Bupleurum in Treatment of Depression Disorder: A Comprehensive Review
Abstract
:1. Introduction
2. The Pathological Underpinnings of Depression
2.1. Neuroplasticity
2.2. Neuroimmunology
2.3. Neuroendocrine Factors
2.4. Monoamine Hypothesis
2.5. Gut Microbiology
3. Multiple Pharmacological Effects of Bupleurum
4. Pharmacological Components from Bupleurum with Antidepressive Effects
4.1. Rutin
4.2. Puerarin
4.3. Quercetin
4.4. Saikosaponin A
4.5. Saikosaponin D
5. Representative Prescription
6. Summary and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Jin, Y.; Cui, R.; Zhao, L.; Fan, J.; Li, B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif. 2019, 52, e12696. [Google Scholar]
- König, H.; König, H.H.; Konnopka, A. The excess costs of depression: A systematic review and meta-analysis. Epidemiol. Psychiatr. Sci. 2020, 29, e30. [Google Scholar]
- Fu, X.-L.; Qian, Y.; Jin, X.-H.; Yu, H.-R.; Wu, H.; Du, L.; Chen, H.-L.; Shi, Y.-Q. Suicide rates among people with serious mental illness: A systematic review and meta-analysis. Psychol. Med. 2023, 53, 351–361. [Google Scholar] [CrossRef]
- Peng, G.J.; Tian, J.S.; Gao, X.X.; Zhou, Y.Z.; Qin, X.M. Research on the Pathological Mechanism and Drug Treatment Mechanism of Depression. Curr. Neuropharmacol. 2015, 13, 514–523. [Google Scholar] [CrossRef]
- Mago, R.; Tripathi, N.; Andrade, C. Cardiovascular adverse effects of newer antidepressants. Expert. Rev. Neurother. 2014, 14, 539–551. [Google Scholar] [CrossRef]
- Beach, S.R.; Kostis, W.J.; Celano, C.M.; Januzzi, J.L.; Ruskin, J.N.; Noseworthy, P.A.; Huffman, J.C. Meta-analysis of selective serotonin reuptake inhibitor-associated QTc prolongation. J. Clin. Psychiatry 2014, 75, e441–e449. [Google Scholar] [CrossRef]
- Wang, S.M.; Pae, C.U. How much to worry about the FDA warning in the use of citalopram? Expert. Rev. Neurother. 2013, 13, 883–886. [Google Scholar] [CrossRef]
- Spindelegger, C.J.; Papageorgiou, K.; Grohmann, R.; Engel, R.; Greil, W.; Konstantinidis, A.; Agelink, M.W.; Bleich, S.; Ruether, E.; Toto, S.; et al. Cardiovascular adverse reactions during antidepressant treatment: A drug surveillance report of German-speaking countries between 1993 and 2010. Int. J. Neuropsychopharmacol. 2014, 18, pyu080. [Google Scholar] [CrossRef]
- Kemp, A.H.; Brunoni, A.R.; Santos, I.S.; Nunes, M.A.; Dantas, E.M.; Carvalho de Figueiredo, R.; Pereira, A.C.; Ribeiro, A.L.; Mill, J.G.; Andreao, R.V.; et al. Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: An ELSA-Brasil cohort baseline study. Am. J. Psychiatry 2014, 171, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.; Vos, R.; Tack, J. The influence of citalopram on interdigestive gastrointestinal motility in man. Aliment. Pharmacol. Ther. 2010, 32, 289–295. [Google Scholar] [CrossRef]
- Brambilla, P.; Cipriani, A.; Hotopf, M.; Barbui, C. Side-effect profile of fluoxetine in comparison with other SSRIs, tricyclic and newer antidepressants: A meta-analysis of clinical trial data. Pharmacopsychiatry 2005, 38, 69–77. [Google Scholar] [CrossRef]
- Lucena, M.I.; Carvajal, A.; Andrade, R.J.; Velasco, A. Antidepressant-induced hepatotoxicity. Expert. Opin. Drug Saf. 2003, 2, 249–262. [Google Scholar] [CrossRef]
- Voican, C.S.; Corruble, E.; Naveau, S.; Perlemuter, G. Antidepressant-induced liver injury: A review for clinicians. Am. J. Psychiatry 2014, 171, 404–415. [Google Scholar] [CrossRef]
- Gartlehner, G.; Hansen, R.A.; Morgan, L.C.; Thaler, K.; Lux, L.; Van Noord, M.; Mager, U.; Thieda, P.; Gaynes, B.N.; Wilkins, T.; et al. Comparative benefits and harms of second-generation antidepressants for treating major depressive disorder: An updated meta-analysis. Ann. Intern. Med. 2011, 155, 772–785. [Google Scholar] [CrossRef]
- Mohammed, A.; Mandher, A.; Khalid, A.; Hamed, A.; Maryam Al, B.; Wedad Al, Z. Prevalence of antidepressant-induced sexual dysfunction among psychiatric outpatients attending a tertiary care hospital. Neurosci. J. 2020, 25, 55. [Google Scholar] [CrossRef]
- Atmaca, M. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction: Current Management Perspectives. Neuropsychiatr. Dis. Treat. 2020, 16, 1043–1050. [Google Scholar] [CrossRef]
- Howes, O.D.; Thase, M.E.; Pillinger, T. Treatment resistance in psychiatry: State of the art and new directions. Mol. Psychiatry 2022, 27, 58–72. [Google Scholar] [CrossRef]
- Perugi, G.; Pacchiarotti, I.; Mainardi, C.; Verdolini, N.; Menculini, G.; Barbuti, M.; Angst, J.; Azorin, J.-M.; Bowden, C.L.; Mosolov, S.; et al. Patterns of response to antidepressants in major depressive disorder: Drug resistance or worsening of depression are associated with a bipolar diathesis. Eur. Neuropsychopharmacol. 2019, 29, 825–834. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, Y.; Hashimoto, K. Ketamine and its metabolites: Potential as novel treatments for depression. Neuropharmacology 2023, 222, 109305. [Google Scholar] [CrossRef]
- Short, B.; Fong, J.; Galvez, V.; Shelker, W.; Loo, C.K. Side-effects associated with ketamine use in depression: A systematic review. Lancet Psychiatry 2018, 5, 65–78. [Google Scholar] [CrossRef]
- Singh, J.B.; Fedgchin, M.; Daly, E.J.; De Boer, P.; Cooper, K.; Lim, P.; Pinter, C.; Murrough, J.W.; Sanacora, G.; Shelton, R.C.; et al. A Double-Blind, Randomized, Placebo-Controlled, Dose-Frequency Study of Intravenous Ketamine in Patients with Treatment-Resistant Depression. Am. J. Psychiatry 2016, 173, 816–826. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, M. Research Progress on Classical Traditional Chinese Medicine Jieyu Pills in the Treatment of Depression. Neuropsychiatr. Dis. Treat. 2020, 16, 3023–3033. [Google Scholar] [CrossRef]
- Teng, L.; Guo, X.; Ma, Y.; Xu, L.; Wei, J.; Xiao, P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. J. Ethnopharmacol. 2023, 306, 116129. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Jiang, F.; Zhao, Z.; Wu, X.; Liu, X.; Gao, P. Phytochemical investigation of Bupleurum scorzonerifolium Willd. (Umbelliferae) and their chemotaxonomic significance. Biochem. Syst. Ecol. 2023, 107, 104615. [Google Scholar] [CrossRef]
- Zeng, C.; Zhao, J.; Chen, H.; Xin, C.; Wang, B.; Yu, M.; Wei, J. Traditional use, germplasm identification, phytochemistry, pharmacology of Bupleuri Radix: A review. Med. Plant Biol. 2023, 2, 18. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, X.; Kang, R.; Wang, Y.; Guo, X.; Jing, W.; Wei, F.; Ma, S. Systematic Characterization and Identification of Saikosaponins in Extracts from Bupleurum marginatum var. stenophyllum Using UPLC-PDA-Q/TOF-MS. Front. Chem. 2021, 9, 747987. [Google Scholar] [CrossRef]
- Benito, P.B.; Martínez, M.A.; Sen, A.S.; Gómez, A.S.; Matellano, L.F.; Contreras, S.S.; Lanza, A.D. In vivo and in vitro antiinflammatory activity of saikosaponins. Life Sci. 1998, 63, 1147–1156. [Google Scholar] [CrossRef]
- Ma, Y.; Bao, Y.; Wang, S.; Li, T.; Chang, X.; Yang, G.; Meng, X. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism. Inflammation 2016, 39, 1453–1461. [Google Scholar] [CrossRef]
- Kang, S.J.; Lee, Y.J.; Kim, B.M.; Kim, Y.J.; Woo, H.D.; Jeon, H.K.; Chung, H.W. Effect of Bupleuri Radix extracts on the toxicity of 5-fluorouracil in HepG2 hepatoma cells and normal human lymphocytes. Basic Clin. Pharmacol. Toxicol. 2008, 103, 305–313. [Google Scholar] [CrossRef]
- Idris-Usman, M.; John-Africa, L.; Akuodor, G.; Ugwu, T.; Osunkwo, U. Antinociceptive and antipyretic properties of the pharmaceutical herbal preparation, Radix bupleuri in rats. J. Med. Plants Res. 2010, 4, 659–663. [Google Scholar]
- Ito, Y.; Nishiyama, Y.; Shimokata, K.; Takeyama, H.; Kunii, A. Active component of HVJ (sendai virus) for interferon on induction in mice. Nature 1978, 274, 801–802. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.J.; Yue, S.Q.; Zhang, L.Y.; Dou, K.F. Antioxidant activity and hepatoprotective effect of a polysaccharide from Bei Chaihu (Bupleurum chinense DC). Carbohydr. Polym. 2012, 89, 448–452. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Xu, H.; Yue, X.L.; Cheng, X.Q.; Hou, W.J.; Zhang, Y.Y.; Chen, D.F. Beneficial effect of Bupleurum polysaccharides on autoimmune disease induced by Campylobacter jejuni in BALB/c mice. J. Ethnopharmacol. 2009, 124, 481–487. [Google Scholar] [CrossRef]
- Lv, S.; Zhao, Y.; Wang, L.; Yu, Y.; Li, J.; Huang, Y.; Xu, W.; Sun, G.; Dai, W.; Zhao, T.; et al. Antidepressant Active Components of Bupleurum chinense DC-Paeonia lactiflora Pall Herb Pair: Pharmacological Mechanisms. Biomed. Res. Int. 2022, 2022, 1024693. [Google Scholar] [CrossRef]
- Wang, A.R.; Mi, L.F.; Zhang, Z.L.; Hu, M.Z.; Zhao, Z.Y.; Liu, B.; Li, Y.B.; Zheng, S. Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behav. Brain Res. 2021, 403, 113138. [Google Scholar] [CrossRef]
- Yang, L.; Shergis, J.L.; Di, Y.M.; Zhang, A.L.; Lu, C.; Guo, X.; Fang, Z.; Xue, C.C.; Li, Y. Managing Depression with Bupleurum chinense Herbal Formula: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Altern. Complement. Med. 2020, 26, 8–24. [Google Scholar] [CrossRef]
- Li, Q.-F.; Lu, W.-T.; Zhang, Q.; Zhao, Y.-D.; Wu, C.-Y.; Zhou, H.-F. Proprietary Medicines Containing Bupleurum chinense DC. (Chaihu) for Depression: Network Meta-Analysis and Network Pharmacology Prediction. Front. Pharmacol. 2022, 13, 773537. [Google Scholar] [CrossRef]
- Egeland, M.; Zunszain, P.A.; Pariante, C.M. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat. Rev. Neurosci. 2015, 16, 189–200. [Google Scholar] [CrossRef]
- Price, R.B.; Duman, R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol. Psychiatry 2020, 25, 530–543. [Google Scholar] [CrossRef]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.; Penninx, B.W.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol. Psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, N.-N.; Wu, Z.-Z.; Fan, D.-H.; Cao, M.-Q. Chaihu-Shugan-San exerts an antidepressive effect by downregulating miR-124 and releasing inhibition of the MAPK14 and Gria3 signaling pathways. Neural Regen. Res. 2018, 13, 837–845. [Google Scholar]
- Wang, P.; Feng, Y.B.; Wang, L.; Li, Y.; Fan, C.; Song, Q.; Yu, S.Y. Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain Behav. Immun. 2019, 82, 106–121. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; He, Z.; Xu, Y.; Li, X.; Ding, J.; Lu, M.; Hu, G. Kynurenine regulates NLRP2 inflammasome in astrocytes and its implications in depression. Brain Behav. Immun. 2020, 88, 471–481. [Google Scholar] [CrossRef]
- Hodes, G.E.; Kana, V.; Menard, C.; Merad, M.; Russo, S.J. Neuroimmune mechanisms of depression. Nat. Neurosci. 2015, 18, 1386–1393. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022, 13, 1006434. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Y.; Gao, Y.; Nie, K.; Wang, H.; Su, H.; Wang, Z.; Lu, F.; Huang, W.; Dong, H. Antidepressant Potential of Quercetin and Its Glycoside Derivatives: A Comprehensive Review and Update. Front. Pharmacol. 2022, 13, 865376. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, X.; Huang, N.; Li, F.; Ge, J.; Wang, D.; Sun, R.; Liu, R. Saikosaponins ameliorate hyperlipidemia in rats by enhancing hepatic lipid and cholesterol metabolism. J. Ethnopharmacol. 2023, 305, 116110. [Google Scholar] [CrossRef]
- Heim, C.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology 2008, 33, 693–710. [Google Scholar] [CrossRef]
- Karaca, Z.; Grossman, A.; Kelestimur, F. Investigation of the Hypothalamo-pituitary-adrenal (HPA) axis: A contemporary synthesis. Rev. Endocr. Metab. Disord. 2021, 22, 179–204. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, Y.H.; Zeng, M.J.; Fang, F.; Li, M.; Qin, T.T.; Ye, L.Y.; Li, H.W.; Qu, R.; Ma, S.P. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: Involvement of HPA axis and hippocampal neurogenesis. Psychopharmacology 2017, 234, 3385–3394. [Google Scholar] [CrossRef]
- Segal, D.S.; Kuczenski, R.; Mandell, A.J. Theoretical implications of drug-induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biol. Psychiatry 1974, 9, 147–159. [Google Scholar]
- Spellman, T.; Liston, C. Toward Circuit Mechanisms of Pathophysiology in Depression. Am. J. Psychiatry 2020, 177, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, H.M.; Bing, Y.F.; Zheng, Y.; Li, W.L.; Zou, X.; Qu, Z.Y. Bupleurum scorzonerifolium: Systematic research through pharmacodynamics and serum pharmacochemistry on screening antidepressant Q-markers for quality control. J. Pharm. Biomed. Anal. 2023, 225, 115202. [Google Scholar] [CrossRef]
- Boku, S.; Nakagawa, S.; Toda, H.; Hishimoto, A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin. Neurosci. 2018, 72, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, X.; Meng, M.; Xue, H.; Qin, X. Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri radix. J. Ethnopharmacol. 2020, 256, 112806. [Google Scholar] [CrossRef]
- Birmann, P.T.; Casaril, A.M.; Pesarico, A.P.; Caballero, P.S.; Smaniotto, T.A.; Rodrigues, R.R.; Moreira, A.N.; Conceicao, F.R.; Sousa, F.S.S.; Collares, T.; et al. Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: A proposal for a new probiotic with antidepressant-like effect. Pharmacol. Res. 2021, 171, 105740. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, Y.; Li, X.; Guo, X.; Liu, Z.; Li, W.; Wei, J.; Qi, Y. Bupleurum chinense exerts a mild antipyretic effect on LPS-induced pyrexia rats involving inhibition of peripheral TNF-alpha production. J. Ethnopharmacol. 2023, 310, 116375. [Google Scholar] [CrossRef]
- Bak, S.B.; Song, Y.R.; Bae, S.J.; Lee, W.Y.; Kim, Y.W. Integrative approach to uncover antioxidant properties of Bupleuri Radix and its active compounds: Multiscale interactome-level analysis with experimental validation. Free Radic. Biol. Med. 2023, 199, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wu, W.W.; Yu, C.L.; Wang, P.; Wen, X.Q.; Chen, B.L.; Zhang, Y.; Zhuang, M.; Zhang, M.Y.; Zhang, H.Y.; et al. Saikosaponin A Inhibits Growth of Human Bladder Carcinoma T24 and 5637 Cells Both In Vitro and In Vivo. Biol. Pharm. Bull. 2022, 45, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Kim, A.; Lee, H.; Baek, S.J.; Kim, N.S.; Park, M.; Yi, J.M.; Cha, S. Systematic transcriptome analysis reveals molecular mechanisms and indications of bupleuri radix. Front. Pharmacol. 2022, 13, 1010520. [Google Scholar] [CrossRef]
- Chen, L.L.; Xia, L.Y.; Zhang, J.P.; Wang, Y.; Chen, J.Y.; Guo, C.; Xu, W.H. Saikosaponin D alleviates cancer cachexia by directly inhibiting STAT3. Phytother. Res. 2023, 37, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Liu, Y.; Chen, L. Saikosaponin d (SSD) alleviates diabetic peripheral neuropathy by regulating the AQP1/RhoA/ROCK signaling in streptozotocin-induced diabetic rats. Acta Diabetol. 2023, 60, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, R.; Qin, X.; Wu, Y.; Wu, X.; Tian, J.; Gao, X.; Du, G.; Zhou, Y. Synergistic neuroprotective effect of saikosaponin A and albiflorin on corticosterone-induced apoptosis in PC12 cells via regulation of metabolic disorders and neuroinflammation. Mol. Biol. Rep. 2022, 49, 8801–8813. [Google Scholar] [CrossRef]
- Tong, Y.; Zhao, G.; Shuang, R.; Wang, H.; Zeng, N. Saikosaponin a activates tet1/dll3/notch1 signalling and promotes hippocampal neurogenesis to improve depression-like behavior in mice. J. Ethnopharmacol. 2024, 319, 117289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Wu, W.; Qi, T.; Huang, Z.; Wang, B.; Li, S.; Li, C.; Ding, J.; Zeng, Y.; et al. Saikosaponin D Rescues Deficits in Sexual Behavior and Ameliorates Neurological Dysfunction in Mice Exposed to Chronic Mild Stress. Front. Pharmacol. 2021, 12, 625074. [Google Scholar] [CrossRef]
- Chen, S.; Wang, K.; Wang, H.; Gao, Y.; Nie, K.; Jiang, X.; Su, H.; Tang, Y.; Lu, F.; Dong, H.; et al. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol. Res. 2024, 201, 107090. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alqarni, M.H.; Alam, A.; Devi, S.; Salkini, M.A.; Alam, P. Rutin Improves Anxiety and Reserpine-Induced Depression in Rats. Molecules 2022, 27, 7313. [Google Scholar] [CrossRef]
- Parashar, A.; Mehta, V.; Udayabanu, M. Rutin alleviates chronic unpredictable stress-induced behavioral alterations and hippocampal damage in mice. Neurosci. Lett. 2017, 656, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Bettio, L.E.; Cunha, M.P.; Santos, A.R.; Pizzolatti, M.G.; Brighente, I.M.; Rodrigues, A.L. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: Evidence for the involvement of the serotonergic and noradrenergic systems. Eur. J. Pharmacol. 2008, 587, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Ebokaiwe, A.P.; Obasi, D.O.; Obeten, U.; Onyemuche, T. Rutin co-treatment prevented cognitive impairment/depression-like behavior and decreased IDO activation following 35 days of ethanol administration in male Wistar rats. Alcohol 2023, 106, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.N.; Yan, M.; Zhou, L.; Wang, J.; Sai, C.; Fu, Y.; Liu, Y.; Ding, L. Puerarin Alleviates Depression-Like Behavior Induced by High-Fat Diet Combined with Chronic Unpredictable Mild Stress via Repairing TLR4-Induced Inflammatory Damages and Phospholipid Metabolism Disorders. Front. Pharmacol. 2021, 12, 767333. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, W.; Ding, S.; Liu, X.; Wang, Y.; Ma, H. Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota. J. Affect. Disord. 2021, 290, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Z.; Wang, J.; Liao, Y.; Shu, L. Puerarin alleviates depressive-like behaviors in high-fat diet-induced diabetic mice via modulating hippocampal GLP-1R/BDNF/TrkB signaling. Nutr. Neurosci. 2022, 26, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jia, Y.; Zhao, W.; Chen, H.; Zhang, X.; Ngo, F.Y.; Luo, D.; Song, Y.; Lao, L.; Rong, J. Botanical Drug Puerarin Ameliorates Liposaccharide-Induced Depressive Behaviors in Mice via Inhibiting RagA/mTOR/p70S6K Pathways. Oxid. Med. Cell Longev. 2021, 2021, 7716201. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.X.; Zhang, R.Y.; Rui, W.J.; Wang, Z.Q.; Feng, X. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/ BDNF signaling pathway. Behav. Brain Res. 2021, 406, 113245. [Google Scholar] [CrossRef]
- Fang, K.; Li, H.R.; Chen, X.X.; Gao, X.R.; Huang, L.L.; Du, A.Q.; Jiang, C.; Li, H.; Ge, J.F. Quercetin Alleviates LPS-Induced Depression-Like Behavior in Rats via Regulating BDNF-Related Imbalance of Copine 6 and TREM1/2 in the Hippocampus and PFC. Front. Pharmacol. 2019, 10, 1544. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Lei, C.; Lei, X.; Zhu, X.; Yang, L.; Zhang, R. Quercetin exerts antidepressant and cardioprotective effects in estrogen receptor alpha-deficient female mice via BDNF-AKT/ERK1/2 signaling. J. Steroid Biochem. Mol. Biol. 2021, 206, 105795. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, J.; Wu, X.; Song, L.; Wang, Y.; Gong, M.; Li, B. Quercetin reverses chronic unpredictable mild stress-induced depression-like behavior in vivo by involving nuclear factor-E2-related factor 2. Brain Res. 2021, 1772, 147661. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Chen, S.J.; Liang, W.N.; Wang, M.; Li, C.F.; Wang, S.S.; Dong, S.Q.; Yi, L.T.; Li, C.D. Saikosaponin A attenuates perimenopausal depression-like symptoms by chronic unpredictable mild stress. Neurosci. Lett. 2018, 662, 283–289. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, F.; Gao, J.; Guan, X.; Liu, B.; Wang, X.; Qin, Z.; Tang, K.; Liu, S. Proteomics-based screening of the target proteins associated with antidepressant-like effect and mechanism of Saikosaponin A. J. Cell Mol. Med. 2020, 24, 174–188. [Google Scholar] [CrossRef]
- Chao, B.; Huang, S.; Pan, J.; Zhang, Y.; Wang, Y. Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-kappaB. Brain Res. Bull. 2020, 157, 69–76. [Google Scholar] [CrossRef]
- Xu, L.; Su, J.; Guo, L.; Wang, S.; Deng, X.; Ma, S. Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 2019, 155, 150–161. [Google Scholar] [CrossRef]
- Su, J.; Pan, Y.W.; Wang, S.Q.; Li, X.Z.; Huang, F.; Ma, S.P. Saikosaponin-d attenuated lipopolysaccharide-induced depressive-like behaviors via inhibiting microglia activation and neuroinflammation. Int. Immunopharmacol. 2020, 80, 106181. [Google Scholar] [CrossRef]
- Ma, C.; Yuan, D.; Renaud, S.J.; Zhou, T.; Yang, F.; Liou, Y.; Qiu, X.; Zhou, L.; Guo, Y. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front. Pharmacol. 2022, 13, 1040591. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Y.; Shi, W.; Ren, Y.; Xiao, K.; Chen, W.; Li, L.; Zhao, J. SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the Antidepressant Effect of Chaihu Shugan San. Drug Des. Devel. Ther. 2022, 16, 2783–2801. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Huang, P.; Dong, Z.; Gao, T.; Huang, S.; Zhou, C.; Lai, Y.; Deng, G.; Liu, B.; Wen, G.; et al. Modified Xiaoyaosan (MXYS) Exerts Anti-Depressive Effects by Rectifying the Brain Blood Oxygen Level-Dependent fMRI Signals and Improving Hippocampal Neurogenesis in Mice. Front. Pharmacol. 2018, 9, 1098. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Yang, H.; Yan, Z.; Chen, J.; Xu, M.; Jiang, Y.; Liu, Y.; Xue, Z.; Ma, Q.; Li, X.; et al. Traditional Chinese Formula Xiaoyaosan Alleviates Depressive-Like Behavior in CUMS Mice by Regulating PEBP1-GPX4-Mediated Ferroptosis in the Hippocampus. Neuropsychiatr. Dis. Treat. 2021, 17, 1001–1019. [Google Scholar] [CrossRef]
- Zhou, X.M.; Liu, C.Y.; Liu, Y.Y.; Ma, Q.Y.; Zhao, X.; Jiang, Y.M.; Li, X.J.; Chen, J.X. Xiaoyaosan Alleviates Hippocampal Glutamate-Induced Toxicity in the CUMS Rats via NR2B and PI3K/Akt Signaling Pathway. Front. Pharmacol. 2021, 12, 586788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Z.; Liang, Y.D.; Ma, Q.Y.; Hao, W.Z.; Li, X.J.; Wu, M.S.; Deng, L.J.; Li, Y.M.; Chen, J.X. Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota. Biomed. Pharmacother. 2019, 112, 108621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, Y.; Huang, Z.; Wu, Z.; Ying, Y.; Liu, R.; Lin, J.; Li, C.; Chen, G. Jiawei-Xiaoyao pill elicits a rapid antidepressant effect, dependent on activating CaMKII/mTOR/BDNF signaling pathway in the hippocampus. J. Ethnopharmacol. 2024, 318, 117016. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, J.; Zhang, H.; Huang, Z.; Zou, Z.; Chen, Y.; Sheng, L.; Xue, W.; Tang, J.; Wu, H.; et al. Immediate and persistent antidepressant-like effects of Chaihu-jia-Longgu-Muli-tang are associated with instantly up-regulated BDNF in the hippocampus of mice. Biosci. Rep. 2019, 39, BSR20181539. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zou, Z.; Shen, Q.; Huang, Z.; Chen, J.; Tang, J.; Xue, W.; Tao, W.; Wu, H.; Wang, D.; et al. Involvement of NMDA-AKT-mTOR Signaling in Rapid Antidepressant-Like Activity of Chaihu-jia-Longgu-Muli-tang on Olfactory Bulbectomized Mice. Front. Pharmacol. 2018, 9, 1537. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Cao, K.; Cui, S.; Cui, Y.; Mo, H.; Wen, W.; Dong, Z.; Lin, H.; Bai, S.; Yang, L.; et al. SiNiSan ameliorates depression-like behavior in rats by enhancing synaptic plasticity via the CaSR-PKC-ERK signaling pathway. Biomed. Pharmacother. 2020, 124, 109787. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bu, T.; Li, Y.; He, Y.; Yang, F.; Zou, L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants 2022, 11, 2121. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Ye, H.; Kamaraj, R.; Zhang, T.; Zhang, J.; Pavek, P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine 2021, 92, 153736. [Google Scholar] [CrossRef]
- Grichnik, K.P.; D’Amico, T.A. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Semin. Cardiothorac. Vasc. Anesth. 2004, 8, 317–334. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Wei, W.; Yin, C.; Tang, F. Effects of saikosaponin-d on CYP3A4 in HepaRG cell and protein-ligand docking study. Basic. Clin. Pharmacol. Toxicol. 2021, 128, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Chen, J.B.; Liu, Y.Y.; Zhou, X.M.; Zhang, M.; Jiang, Y.M.; Ma, Q.Y.; Xue, Z.; Zhao, Z.Y.; Li, X.J.; et al. Saikosaponin D exerts antidepressant effect by regulating Homer1-mGluR5 and mTOR signaling in a rat model of chronic unpredictable mild stress. Chin. Med. 2022, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wu, S.; Wu, X.; Liu, D. Clinical study of Chaihu Shugan Powder in the treatment of cancer-related depression. Int. J. Tradit. Chin. Med. 2022, 44, 150–153. [Google Scholar] [CrossRef]
- Tian, J.S.; Peng, G.J.; Gao, X.X.; Zhou, Y.Z.; Xing, J.; Qin, X.M.; Du, G.H. Dynamic analysis of the endogenous metabolites in depressed patients treated with TCM formula Xiaoyaosan using urinary (1)H NMR-based metabolomics. J. Ethnopharmacol. 2014, 158, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kaixin, W.; Xueping, S.; Tao, L.; Congbing, W. Clinical study on Danzhi Xiaoyaosan combined with five phases music therapy in the treatment of mild post-stroke depression patients. Liaoning J. Tradit. Chin. Med. 2023, 1–9. [Google Scholar]
- Min, W.; Feng, L. Effect of TCM Fumigation Combined with Jiawei Xiaoyao Pill on Insomnia and Quality of Life in Patients with Depression. Liaoning J. Tradit. Chin. Med. 2019, 46, 1206–1209. [Google Scholar] [CrossRef]
- Zijin, W.; Jing, F.; Yanping, C. Clinical Study on the Treatment of Postpartum Depression with Frigid Extremities Powder Combined with Peach Kernel. Henan Tradit. Chin. Med. 2024, 44, 92–96. [Google Scholar] [CrossRef]
- Yan-li, T.; Ji-ming, W.; Ting-yi, Z.; Cui, Y.; Jin-ping, F. Efficacy and Safety of Modified Chaihu Jia Longgu Muli Tang in Treating Mild to Moderate Essential Hypertension Syndrome. Chin. J. Exp. Tradit. Med. Formulae 2020, 26, 132–137. [Google Scholar] [CrossRef]
- Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. Biomed. Res. Int. 2017, 2017, 7597596. [Google Scholar] [CrossRef]
- Ikegami, F.; Sumino, M.; Fujii, Y.; Akiba, T.; Satoh, T. Pharmacology and Toxicology of Bupleurum Root-Containing Kampo Medicines in Clinical Use. Human. Exp. Toxicol. 2006, 25, 481–494. [Google Scholar] [CrossRef]
- Teo, D.C.H.; Ng, P.S.L.; Tan, S.H.; Lim, A.T.; Toh, D.S.L.; Chan, S.Y.; Cheong, H.H. Drug-induced liver injury associated with Complementary and Alternative Medicine: A review of adverse event reports in an Asian community from 2009 to 2014. BMC Complement. Altern. Med. 2016, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Wang, J.-D.; Chen, P.-C. Risk of Liver Injury Associated with Chinese Herbal Products Containing Radix bupleuri in 639,779 Patients with Hepatitis B Virus Infection. PLoS ONE 2011, 6, e16064. [Google Scholar] [CrossRef] [PubMed]
- Academic Department of the Chinese Association for Science and Technology. Guidelines for Diagnosis and Treatment of Herb-Induced Liver Injury; Academic Department of the Chinese Association for Science and Technology: Beijing, China, 2016. [Google Scholar]
- Suying, D.; Lingjun, D.; Wang, A.; Xin, Y.; Zhijie, Z.; Yilin, T. HPLC fingerprint and active component analysis of Bupleurum from different regions. J. Beijing Agric. Univ. 2021, 36, 95–100. [Google Scholar]
- Jianran, H.; Ping, L.; Hongmei, Z.; Hongyan, L. In vitro anti-inflammatory and antioxidant activities of total flavonoids from Bupleurum. Chin. J. Food Addit. 2023, 34, 82–88. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Yau, S.y.; Zhou, Y.; Song, X.; Zhang, H.T.; Zhu, B.; Wu, H.; Chen, G. Synergistic effects of two naturally occurring iridoids in eliciting a rapid antidepressant action by up-regulating hippocampal PACAP signalling. Br. J. Pharmacol. 2022, 179, 4078–4091. [Google Scholar] [CrossRef]
Drug | Chemical Structrue | Animal Species | Model | Route of Administration | Dosage | Administration Time | Antidepressant Mechanism | Reference |
---|---|---|---|---|---|---|---|---|
Rutin | The Male/feMale Sprague–Dawley rats | Reserpine | i.p. | 40 mg/kg 80 mg/kg | / | serotonin ↑, norepinephrine ↑, dopamine levels ↑ | [70] | |
Adult Swiss albino mice | CUS | Oral | 100 mg/kg | 3 weeks | / | [71] | ||
Male Swiss mice | PCPA, AMPT | Oral | 0.3 mg/kg | 60 min | serotonin and norepinephrine in the synaptic cleft ↑ | [72] | ||
Adult Male Wistar rats | Ethanol | Oral | 50 mg/kg | 5 weeks | IDO ↑; antioxidant enzymes ↓; NO, IL-6, and MPO ↓ | [73] | ||
Puerarin | Male Sprague–Dawley (SD) rats | HFD, CUS | / | 30 mg/kg 60 mg/kg 120 mg/kg | 1 week | IL-6, TNF-α, and IL-10 ↓; occludin and claudin-1 ↑; TLR4 ↓, cPLA2, and COX-2 ↓; PGE 2 ↓ | [74] | |
Male ICR mice | CUMS | Oral Gavage | 30 mg/kg 100 mg/kg | 4 weeks | The abundance of pathogenic bacteria ↓, the abundance of beneficial bacteria ↑ | [75] | ||
Male C57BL/6 mice HT22cell | HFD db/db | Oral gavage | 150 mg/kg | 6 weeks | AMPK ↑, AKT ↑, mTOR ↓, BDNF ↑, TrkB ↑, CREB ↑, ERK ↑, GLP-1R ↑, 5-hydroxytryptamine ↑, serum levels of corticosterone and IL-1β ↓ | [76] | ||
Male C57BL/6N mice PC12cell | LPS | Gavage | 30 mg/kg 60 mg/kg 120 mg/kg | / | RagA ↓, P-mTOR and P-70S6K ↓, LAMP2 ↑, IL-6 and IL- 1β ↓ | [77] | ||
Quercetin | Male ICR mice SH-SY5Y Cell | CUMS | Gavage | 15, 30 mg/kg 60 μM | 3 weeks | NSC ↑, AHN ↑, FoxG1 ↑, p-CREB ↑, BDNF ↑ | [78] | |
Male Sprague–Dawley rats | LPS | Gavage | 40 mg/kg | 15 days | BDNF, p-TrkB/TrkB, Copine 6, and TREM1 ↑; TREM2 ↑; Synapsin-1 ↑ | [79] | ||
ERα-KO mice in C57BL/6 J b | ERα -KO | Oral administration | 100 mg/kg | 10 weeks | Number of hippocampal neurons ↑; Bcl-2 ↑; BDNF, P-TrkB, P-AKT, and p- ERK1/2 ↑ | [80] | ||
Adult Male Kunming mice | CUMS | Gavage | 10, 20, 40 mg/kg | 3 weeks | P-PI3K ↑, P-Akt ↑, Nrf2 ↑, HO-1 ↑, iNOS ↑, NO ↑, MDA ↑, T-SOD ↑, GST ↑, T-SOD ↑ | [81] | ||
Saikosaponin A | Adult Male Sprague–Dawley (SD) rats | MCAO + isolation + CUMS model | i.p. | 5 mg/kg | once daily for 24 days | p-CREB ↑, BDNF ↑, Bcl-2 ↑, Bax ↓, Caspase-3 ↓ | [35] | |
FeMale Wistar rats | CUMS | Oral | 25 mg/kg, 50 mg/kg, 100 mg/kg | 4 weeks | the serum corticosterone levels ↑, CRH ↑, IL-1β ↓, IL-6 ↓, TNF-α ↓, BDNF ↑, P-TrkB/TrkB ↑ | [82] | ||
Forty-five Male Sprague–Dawley (SD) rats | CUMS | Gavage | 50 mg/kg | 4 weeks | PRRT2 ↑, DA ↑ | [83] | ||
Saikosaponin D | Sprague– Dawley (SD) rats | CUMS | Gavage | 0.75 mg/kg, 1.50 mg/kg | 3 weeks | NF-kB, miR-155 ↓, FGF2 ↑ | [84] | |
Male ICR mice | LPS | Gavage | 0.5 mg/kg, 1 mg/kg | 2 weeks | MAPK/NFκB-p65 ↓ | [85] | ||
Male ICR mice | LPS | Gavage | 1 mg/kg | 7 days | HMGB1 nuclear translocation ↓; TLR4/NF-kB, p-IkB-α ↓ | [86] | ||
C57BL/6 J | CMS | Gavage | 1 mg/kg | 3 weeks | GFAP ↑, Iba1 ↓, IL-1β, IL-6, ROS ↓ | [68] | ||
Chaihu-shugan-san | / | Male C57BL/6 J mice | CUMS | gavage | 20 mg/kg/d | 8 weeks | BA ↑, BDNF ↑, TrkB ↑, Fxr ↓, HCA ↑, 7-ketoDCA ↑ | [87] |
Male Sprague–Dawley rats | CUMS | Gavage | 2.835 g/kg | 4 weeks | Synapse formation in the hippocampus ↑, miR-503 ↓, miR532 ↓, miR212 ↓, miR-125a ↓, miR-182↓, miR-124 ↓, MAPK14 ↑, Gria3 ↑ | [42] | ||
Male C57BL/6 mice, Male Sprague–Dawley rats | CUMS | Gavage | 19.5 g herb/kg | 6 weeks | SIRT1 ↑, FOXO1 ↓, VEGFA ↑, BDNF ↑ | [88] | ||
Xiaoyaosan aulis. | / | Male C57BL/6 J mice | CUMS | Gavage | 0.4 g/kg | 6 weeks | BDNF ↑, Nestin-positive neurons and DCX-positive cells ↑ | [89] |
/ | CUMS | Gavage | 0.254 g/kg | 3 weeks | GPX4 ↑, FTH1 ↓, ACSL4 ↓, COX2 ↓, total iron ↓, ferrous content ↓, PEBP1 ↓, t-ERK1/2 ↑, p-ERK1/2 ↑, p-ERK1/2 to t-ERK1/2 ↓, GFAP ↑, IBA1 ↓ | [90] | ||
Male Sprague–Dawley rats | CUMS | Gavage | 2.224 g/kg | 3 weeks | glutamate ↓, CORT ↓, MAP2 ↑, NR2B ↑, PI3K ↑, P-AKT/AKT ↑ | [91] | ||
Male Sprague–Dawley rats | CRS | Gavage | 2.224 g/kg | 3 weeks | Bacteroidetes, Proteobacteria, Firmicutes, Chloroflexi, and Planctomycetes ↑; Prevotellaceae_Ga6A1_group, Prevotellaceae_UCG-001, and Desulfovibrio ↓; Ruminococcaceae family ↑ | [92] | ||
Jiawei-Xiaoyao pill | / | Male ICR mice | The mouse corticosterone (CORT) model for depression | Gavage | 0.7, 1, 1.4, 1.8 g/kg | single dose | pmTOR/mTOR ↑, pCaMKII/CaMKII ↑, pERK/ERK ↑, BDNF ↑, PSD95 ↑ and synapsin1 ↑ | [93] |
Chaihu-jia-Longgu-Muli-tang | / | BALB/c mice | - | Gavage | 4.2 g/kg | single dosage | BDNF ↑ | [94] |
Kunming mice | OB | Gavage | 2.1 g/kg | single dosage | GluR1 ↑, NR1 ↓, NR2A ↓, NR2B ↓, total Akt ↑, pAKT ↑, total mTOR ↑, P-mTOR ↑, pmTOR/mTOR ↑ | [95] | ||
Sini San | / | Male Sprague–Dawley rats | CUMS | Gavage | 2.5 g/kg, 5 g/kg, 10 g/kg | 40 days | PSD-95 ↑, GAP-43 ↑, Syn ↑, CaSR ↑, p-ERK 1/2 ↑, PKC ↑ | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, S.; Peng, R.; Guo, Q.; Cui, J.; Chen, G.; Wang, Z. Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals 2024, 17, 512. https://doi.org/10.3390/ph17040512
Ran S, Peng R, Guo Q, Cui J, Chen G, Wang Z. Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals. 2024; 17(4):512. https://doi.org/10.3390/ph17040512
Chicago/Turabian StyleRan, Shuzhen, Rui Peng, Qingwan Guo, Jinshuai Cui, Gang Chen, and Ziying Wang. 2024. "Bupleurum in Treatment of Depression Disorder: A Comprehensive Review" Pharmaceuticals 17, no. 4: 512. https://doi.org/10.3390/ph17040512
APA StyleRan, S., Peng, R., Guo, Q., Cui, J., Chen, G., & Wang, Z. (2024). Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals, 17(4), 512. https://doi.org/10.3390/ph17040512