1H-NMR Metabolomic Study of the Mushroom Pleurotus djamor for the Identification of Nematocidal Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pleurotus djamor Extracts and Fractions with Nematocidal Activity
2.2. Metabolic Profiling and Chemometric Analysis of P. djamor
3. Materials and Methods
3.1. Production of Mycelium of P. djamor
3.2. Production of Basidiomes of P. djamor
3.3. Preparation and Fractionation of Crude Extract of Mycelium and Basidiomes of P. djamor
3.4. Evaluation of Nematocidal Activity
3.5. 1H-NMR Metabolic Profiling and Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamb, J.; Elliott, T.; Chambers, M.; Chick, B. Broad spectrum anthelmintic resistance of Haemonchus contortus in Northern NSW of Australia. Vet. Parasitol. 2017, 241, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Parvin, S.; Dey, A.R.; Rony, S.A.; Akter, S.; Anisuzzaman; Talukder, M.H.; Alam, M.Z. Frequency of benzimidazole resistance in Haemonchus contortus populations isolated from sheep and goats in Bangladesh. Ann. Parasitol. 2022, 68, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.; Pires Portella, L.; de Souza Rodrigues, F.; Zamperete Reginato, C.; Pötter, L.; Skrebsky Cezar, A.; Sangioni, L.A.; Flores Vogel, F.S. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sabaratnam, V.; Kah-Hui, W.; Naidu, M.; Rosie David, P. Neuronal health—Can culinary and medicinal mushrooms help? J. Tradit. Complement. Med. 2013, 3, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Meng, G.; Zhang, C.; Lin, L.; Xu, N.; Liu, M.; Cui, F.; Jia, L. The antioxidative effects of acidic-, alkalic-, and enzymatic-extractable mycelium zinc polysaccharides by Pleurotus djamor on liver and kidney of streptozocin-induced diabetic mice. BMC Complement. Altern. Med. 2015, 15, 440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, M.; Yang, Y.; Lin, L.; Xu, N.; Zhao, H.; Jia, L. Purification, characterization and hepatoprotective activities of mycelia zinc polysaccharides by Pleurotus djamor. Carbohydr. Polym. 2016, 136, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Salmones, D. Pleurotus djamor, a mushroom with potential biotechological application for the Neotropic. Sci. Fungorum 2017, 46, 73–85. [Google Scholar]
- Hernández-Bolio, G.I.; Kutzner, E.; Eisenreich, W.; Torres-Acosta, J.F.d.J.; Peña-Rodríguez, L.M. The use of 1H-NMR Metabolomics to Optimise the Extraction and Preliminary Identification of Anthelmintic Products from the Leaves of Lysiloma latisiliquum. Phytochem. Anal. 2018, 29, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, O.H.; Othman, E.M.; Fahim, J.R.; Desoukey, S.Y.; Pimentel-Elardo, S.M.; Rodwell, J.R.; Schirmeister, T.; Tawfike, A.; Abdelmohsen, U.R. Metabolomics analysis and biological investigation of three Malvaceae plants. Phytochem. Anal. 2020, 31, 204–214. [Google Scholar] [CrossRef]
- Kumar, N.; Bansal, A.; Sarma, G.S.; Rawal, R.K. Chemometrics tools used in analytical chemistry: An overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Báez, A.A.; Peña-Rodríguez, L.M.; Alvarez-Zapata, R.; Vazquez-Hernández, M.; Sánchez-Medina, A. Chemometrics: A complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov. Today 2020, 25, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Moreno, B.A.; Pérez, A.A.F.; García-Trejo, J.F.; Pérez-García, S.A.; Gutiérrez-Antonio, C. Identification of Secondary Metabolites of Interest in Pleurotus djamor Using Agave tequilana Bagasse. Molecules 2023, 28, 557. [Google Scholar] [CrossRef]
- Dharmaraj, T.K.; Kuberan, R.; Mahalakshmi, R. Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 518–526. [Google Scholar]
- Gonzalez-Cortazar, M.; Sanchez, J.E.; Huicochea-Medina, M.; Hernandez-Velazquez, V.M.; Mendoza-de-Gives, P.; Zamilpa, A.; Lopez-Arellano, M.E.; Pineda-Alegria, J.A.; Aguilar-Marcelino, L. In Vitro and In Vivo Nematicide Effect of Extract Fractions of Pleurotus djamor Against Haemonchus contortus. J. Med. Food 2021, 24, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Alegría, J.A.; Sánchez-Vázquez, J.E.; González-Cortazar, M.; Zamilpa, A.; López-Arellano, M.E.; Cuevas-Padilla, E.J.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L. The Edible Mushroom Pleurotus djamor Produces Metabolites with Lethal Activity Against the Parasitic Nematode Haemonchus contortus. J. Med. Food 2017, 20, 1184–1192. [Google Scholar] [CrossRef]
- Castañeda-Ramírez, G.S.; Mathieu, C.; Vilarem, G.; Hoste, H.; Mendoza-de-Gives, P.; González-Pech, P.G.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A. Age of Haemonchus contortus third stage infective larvae is a factor influencing the in vitro assessment of anthelmintic properties of tannin containing plant extracts. Vet. Parasitol. 2017, 243, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Chan-Pérez, J.I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Castañeda-Ramírez, G.S.; Vilarem, G.; Mathieu, C.; Hoste, H. Susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone:water extracts of polyphenol-rich plants. Part 2: Infective L3 larvae. Vet. Parasitol. 2017, 240, 11–16. [Google Scholar] [CrossRef]
- Hernández-Bolio, G.I. Análisis del Perfil Metabólico e Identificación de Productos Antihelmínticos de Lysiloma latisiliquum (L.) Benth. (Tzalam). Ph.D. Thesis, Centro de Investigación Cientifica de Yucatán A. C., Mérida, Mexico, 2017. [Google Scholar]
- Monteiro, M.V.; Bevilaqua, C.M.; Morais, S.M.; Machado, L.K.; Camurça-Vasconcelos, A.L.; Campello, C.C.; Ribeiro, W.L.; Mesquita Mde, A. Anthelmintic activity of Jatropha curcas L. seeds on Haemonchus contortus. Vet. Parasitol. 2011, 182, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Li, Y.; Yang, Y.; Sun, W.; Wu, D.; Ping, L. Changes in chemical components and cytotoxicity at different maturity stages of Pleurotus eryngii fruiting body. J. Agric. Food Chem. 2014, 62, 12631–12640. [Google Scholar] [CrossRef] [PubMed]
- Salmones, D.; Mata, G.; Waliszewski, K.N. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: Biomass production and substrate biodegradation. Bioresour. Technol. 2005, 96, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ma, F.; Zhang, X.; Zhang, J. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus. Fungal Biol. 2016, 120, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Santacruz, L.; Hurtado, D.X.; Doohan, R.; Thomas, O.P.; Puyana, M.; Tello, E. Metabolomic study of soft corals from the Colombian Caribbean: PSYCHE and 1H-NMR comparative analysis. Sci. Rep. 2020, 10, 5417. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Cardoso-taketa, A.; Hae Choi, Y.; Verpoorte, R. A comparison on the metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca four years later. J. Ethnopharmacol. 2012, 141, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Furihata, K.; Miyakawa, T.; Tanokura, M. A pilot study of NMR-based sensory prediction of roasted coffee bean extracts. Food Chem. 2014, 152, 363–369. [Google Scholar] [CrossRef]
- Hoch, J.C.; Baskaran, K.; Burr, H.; Chin, J.; Eghbalnia, H.R.; Fujiwara, T.; Gryk, M.R.; Iwata, T.; Kojima, C.; Kurisu, G.; et al. Biological Magnetic Resonance Data Bank. Nucleic Acids Res. 2023, 51, D368–D376. [Google Scholar] [CrossRef]
- Yesiltepe, Y.; Govind, N.; Metz, T.O.; Renslow, R.S. An initial investigation of accuracy required for the identification of small molecules in complex samples using quantum chemical calculated NMR chemical shifts. J. Cheminformatics 2022, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Schlörer, N.E. Facilitating quality control for spectra assignments of small organic molecules: Nmrshiftdb2—A free in-house NMR database with integrated LIMS for academic service laboratories. Magn. Reson. Chem. MRC 2015, 53, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Nuzillard, J.M. Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database-An assessment. Magn. Reson. Chem. MRC 2023, 61, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Still, I.W.J.; Plavac, N.; McKinnon, D.M.; Chauhan, M.S. Carbon-13 nuclear magnetic resonance spectra of N-, O-, and S-methylated uracil and thiouracil derivatives. Can. J. Chem. 1978, 56, 725–729. [Google Scholar] [CrossRef]
- Peña-Rodríguez, L.M. Bioactive Metabolites of Alternaria brassicae and Monocillin nordinii. Ph.D. Thesis, Univerity Of Alberta, Edomonton, AB, Canada, 1985. [Google Scholar]
- Jofre, F.; Anderson, M.; Markley, J.L. NMR Spectroscopy on Proteins, Peptides, Nucleic Acids, and Other Biomolecules. Available online: http://www.bmrb.wisc.edu/metabolomics/mol_summary/show_data.php?id=bmse000940 (accessed on 3 October 2023).
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Lee, D.; Lee, H.J.; Noh, H.J.; Jung, K.; Kang, K.S.; Kim, K.H. Renoprotective chemical constituents from an edible mushroom, Pleurotus cornucopiae in cisplatin-induced nephrotoxicity. Bioorganic Chem. 2017, 71, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Zhang, X.; Yu, W.; Wang, R.; Xue, Z.; Kou, X. Identification and Evaluation of Bioactivity of Compounds from the Mushroom Pleurotus nebrodensis (Agaricomycetes) against Breast Cancer. Int. J. Med. Mushrooms 2017, 19, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Zeng, S.Y.; Leu, Y.L.; Tsai, T.Y. Antihypertensive Effect of a Combination of Uracil and Glycerol Derived from Lactobacillus plantarum Strain TWK10-Fermented Soy Milk. J. Agric. Food Chem. 2015, 63, 7333–7342. [Google Scholar] [CrossRef]
- Pałasz, A.; Cież, D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications. Eur. J. Med. Chem. 2015, 97, 582–611. [Google Scholar] [CrossRef] [PubMed]
- Comans-pérez, R.J.; Sánchez, J.E.; Khalil, L.; Al-ani, T.; González-cortázar, M.; Castañeda-ramírez, G.S.; Mendoza-de Gives, P.; Sánchez-García, A.D.; Millán-Orozco, J.; Aguilar-Marcelino, L. Biological control of sheep nematode Haemonchus contortus using edible mushrooms. Biol. Control. 2021, 152, 104420. [Google Scholar] [CrossRef]
- Avendaño-Hernandez, R.J.; Sánchez, J.E. Self-pasteurised substrate for growing oyster mushrooms (Pleurotus spp.). Afr. J. Microbiol. Res. 2013, 7, 220–226. [Google Scholar] [CrossRef]
- Alvarez-Zapata, R.; Sánchez-Medina, A.; Chan-Bacab, M.; García-Sosa, K.; Escalante-Erosa, F.; García-Rodríguez, R.V.; Peña-Rodríguez, L.M. Chemometrics-enhanced high performance liquid chromatography-ultraviolet detection of bioactive metabolites from phytochemically unknown plants. J. Chromatogr. A 2015, 1422, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Coll, J.C.; Bowden, B.F. The Application of Vacuum Liquid Chromatography to the Separation of Terpene Mixtures. J. Nat. Prod. 1986, 49, 934–936. [Google Scholar] [CrossRef]
- Chan-Pérez, J.I.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H.; Castañeda-Ramírez, G.S.; Vilarem, G.; Mathieu, C. In vitro susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone:water extracts of two tannin rich plants. Vet. Parasitol. 2016, 217, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bolio, G.I.; Fagundo-Mollineda, A.; Caamal-Fuentes, E.E.; Robledo, D.; Freile-Pelegrin, Y. NMR Metabolic Profiling of Sargassum Species Under Different Stabilization/Extraction Processes. J. Phycol. 2021, 57, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Angamuthu, S.; Ramaswamy, C.R.; Thangaswamy, S.; Sadhasivam, D.R.; Nallaswamy, V.D.; Subramanian, R.; Ganesan, R.; Raju, A. Metabolic annotation, interactions and characterization of natural products of mango (Mangifera indica L.): 1H NMR based chemical metabolomics profiling. Process Biochem. 2021, 108, 18–25. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
Concentration (µg/mL) | Mycelium | Basidiomes | Anthelmintic | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2A | M2B | M2C | M2D | B1 | B2A | B2B | B2C | B2D | Levamisole | |
PBS | 3.1 b | – | 3.3 c | 1.7 b | 2.1 b | – | – | 0 a | 0 c | 2.6 c | |
Tween 1% | – | 0 b | 1.6 d | – | – | – | 0 b | 2.1 d | – | – | – |
100 | 12.5 ab | 2.4 b | 17.4 cd | 18.7 b | 18.4 ab | 12.3 ab | 3.0 b | 33.8 c | 0 a | 16.2 bc | 2.1 c |
200 | 20.6 ab | 5.9 ab | 23.9 c | 23.8 b | 21.8 ab | 15.2 ab | 8.3 ab | 36.0 c | 5.7 a | 16.9 bc | 8.5 c |
400 | 27.7 a | 10.4 ab | 52.3 bc | 31.3 b | 22.5 ab | 18.9 a | 11.0 ab | 44.4 c | 12.2 a | 27.3 bc | 67.5 b |
600 | 27.1 a | 11.9 ab | 77.3 b | 31.2 b | 24.6 a | 26.0 a | 11.5 ab | 69.1 b | 15.8 a | 36.7 ab | 94.0 a |
1200 | 36.9 a | 26.8 a | 100 a | 100 a | 29.6 a | 28.4 a | 29.3 a | 100 a | 17.2 a | 74.1 a | 100 a |
MSE | 3.1 | 2.8 | 6.4 | 5.5 | 2.7 | 2.3 | 6.1 | 5.7 | 2.7 | 4.8 | 7.5 |
Extract/Fraction | EC50 (IC95%) µg/mL |
---|---|
Mycelium | |
M1 | No activity |
M2A | No activity |
M2B | 290.8 (251.0–330.6) |
M3C | 537.5 (434.4–640.5) |
M3D | No activity |
Basidiomes | |
B1 | No activity |
B2A | No activity |
B2B | 282.7 (230.8–334.6) |
B2C | No activity |
B2D | 782.2 (494.7–1069.7) |
Anthelmintic | |
levamisole | 315.4 (287.1–343.7) |
Concentration (µg/mL) | B3A | B3A2 | B3B | B3B2 | B3C | B3D | B3E | B3F | B3E–P | Levamisole |
---|---|---|---|---|---|---|---|---|---|---|
PBS | 0 b | – | 0 d | – | 0 d | 0 c | 0 b | 0 d | 0 a | 2.6 c |
Tween 1% | – | 0 a | – | 0 c | – | – | – | – | – | – |
100 | 0 b | 0 a | 6.6 cd | 0 c | 0 d | 1.0 c | 0.8 b | 0 d | 0 a | 2.1 c |
200 | 0 b | 0 a | 13.0 c | 0 c | 1.6 d | 2.1 c | 0.9 b | 0 d | 0 a | 8.5 c |
400 | 0 b | 0 a | 89.1 b | 28.7 b | 17.1 c | 13.5 c | 1.3 b | 8.1 c | 0 a | 67.5 b |
600 | 3.8 ab | 0 a | 100 a | 98.4 a | 74.6 b | 45.9 b | 7.1 b | 50.8 b | 0 a | 94.0 a |
1200 | 13 a | 0 a | 100 a | 100 a | 100 a | 100 a | 52.4 a | 100 a | 0 a | 100 a |
MSE | 1.9 | 0 | 7.9 | 8.4 | 7.1 | 6.8 | 3.6 | 7.0 | 0 | 7.5 |
Fraction | CE50 (IC95%) µg/mL |
---|---|
B3A | No activity |
B3A2 | No activity |
B3B | 264.0 (239.8–288.2) |
B3B2 | 417.3 (401.6–433.0) |
B3C | 500.5 (454.3–546.7) |
B3D | 591.7 (549.1–634.2) |
B3E | 1171.0 (1048.1–1294.0) |
B3F | 574.2 (534.3–614.1) |
B3E-P | No activity |
levamisole | 315.4 (287.1–343.7) |
1H (ppm) | COSY (ppm) | TOCSY (ppm) | HSQC (ppm) | HMBC (ppm) |
---|---|---|---|---|
2.55 (s) | ND | ND | 32.3 | ND |
5.60 (d, J = 7.63 Hz) | 7.38 | 7.38 | 103.7 | 145.5, 169.3 |
7.38 (d, J = 7.66 Hz) | 5.60 | 5.60 | 145.5 | 103.7, 155.4, 169.3 |
Source | H–C5 | H–C6 | C2 | C4 | C5 | C6 | Reference |
---|---|---|---|---|---|---|---|
Other studies | NR | NR | 152.7 | 165.2 | 100.9 | 143.0 | [31] |
5.45 (d, J = 8 Hz) | 7.4 (d, J = 8 Hz) | NR | NR | NR | NR | [32] | |
BMRB (bmse000940) | 5.79 | 7.52 | 155.93 | 170.29 | 103.79 | 146.26 | [33] |
HMDB (HMDB0000300) | 5.79 (d, J = 7.68 Hz) | 7.52 (d, J = 7.68 Hz) | 152.16 b | 164.8 b | 100.63 b | 142.63 b | [34] |
This study | 5.6 (d, J = 7.63 Hz) | 7.38 (d, J = 7.66 Hz) | 155.49 | 169.32 | 103.7 | 145.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda-Alegría, J.A.; Peña-Rodríguez, L.M.; Cardoso-Taketa, A.; Sánchez, J.E.; Torres-Acosta, J.F.d.J.; Hernández-Bolio, G.I.; Ortiz-Caltempa, A.; Villarreal, M.L.; Aguilar-Marcelino, L. 1H-NMR Metabolomic Study of the Mushroom Pleurotus djamor for the Identification of Nematocidal Compounds. Pharmaceuticals 2024, 17, 580. https://doi.org/10.3390/ph17050580
Pineda-Alegría JA, Peña-Rodríguez LM, Cardoso-Taketa A, Sánchez JE, Torres-Acosta JFdJ, Hernández-Bolio GI, Ortiz-Caltempa A, Villarreal ML, Aguilar-Marcelino L. 1H-NMR Metabolomic Study of the Mushroom Pleurotus djamor for the Identification of Nematocidal Compounds. Pharmaceuticals. 2024; 17(5):580. https://doi.org/10.3390/ph17050580
Chicago/Turabian StylePineda-Alegría, Jesús Antonio, Luis Manuel Peña-Rodríguez, Alexandre Cardoso-Taketa, José E. Sánchez, Juan Felipe de Jesús Torres-Acosta, Gloria Ivonne Hernández-Bolio, Anabel Ortiz-Caltempa, María Luisa Villarreal, and Liliana Aguilar-Marcelino. 2024. "1H-NMR Metabolomic Study of the Mushroom Pleurotus djamor for the Identification of Nematocidal Compounds" Pharmaceuticals 17, no. 5: 580. https://doi.org/10.3390/ph17050580
APA StylePineda-Alegría, J. A., Peña-Rodríguez, L. M., Cardoso-Taketa, A., Sánchez, J. E., Torres-Acosta, J. F. d. J., Hernández-Bolio, G. I., Ortiz-Caltempa, A., Villarreal, M. L., & Aguilar-Marcelino, L. (2024). 1H-NMR Metabolomic Study of the Mushroom Pleurotus djamor for the Identification of Nematocidal Compounds. Pharmaceuticals, 17(5), 580. https://doi.org/10.3390/ph17050580