapy. Health Qual. Life Outcomes 2020, 18, 246. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Yan, X.; Zhao, F.; Teng, Y.; Sun, X.; Lv, Z.; Cao, M.; Zhao, J.; Song, G.; Pan, B.; et al. Association of Taxane Type With Patient-Reported Chemotherapy-Induced Peripheral Neuropathy Among Patients With Breast Cancer. JAMA Netw. Open 2022, 5, e2239788. [Google Scholar] [CrossRef]
- Amirkhanloo, F.; Karimi, G.; Yousefi-Manesh, H.; Abdollahi, A.; Roohbakhsh, A.; Dehpour, A.R. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin. Pharmacol. Toxicol. 2020, 127, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Meregalli, C.; Bonomo, R.; Cavaletti, G.; Carozzi, V.A. Blood molecular biomarkers for chemotherapy-induced peripheral neuropathy: From preclinical models to clinical practice. Neurosci. Lett. 2021, 749, 135739. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Choi, M.K.; Park, N.Y.; Hyun, J.W.; Lee, M.Y.; Kim, H.J.; Jung, S.K.; Cha, Y. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci. Rep. 2020, 10, 7995. [Google Scholar] [CrossRef] [PubMed]
- Youk, J.; Kim, Y.-S.; Lim, J.-A.; Shin, D.-Y.; Koh, Y.; Lee, S.-T.; Kim, I. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS ONE 2017, 12, e0183491. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Hwang, S.H.; Lee, S.O.; Kim, S.H.; Abdi, S. Pentoxifylline Ameliorates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain. Pain Physician 2016, 19, E589–E600. [Google Scholar] [PubMed]
- Karteri, S.; Bruna, J.; Argyriou, A.A.; Mariotto, S.; Velasco, R.; Alemany, M.; Kalofonou, F.; Alberti, P.; Dinoto, A.; Velissaris, D.; et al. Prospectively assessing serum neurofilament light chain levels as a biomarker of paclitaxel-induced peripheral neurotoxicity in breast cancer patients. J. Peripher. Nerv. Syst. 2022, 27, 166–174. [Google Scholar] [CrossRef]
- Khalefa, H.G.; Shawki, M.A.; Aboelhassan, R.; El Wakeel, L.M. Evaluation of the effect of N-acetylcysteine on the prevention and amelioration of paclitaxel-induced peripheral neuropathy in breast cancer patients: A randomized controlled study. Breast Cancer Res. Treat. 2020, 183, 117–125. [Google Scholar] [CrossRef]
- Velasco, R.; Navarro, X.; Gil-Gil, M.; Herrando-Grabulosa, M.; Calls, A.; Bruna, J. Neuropathic pain and nerve growth factor in chemotherapy-induced peripheral neuropathy: Prospective clinical-pathological study. J. Pain Symptom Manag. 2017, 54, 815–825. [Google Scholar] [CrossRef]
- Szczepariski, T.; Orfão, A.; van der Valden, V.H.J.; Miguel, J.F.S.; van Dongen, J.J.M. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001, 2, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Online Lexicomp Interaction Checker. Available online: https://online.lexi.com/lco/action/interact (accessed on 19 May 2023).
- Sabus, A.; Merrow, M.; Burke, E.; Kordas, G.; Williams, M.; Larson, M.; Eisenman, K. Incidence and Severity of Neuropathy with Concurrent Use of Voriconazole and Vincristine in Pediatric Patients with Cancer. J. Hematol. Oncol. Pharm. 2023, 13, 77. [Google Scholar]
- Haidar, C.; Jeha, S. Drug interactions in childhood cancer. Lancet Oncol. 2011, 12, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Azanza, J.R.; Mensa, J.; Barberán, J.; Vázquez, L.; de Oteyza, J.P.; Kwon, M.; Yáñez, L.; Aguado, J.M.; Cubillo Gracian, A.; Solano, C.; et al. Recommendations on the use of azole antifungals in hematology-oncology patients. Rev. Esp. Quimioter. 2023, 36, 236–258. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother. Pharmacol. 2019, 84, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Shabani, S.; Mirshekar, M.A. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed. Pharmacother. 2018, 108, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Peruru, R.; Dodoala, S. Therapeutic potential of diosmin, a citrus flavonoid against arsenic-induced neurotoxicity via suppression of NOX 4 and its subunits. Indian J. Pharmacol. 2021, 53, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; An, Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling. Arch. Pharm. Res. 2018, 41, 655–663. [Google Scholar] [CrossRef]
- Poetini, M.R.; Araujo, S.M.; de Paula, M.T.; Bortolotto, V.C.; Meichtry, L.B.; de Almeida, F.P.; Jesse, C.R.; Kunz, S.N.; Prigol, M. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact. 2018, 279, 177–186. [Google Scholar] [CrossRef]
- Bellavite, P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants 2023, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.G.; Tanasie, G.; Neree, A.T.; Suarez, N.G.; Lafortune, C.; Paquin, J.; Marcocci, L.; Pietrangeli, P.; Annabi, B.; Mateescu, M.A. P19-derived neuronal cells express H1, H2, and H3 histamine receptors: A biopharmaceutical approach to evaluate antihistamine agents. Amino Acids 2023, 55, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Homayouni, F.; Haidari, F.; Hedayati, M.; Zakerkish, M.; Ahmadi, K. Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phytother. Res. 2018, 32, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, W.; Jiang, Z.; Xi, X.; Qi, G. Clinical efficacy of montelukast sodium combined with budesonide or combined with loratadine in treating children with cough variant asthma and influence on inflammatory factors in the serum. Exp. Ther. Med. 2019, 18, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Cata, J.P.; Weng, H.-R.; Dougherty, P.M. The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats. Brain Res. 2008, 1229, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Amin, D.M.; Ameen, S.H.; Abaza, M.T. Neuroprotective Effects of Hesperidin and Benfotiamine against Paraquat Induced Spinal Cord Neurotoxicity in Adult Male Albino Rats. Occup. Dis. Environ. Med. 2021, 9, 139–164. [Google Scholar] [CrossRef]
- Fundaun, J.; Kolski, M.; Molina-Álvarez, M.; Baskozos, G.; Schmid, A.B. Types and Concentrations of Blood-Based Biomarkers in Adults With Peripheral Neuropathies: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2248593. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.; Lambiase, A.; Bonini, S.; Angelucci, F.; Magrini, L.; Manni, L.; Aloe, L. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc. Natl. Acad. Sci. USA 1996, 93, 10955–10960. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.H.; Kim, J.-Y.; Cho, E.Y.; Oh, J.M.; Lee, J.E.; Kim, S.W.; Nam, S.J.; Park, Y.H.; Ahn, J.S.; Im, Y.-H. Elevated Level of Nerve Growth Factor (NGF) in Serum-Derived Exosomes Predicts Poor Survival in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy. Cancers 2021, 13, 5260. [Google Scholar] [CrossRef]
- Gordon, T. The role of neurotrophic factors in nerve regeneration. Neurosurg. Focus FOC 2009, 26, E3. [Google Scholar] [CrossRef]
- Cavaletti, G.; Petruccioli, M.G.; Marmiroli, P.; Rigolio, R.; Galbiati, S.; Zoia, C.; Ferrarese, C.; Tagliabue, E.; Dolci, C.; Bayssas, M.; et al. Circulating nerve growth factor level changes during oxaliplatin treatment-induced neurotoxicity in the rat. Anticancer Res. 2002, 22, 4199–4204. [Google Scholar] [PubMed]
- Bao, T.; Zhi, I.; Baser, R.; Hooper, M.; Chen, C.; Piulson, L.; Li, Q.; Galantino, M.; Blinder, V.; Robson, M.; et al. Yoga for Chemotherapy-Induced Peripheral Neuropathy and Fall Risk: A Randomized Controlled Trial. JNCI Cancer Spectrum 2020, 4, pkaa048. [Google Scholar] [CrossRef]
- Aswar, M.; Kute, P.; Mahajan, S.; Mahajan, U.; Nerurkar, G.; Aswar, U. Protective effect of hesperetin in rat model of partial sciatic nerve ligation induced painful neuropathic pain: An evidence of anti-inflammatory and anti-oxidative activity. Pharmacol. Biochem. Behav. 2014, 124, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Villalobos, A.I.; González-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J. Antihyperalgesic Effect of Hesperidin Improves with Diosmin in Experimental Neuropathic Pain. BioMed Res. Int. 2016, 2016, 8263463. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Basu, A. In Vitro and In Vivo Effects of Flavonoids on Peripheral Neuropathic Pain. Molecules 2020, 25, 1171. [Google Scholar] [CrossRef]
- Smith, C.; Hendrickson, A.W.; Grudem, M.; Klampe, C.; Deering, E.; Jatoi, A. Loratadine for Paclitaxel-Induced Myalgias and Arthralgias. Am. J. Hosp. Palliat. Med. 2019, 37, 235–238. [Google Scholar] [CrossRef]
- Buddhan, R.; Manoharan, S. Diosmin reduces cell viability of A431 skin cancer cells through apoptotic induction. J. Cancer Res. Ther. 2017, 13, 471–476. [Google Scholar] [CrossRef]
- Soares, J.M.; Faria, B.M.; Ascari, L.M.; Alves-Leon, S.V.; Souza, J.M.; Soares, A.G.; Cordeiro, Y.; Romao, L.F. Diosmin induces caspase-dependent apoptosis in human glioblastoma cells. An. Acad. Bras. Cienc. 2019, 91, e20191031. [Google Scholar] [CrossRef]
- Hamano, H.; Ikeda, Y.; Goda, M.; Fukushima, K.; Kishi, S.; Chuma, M.; Yamashita, M.; Niimura, T.; Takechi, K.; Imanishi, M.; et al. Diphenhydramine may be a preventive medicine against cisplatin-induced kidney toxicity. Kidney Int. 2021, 99, 885–899. [Google Scholar] [CrossRef]
- Anwer, T.; Alshahrani, S.; Somaili, A.M.H.; Khubrani, A.H.; Ahmed, R.A.; Jali, A.M.; Alshamrani, A.; Rashid, H.; Nomeir, Y.; Khalid, M.; et al. Nephroprotective Effect of Diosmin against Cisplatin-Induced Kidney Damage by Modulating IL-1β, IL-6, TNFα and Renal Oxidative Damage. Molecules 2023, 28, 1302. [Google Scholar] [CrossRef]
- Ali, F.E.M.; Azouz, A.A.; Bakr, A.G.; Abo-youssef, A.M.; Hemeida, R.A.M. Hepatoprotective effects of diosmin and/or sildenafil against cholestatic liver cirrhosis: The role of Keap-1/Nrf-2 and P38-MAPK/NF-κB/iNOS signaling pathway. Food Chem. Toxicol. 2018, 120, 294–304. [Google Scholar] [CrossRef]
- Ansar, S.; Abudawood, M.; Alaraj, A.S.A.; Hamed, S.S. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol. Toxicol. 2018, 19, 65. [Google Scholar] [CrossRef]
- Roy, J.; Azamthulla, M.; Mukkerjee, D. Hesperidin and diosmin-a novel drugs. Int. J. Pharm. Res. Technol. 2020, 10, 25–33. [Google Scholar]
- Saleh, A.S.E.S.; Rabie, H.M.K. Daflon use for reducing post-tonsillectomy pain and hemorrhage: A prospective study. Egypt. J. Otolaryngol. 2021, 37, 20. [Google Scholar] [CrossRef]
- Colevas, A.; Setser, A. The NCI Common Terminology Criteria for Adverse Events (CTCAE) v 3.0 is the new standard for oncology clinical trials. J. Clin. Oncol. 2004, 22, 6098. [Google Scholar] [CrossRef]
- Semis, H.S.; Gur, C.; Ileriturk, M.; Kandemir, F.M.; Kaynar, O. Evaluation of Therapeutic Effects of Quercetin Against Achilles Tendinopathy in Rats via Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Metalloproteinases. Am. J. Sports Med. 2022, 50, 486–498. [Google Scholar] [CrossRef] [PubMed]
Demographics | Control (Group 1) n = 30 | Diosmin/Hesperidin (Group 2) n = 30 | Loratadine (Group 3) n = 30 | p-Value |
---|---|---|---|---|
Age (mean ± SD), years | 35.33 ± 13.85 | 40.5 ± 15.42 | 41.93 ± 17.67 | 0.237 a |
Gender | ||||
Male [n, (%)] | 17 (56.7%) | 20 (66.7%) | 20 (66.7%) | 0.760 b |
Female [n, (%)] | 13 (43.3%) | 10 (33.3%) | 10 (33.3%) | |
Diabetes [n, (%)] | 2 (6.7%) | 3 (10.0%) | 2 (6.7%) | 0.999 c |
Hypertension [n, (%)] | 0 (0%) | 4 (13.3%) | 3 (10.0%) | 0.154 c |
Smoking [n, (%)] | ||||
Ex-smoker | 1 (3.3%) | 1 (3.3%) | 1 (3.3%) | |
Non-smoker | 23 (76.7%) | 19 (63.3%) | 23 (76.7%) | 0.634 c |
Smoker | 6 (20.0%) | 10 (33.3%) | 6 (20.0%) | |
Weight (mean ± SD), Kg | 68.67 ± 12.52 | 80.83 ± 19.09 | 72.1 ± 14.48 | 0.010 a* |
Height, (mean ± SD), cm | 168.37 ± 8.38 | 169.83 ± 9.51 | 168.5 ± 9.3 | 0.787 a |
BSA (mean ± SD), cm2 | 1.78 ± 0.17 | 1.94 ± 0.26 | 1.83 ± 0.21 | 0.017 a* |
ECOG performance status [median, (IQR)] | 0 (0–1) | 0 (0–1) | 1 (0–1) | 0.5229 d |
Parameters | Control (Group 1) n = 30 | Diosmin/Hesperidin (Group 2) n = 30 | Loratadine (Group 3) n = 30 | p-Value |
---|---|---|---|---|
Types of cancer: [n, (%)] | ||||
B-Cell lymphoma | 0 (0.0%) | 0 (0.0%) | 1 (3.3%) | |
B-ALL | 11 (36.7%) | 10 (33.3%) | 12 (40.0%) | |
Burkitt lymphoma | 1 (3.3%) | 0 (0.0%) | 2 (6.7%) | |
CLL | 3 (10.0%) | 2 (6.7%) | 4 (13.4%) | |
HLH | 0 (0.0%) | 0 (0.0%) | 1 (3.3%) | 0.480 a |
Hodgkin lymphoma | 3 (10.0%) | 2 (6.7%) | 1 (3.3%) | |
Marginal cell lymphoma | 1 (3.3%) | 0 (0.0%) | 0 (0.0%) | |
Multiple myeloma | 1 (3.3%) | 4 (13.3%) | 0 (0.0%) | |
NHL | 1 (3.3%) | 6 (20.0%) | 4 (13.3%) | |
Plasma cell myeloma | 1 (3.3%) | 0 (0.0%) | 0 (0.0%) | |
T-Cell lymphoma | 1 (3.3%) | 1 (3.3%) | 0 (0.0%) | |
T-ALL | 7 (23.3%) | 5 (16.7%) | 5 (16.7%) | |
Chemotherapy Protocols: [n, (%)] | ||||
ABVD | 3 (10.0%) | 2 (6.7%) | 1 (3.3%) | |
C-VAMP | 2 (6.7%) | 4 (13.3%) | 0 (0.0%) | |
CALGB | 2 (6.7%) | 2 (6.7%) | 4 (13.3%) | |
CHEOP | 0 (0.0%) | 0 (0.0%) | 1 (3.3%) | |
CHOP | 1 (3.3%) | 2 (6.7%) | 0 (0.0%) | 0.469 a |
COP | 3 (10.0%) | 4 (13.3%) | 6 (20.0%) | |
HCVAD-A | 18 (60.0%) | 13 (43.3%) | 13 (43.3%) | |
R-CHOP | 1 (3.3%) | 3 (10.0%) | 4 (13.3%) | |
VAD | 0 (0.0%) | 0 (0.0%) | 1 (3.3%) | |
Vinca alkaloids dose: | ||||
Vincristine [median, (IQR)] | 4 (2–8) | 4 (2–8) | 4 (2–8) | 0.5234 b |
Vinblastine | 20 (18–20) | 19.5 (19–20) | 20 |
Score | Assessment Time | Control (Group 1) n = 30 | Diosmin/Hesperidin (Group 2) n = 30 | Loratadine (Group 3) n = 30 | p-Value |
---|---|---|---|---|---|
NS | At baseline | 0 | 0 | 0 | 1 a |
Average of first cycle | 2 (0–2) | 2 (0–2) | 0 (0–2) | 0.670 a | |
Average of second cycle | 1 (0–3) | 0 (0–2) | 0 (0–2) | 0.141 a | |
Average of third cycle | 0.5 (0–2) | 0 (0–1) | 0 (0–2) | 0.058 a | |
p-value | <0.001 b* | <0.0001 b* | 0.0003 b* | ||
DN4 | At baseline | 0 | 0 | 0 | 1 a |
Average of first cycle | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0.624 a | |
Average of second cycle | 0 (0–2) | 0 (0–1) | 0 (0–1) | 0.262 a | |
Average of third cycle | 0 (0–1) | 0 | 0 (0–1) | 0.019 a* | |
p-value | 0.002 b* | 0.0157 b* | 0.0027 b* | ||
NTX | At baseline | 42 (40–43) | 42 (41–43) | 42 (41–43) | 0.732 a |
At the end of first cycle | 40 (36–42) | 41.5 (40–42.25) | 41 (39–42) | 0.041 a* | |
At the end of second cycle | 39.5 (34.75–41) | 41 (40–42) | 41 (40–41) | 0.007 a* | |
At the end of third cycle | 39.5 (36–41) | 41 (40–42) | 41 (40–41) | 0.002 a* | |
p-value | <0.0001 b* | <0.0001 b* | <0.0001 b* |
Serum Biomarker | Assessment Time | Control (Group 1) n = 30 | Diosmin/Hesperidin (Group 2) n = 30 | Loratadine (Group 3) n = 30 | p-Value |
---|---|---|---|---|---|
IL-1 β (pg/mL) | At baseline | 16.75 (14.74–25.58) | 21 (19.21–22.90) | 20.85 (16.31–25.99) | 0.9690 a |
After treatment | 36.80 (29.67–62.05) | 26.06 (21.02–36.48) | 26.18 (19.95–36.72) | 0.0006 a* | |
p-value | <0.0001 b* | 0.0019 b* | <0.0001 b* | ||
TNF-α (ng/L) | At baseline | 56.27 (54.54–57.39) | 54.97 (51.84–59.20) | 55.40 (46.29–62.05) | 0.7915 a |
After treatment | 178.9 (142.2–196.5) | 62.78 (58.06–74.85) | 48.89 (43.48–64.02) | <0.0001 a* | |
Adjusted p-value | <0.0001 b* | <0.0001 b* | 0.2534 b* | ||
NGF (pg/mL) | At baseline | 229.3 (211.7–239.6) | 219.5 (192.6–284.6) | 228.1 (177.7–283.1) | 0.5400 a |
After treatment | 215.9 (182.9–235.5) | 211.9 (193.3–244.1) | 218.5 (175.1–285.5) | 0.637 a | |
Adjusted p-value | 0.0919 b | 0.6120 b | 0.5291 b | ||
NFL (ng/L) | At baseline | 22.17 (19.45–25.26) | 21.25 (18.95–26.56) | 21.09 (18.96–25.99) | 0.9220 a |
After treatment | 153.3 (98.87–196.5) | 45.73 (31.26–98.99) | 37.09 (23.43–51.77) | <0.0001 a* | |
Adjusted p-value | <0.0001 b* | <0.0001 b* | <0.0001 b* |
Adverse Drug Effect | Assessment Time | Control (Group 1) n = 30 | Diosmin/Hesperidin (Group 2) n = 30 | Loratadine (Group 3) n = 30 | p-Value |
---|---|---|---|---|---|
Constipation [n, (%)] | Through the first cycle | Grade 1: 10 (33.3%) Grade 2: 1 (3.3%) Grade 3: 1 (3.3%) | Grade 1: 11 (36.7%) Grade 2: 1 (3.3%) Grade 3: 0 (0%) | Grade 1: 9 (30%) Grade 2: 1 (3.3%) Grade 3: 0 (0%) | 0.973 a |
Through the second cycle | Grade 1: 9 (30%) Grade 2: 0 (0%) Grade 3: 1 (3.3%) | Grade 1: 8 (26.7%) Grade 2: 0 (0%) Grade 3: 0 (0%) | Grade 1: 5 (16.7%) Grade 2: 0 (0%) Grade 3: 0 (0%) | 0.419 a | |
Through the third cycle | Grade 1: 9 (30%) Grade 2: 0 (0%) Grade 3:1 (3.3%) | Grade 1: 3 (10%) Grade 2: 0 (0%) Grade 3: 0 (0%) | Grade 1: 4 (13.3%) Grade 2: 0 (0%) Grade 3: 0 (0%) | 0.094 a | |
Paresthesia [n, (%)] | Through the first cycle | Grade 1: 5 (16.7%) Grade 2: 0 (0%) | Grade 1:2 (6.7%) Grade 2: 1 (3.3%) | Grade 1: 1 (3.3%) Grade 2: 0 (0%) | 0.213 a |
Through the second cycle | Grade 1: 6 (20%) | Grade 1: 0 (0%) | Grade 1: 1 (3.3%) | 0.015 a* | |
Through the third cycle | Grade 1: 4 (13.3%) | Grade 1: 0 (0%) | Grade 1: 0 (0%) | 0.032 a* | |
Dysuria [n, (%)] | Through the first cycle | Grade 1: 4 (13.3%) | Grade 1: 2 (6.7%) | Grade 1: 2 (6.7%) | 0.722 a |
Through the second cycle | Grade 1: 1 (3.3%) | Grade 1: 0 (0%) | Grade 1: 0 (0%) | 0.326 a | |
Through the third cycle | Grade 1: 4 (13.3%) | Grade 1: 1 (3.3%) | Grade 1: 0 (0%) | 0.122 a | |
Abdominal pain [n, (%)] | Through the first cycle | Grade 1: 5 (16.7%) | Grade 1: 2 (6.7%) | Grade 1: 4 (13.3%) | 0.611 a |
Through the second cycle | Grade 1: 2 (6.7%) | Grade 1: 4 (13.3%) | Grade 1: 6 (20%) | 0.374 a | |
Through the third cycle | Grade 1: 1 (3.3%) | Grade 1: 3 (10%) | Grade 1: 2 (6.7%) | 0.868 a | |
Myalgia [n, (%)] | Through the first cycle | Grade 1: 2 (6.7%) | Grade 1: 0 (0%) | Grade 1: 1 (3.3%) | 0.77 a |
Through the second cycle | Grade 1: 2 (6.7%) | Grade 1: 0 (0%) | Grade 1: 0 (0%) | 0.326 a | |
Through the third cycle | Grade 1: 0 (0%) | Grade 1: 0 (0%) | Grade 1: 1 (3.3%) | 1 a | |
Blurred vision [n, (%)] | Through the first cycle | Grade 1: 0 (0%) | Grade 1: 1 (3.3%) | Grade 1: 0 (0%) | 0.326 a |
Through the second cycle | Grade 1: 1 (3.3%) | Grade 1: 0 (0%) | Grade 1: 0 (0%) | 1 a | |
Through the third cycle | Grade 1: 0 (0%) | Grade 1: 2 (6.7%) | Grade 1: 1 (3.3%) | 0.318 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, N.; Abdallah, M.S.; Abdel Wahed, E.; Sabri, N.A.; Fahmy, S.F. Evaluation of the Effect of Loratadine versus Diosmin/Hesperidin Combination on Vinca Alkaloids-Induced Neuropathy: A Randomized Controlled Clinical Trial. Pharmaceuticals 2024, 17, 609. https://doi.org/10.3390/ph17050609
Kamal N, Abdallah MS, Abdel Wahed E, Sabri NA, Fahmy SF. Evaluation of the Effect of Loratadine versus Diosmin/Hesperidin Combination on Vinca Alkaloids-Induced Neuropathy: A Randomized Controlled Clinical Trial. Pharmaceuticals. 2024; 17(5):609. https://doi.org/10.3390/ph17050609
Chicago/Turabian StyleKamal, Noha, Mahmoud S. Abdallah, Essam Abdel Wahed, Nagwa A. Sabri, and Sarah Farid Fahmy. 2024. "Evaluation of the Effect of Loratadine versus Diosmin/Hesperidin Combination on Vinca Alkaloids-Induced Neuropathy: A Randomized Controlled Clinical Trial" Pharmaceuticals 17, no. 5: 609. https://doi.org/10.3390/ph17050609
APA StyleKamal, N., Abdallah, M. S., Abdel Wahed, E., Sabri, N. A., & Fahmy, S. F. (2024). Evaluation of the Effect of Loratadine versus Diosmin/Hesperidin Combination on Vinca Alkaloids-Induced Neuropathy: A Randomized Controlled Clinical Trial. Pharmaceuticals, 17(5), 609. https://doi.org/10.3390/ph17050609