Outlining the Phytoconstituents of Greek Clover Herb Extract and Assessment of Its Effect against Foodborne Infections Caused by Salmonella typhimurium
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis of Trigonella foenum-graecum Herb Using LC-ESI-MS/MS
2.2. Antibacterial Action (In Vitro)
Membrane Properties
2.3. Antibacterial Action (In Vivo)
2.3.1. Bacterial Burden and Survival Curve
2.3.2. Histological Features
2.3.3. Immunohistochemical Features
2.3.4. ELISA and qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Collection of Plant Materials and the Formation of the Crude Extract
4.2. LC/ESI-MS/MS of the Fenugreek Herb
4.2.1. Sample Preparation and Injection
4.2.2. Acquisition Method and Analytical Parameters
4.2.3. Data Processing
4.3. Bacteria, Chemicals, and Media
4.3.1. Antibacterial Potential
4.3.2. Impact on the Bacterial Membranes
4.3.3. In Vivo Antibacterial Action
4.3.4. Experiment Protocol
- Normal control (I): not infected.
- S. typhimurium-infected group (II): infected with S. typhimurium (1 × 106 CFU/mL) via the oral route.
- Ciprofloxacin-treated group (III): infected with S. typhimurium and treated with ciprofloxacin (20 mg/kg), taken orally for three constitutive days.
- Fenugreek-extract-treated group (IV): infected with S. typhimurium and treated with fenugreek extract (200 mg/kg), taken orally for three constitutive days [81].
4.3.5. Histopathological and Immunohistochemical Investigations
4.3.6. Inflammatory and Oxidative Stress Markers Using ELISA and qRT-PCR
5. Statistical Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.L.; Papa, M.I. Salmonella spp. Infection—A continuous threat worldwide. Germs 2021, 11, 88. [Google Scholar] [CrossRef]
- Aljahdali, N.H.; Sanad, Y.M.; Han, J.; Foley, S.L. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiol. 2020, 20, 353. [Google Scholar] [CrossRef] [PubMed]
- Hoelzer, K.; Moreno Switt, A.I.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Jadimurthy, R.; Jagadish, S.; Nayak, S.C.; Kumar, S.; Mohan, C.D.; Rangappa, K.S. Phytochemicals as invaluable sources of potent antimicrobial agents to combat antibiotic resistance. Life 2023, 13, 948. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Ashraf, M.V.; Pant, S.; Khan, M.H.; Shah, A.A.; Siddiqui, S.; Jeridi, M.; Alhamdi, H.W.S.; Ahmad, S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals 2023, 16, 881. [Google Scholar] [CrossRef]
- Basu, S.K.; Zandi, P.; Cetzal-Ix, W. Chapter 28—Fenugreek (Trigonella foenum-graecum L.): Distribution, Genetic Diversity, and Potential to Serve as an Industrial Crop for the Global Pharmaceutical, Nutraceutical, and Functional Food Industries. In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 471–497. [Google Scholar]
- Snehlata, H.S.; Payal, D.R. Fenugreek (Trigonella foenum-graecum L.): An overview. Int. J. Curr. Pharm. Rev. Res. 2012, 2, 169–187. [Google Scholar]
- Almalki, D.A.; Naguib, D.M. Anticancer activity of aqueous fenugreek seed extract against pancreatic cancer, histological evidence. J. Gastrointest. Cancer 2022, 53, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Singh, P.; Rani, A. Antimicrobial activity of Trigonella foenum-graecum L. (Fenugreek). Eur. Exp. Biol. 2016, 7, 4. [Google Scholar]
- Selvaraj, S.; Fathima, N.N. Fenugreek Incorporated Silk Fibroin Nanofibers—A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl. Mater. Interfaces 2017, 9, 5916–5926. [Google Scholar] [CrossRef] [PubMed]
- Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol. Nutr. Food Res. 2017, 61, 1600950. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.A.; Kumar, P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 2018, 17, 97–106. [Google Scholar] [CrossRef]
- Mariod, A.A.; Saeed Mirghani, M.E.; Hussein, I. Chapter 22—Trigonella foenum-graecum Fenugreek, Bird’s Foot, Greek Hayseed. In Unconventional Oilseeds and Oil Sources; Mariod, A.A., Saeed Mirghani, M.E., Hussein, I., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 125–130. [Google Scholar]
- Akhlaghi, N.; Najafpour-Darzi, G. Phytochemical analysis, antioxidant activity, and pancreatic lipase inhibitory effect of ethanolic extract of Trigonella foenumgraceum L. leaves. Biocatal. Agric. Biotechnol. 2021, 32, 101961. [Google Scholar] [CrossRef]
- Saxena, S.; Karwa, S.; Saxena, R.; Sharma, T.; Sharma, Y.; Kakani, R.; Anwer, M. Analysis of antioxidant activity, phenolic and flavanoids content of fenugreek (Trigonellafoenum-graecum L.) seed extracts. Int. J. Seed Spices 2011, 1, 38–43. [Google Scholar]
- Sindhusha, V.B.; Rajasekar, A. Preparation and Evaluation of Antimicrobial Property and Anti-inflammatory Activity of Fenugreek Gel Against Oral Microbes: An Invitro Study. Cureus 2023, 15, e47659. [Google Scholar] [CrossRef]
- Václavík, J.; Coene, K.L.; Vrobel, I.; Najdekr, L.; Friedecký, D.; Karlíková, R.; Mádrová, L.; Petsalo, A.; Engelke, U.F.; van Wegberg, A. Structural elucidation of novel biomarkers of known metabolic disorders based on multistage fragmentation mass spectra. J. Inherit. Metab. Dis. 2018, 41, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.A.; van den Bos, A.A.; Kite, G.C.; Veitch, N.C.; Simmonds, M.S. Flavonol glycosides acylated with 3-hydroxy-3-methylglutaric acid as systematic characters in Rosa. Phytochemistry 2012, 81, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, C.T.; Ramesh, P.R.; Mahesh, K.; Madhu, K.M.; Anandan, E.M.; Praveen, M.; Balachandran, I. Chemical profiling of a polyherbal formulation by tandem mass spectroscopic analysis with multiple ionization techniques. Future J. Pharm. Sci. 2020, 6, 40. [Google Scholar]
- Shahzad, M.N.; Ahmad, S.; Tousif, M.I.; Ahmad, I.; Rao, H.; Ahmad, B.; Basit, A. Profiling of phytochemicals from aerial parts of Terminalia neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme inhibition activities. PLoS ONE 2022, 17, e0266094. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, B.; Li, Z.; Hong, T.; Chen, M.; Tan, Y.; Jiang, J.; Huang, C. Metabolite identification of myricetin in rats using HPLC coupled with ESI-MS. Chromatographia 2012, 75, 655–660. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.; Liang, W.; Fitzloff, J.F.; van Breemen, R.B. Identification of caffeic acid derivatives in Actea racemosa (Cimicifuga racemosa, black cohosh) by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 978–982. [Google Scholar] [CrossRef]
- Broberg, A.; Jacobsson, K.; Ström, K.; Schnürer, J. Metabolite profiles of lactic acid bacteria in grass silage. Appl. Environ. Microbiol. 2007, 73, 5547–5552. [Google Scholar] [CrossRef] [PubMed]
- Obama, T.; Itabe, H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int. J. Mol. Sci. 2020, 21, 8312. [Google Scholar] [CrossRef]
- Asen, S.; Plimmer, J.R. 4,6,4′-Trihydroxyaurone and other flavonoids from Limonium. Phytochemistry 1972, 11, 2601–2603. [Google Scholar] [CrossRef]
- Kumar, K.K.; Goodwin, C.R.; Uhouse, M.A.; Bornhorst, J.; Schwerdtle, T.; Aschner, M.; McLean, J.A.; Bowman, A.B. Untargeted metabolic profiling identifies interactions between Huntington’s disease and neuronal manganese status. Metallomics 2015, 7, 363–370. [Google Scholar] [CrossRef]
- Benoit, F.; Holmes, J.; Isaacs, N. The mass spectra of carboxylic acids—I: Fragmentation mechanisms in maleic and fumaric acids and related compounds. Org. Mass Spectrom. 1969, 2, 591–601. [Google Scholar] [CrossRef]
- Grossert, J.S.; Fancy, P.D.; White, R.L. Fragmentation pathways of negative ions produced by electrospray ionization of acyclic dicarboxylic acids and derivatives. Can. J. Chem. 2005, 83, 1878–1890. [Google Scholar] [CrossRef]
- Hengel, S.M.; Goodlett, D.R. A review of tandem mass spectrometry characterization of adenosine diphosphate-ribosylated peptides. Int. J. Mass Spectrom. 2012, 312, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Buzgaia, N.; Lee, S.Y.; Rukayadi, Y.; Abas, F.; Shaari, K. Antioxidant activity, α-glucosidase inhibition and UHPLC–ESI–MS/MS profile of shmar (Arbutus pavarii Pamp). Plants 2021, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.J.; Elekhnawy, E.; Negm, W.A.; Mahgoub, S.; Hussein, I.A. Encephalartos villosus Lem. Displays a strong in vivo and in vitro antifungal potential against Candida glabrata clinical isolates. J. Fungi 2022, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Vagula, J.M.; Sinosaki, N.M.; Ribeiro, M.A.; Magon, T.; Bertozzi, J.; Meurer, E.C.; Santos Junior, O.O.; Visentainer, J.V. Simple and fast method for identification and quantification of anthocyanidins in berries by ultra performance liquid chromatography-mass spectrometry. J. Braz. Chem. Soc. 2018, 29, 38–44. [Google Scholar] [CrossRef]
- El-Aal, A.; Mohammed, H.; Ibrahim, M.; Ismail, L. Chemical profiling of polyphenols in Thunbergia alata and in silico virtual screening of their antiviral activities against COVID-19. Azhar Int. J. Pharm. Med. Sci. 2021, 1, 94–100. [Google Scholar]
- Mekky, R.H.; del Mar Contreras, M.; El-Gindi, M.R.; Abdel-Monem, A.R.; Abdel-Sattar, E.; Segura-Carretero, A. Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: A comparative study. RSC Adv. 2015, 5, 17751–17767. [Google Scholar] [CrossRef]
- Attallah, N.G.M.; Negm, W.A.; Elekhnawy, E.; Elmongy, E.I.; Altwaijry, N.; El-Haroun, H.; El-Masry, T.A.; El-Sherbeni, S.A. Elucidation of Phytochemical Content of Cupressus macrocarpa Leaves: In Vitro and In Vivo Antibacterial Effect against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics 2021, 10, 890. [Google Scholar] [CrossRef]
- Ablajan, K.; Tuoheti, A. Fragmentation characteristics and isomeric differentiation of flavonol O-rhamnosides using negative ion electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 451–460. [Google Scholar] [CrossRef]
- Prasain, J.K.; Jones, K.; Kirk, M.; Wilson, L.; Smith-Johnson, M.; Weaver, C.; Barnes, S. Profiling and quantification of isoflavonoids in kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2003, 51, 4213–4218. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; del Mar Contreras, M. Metabolic profiling of the oil of Sesame of the Egyptian cultivar ‘Giza 32’ employing LC-MS and tandem ms-based untargeted method. Foods 2021, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Amal, D.; Kawashty, S.; Shamso, E.; Hosni, H.; Hussein, S. Chemical profiling of Oxalis species growing wild in Egypt using HRLC/MS Spectrometry. Int. J. Second. Metab. 2022, 9, 426–439. [Google Scholar]
- March, R.E.; Miao, X.S.; Metcalfe, C.D. A fragmentation study of a flavone triglycoside, kaempferol-3-O-robinoside-7-O-rhamnoside. Rapid Commun. Mass Spectrom. 2004, 18, 931–934. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Exploratory characterization of phenolic compounds with demonstrated anti-diabetic activity in guava leaves at different Oxidation States. Int. J. Mol. Sci. 2016, 17, 699. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shang, Z.; Li, Q.; Huang, M.; He, W.; Wang, Z.; Zhang, J. Rapid screening and identification of daidzein metabolites in rats based on UHPLC-LTQ-orbitrap mass spectrometry coupled with data-mining technologies. Molecules 2018, 23, 151. [Google Scholar] [CrossRef]
- Sayed, D.; Afifi, A.; Temraz, A.; Ahmed, A. Metabolic Profiling of Mimusops elengi Linn. Leaves extract and in silico anti-inflammatory assessment targeting NLRP3 inflammasome. Arab. J. Chem. 2023, 16, 104753. [Google Scholar] [CrossRef]
- Mele, A.; Panzeri, W.; Selva, A. Fast-atom bombardment mass spectrometric and tandem mass spectrometric study of (−)-menthol-β-(d)-glucopyranoside, neohesperidin dihydrochalcone and their non-covalent association with β-cyclodextrin. Two examples of interaction of a carbohydrate host with glycoconjugate guests. Eur. Mass Spectrom. 1997, 3, 347–354. [Google Scholar]
- Wang, Y.; Zhao, M.; Ou, Y.; Zeng, B.; Lou, X.; Wang, M.; Zhao, C. Metabolic profile of esculin in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. J. Chromatogr. B 2016, 1020, 120–128. [Google Scholar] [CrossRef]
- Elmongy, E.I.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Attallah, N.G.; Altwaijry, N.; Batiha, G.E.-S.; El-Sherbeni, S.A. Antidiarrheal and antibacterial activities of monterey cypress phytochemicals: In vivo and in vitro approach. Molecules 2022, 27, 346. [Google Scholar] [CrossRef]
- Tiepo, A.N.; Coutinho, I.D.; Machado, G.O.; Oliveira, H.C.; Pimenta, J.A.; Henning, L.M.M.; Colnago, L.A.; Stolf-Moreira, R. Phenolic Compounds from Leaves of Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae): A Brazilian Atlantic Forest Tree. J. Braz. Chem. Soc. 2023, 34, 146–152. [Google Scholar] [CrossRef]
- Pinho, E.; Soares, G.; Henriques, M. Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. J. Microencapsul. 2015, 32, 804–810. [Google Scholar] [CrossRef]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef]
- Cusumano, Z.T.; Caparon, M.G. Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase. J. Bacteriol. 2015, 197, 1288–1296. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157: H7 in apple, pear and melon juices. Food Control 2009, 20, 105–112. [Google Scholar] [CrossRef]
- Pinto, H.B.; Brust, F.R.; Macedo, A.J.; Trentin, D.S. The antivirulence compound myricetin possesses remarkable synergistic effect with antibacterials upon multidrug resistant Staphylococcus aureus. Microb. Pathog. 2020, 149, 104571. [Google Scholar] [CrossRef] [PubMed]
- Chitemerere, T.A.; Mukanganyama, S. Evaluation of cell membrane integrity as a potential antimicrobial target for plant products. BMC Complement. Altern. Med. 2014, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Almukainzi, M.; El-Masry, T.A.; Negm, W.A.; Elekhnawy, E.; Saleh, A.; Sayed, A.E.; Ahmed, H.M.; Abdelkader, D.H. Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats. Int. J. Pharm. 2022, 625, 122106. [Google Scholar] [CrossRef] [PubMed]
- Zgurskaya, H.I.; Rybenkov, V.V. Permeability barriers of Gram-negative pathogens. Ann. N. Y. Acad. Sci. 2020, 1459, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Attallah, N.G.; Al-Fakhrany, O.M.; Elekhnawy, E.; Hussein, I.A.; Shaldam, M.A.; Altwaijry, N.; Alqahtani, M.J.; Negm, W.A. Anti-biofilm and antibacterial activities of Cycas media R. Br secondary metabolites: In silico, in vitro, and in vivo approaches. Antibiotics 2022, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Alotaibi, B.; El-Masry, T.A.; Elekhnawy, E.; El-Kadem, A.H.; Saleh, A.; Negm, W.A.; Abdelkader, D.H. Aqueous core epigallocatechin gallate PLGA nanocapsules: Characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug Deliv. 2022, 29, 1848–1862. [Google Scholar] [CrossRef] [PubMed]
- Shah, G.; Zhang, G.; Chen, F.; Cao, Y.; Kalyanaraman, B.; See, W.A. iNOS expression and NO production contribute to the direct effects of BCG on urothelial carcinoma cell biology. In Urologic Oncology: Seminars and Original Investigations; Elsevier: Amsterdam, The Netherlands, 2014; pp. 45.e1–45.e9. [Google Scholar]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed]
- Yamada, J.; Tomita, Y. Antimutagenic activity of caffeic acid and related compounds. Biosci. Biotechnol. Biochem. 1996, 60, 328–329. [Google Scholar] [CrossRef]
- Choi, K.-C.; Son, Y.-O.; Hwang, J.-M.; Kim, B.-T.; Chae, M.; Lee, J.-C. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum. Pharm. Biol. 2017, 55, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Manuja, R.; Sachdeva, S.; Jain, A.; Chaudhary, J. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 109–115. [Google Scholar]
- Luecha, P.; Umehara, K.; Miyase, T.; Noguchi, H. Antiestrogenic constituents of the Thai medicinal plants Capparis flavicans and Vitex glabrata. J. Nat. Prod. 2009, 72, 1954–1959. [Google Scholar] [CrossRef]
- Akroum, S.; Bendjeddou, D.; Satta, D.; Lalaoui, K. Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia. Am.–Eurasian J. Sci. Res. 2009, 4, 93–96. [Google Scholar]
- Ho, S.; Shah, N. The antibacterial effect of addition of citrulline in fermented milk against foodborne pathogens. In Proceedings of the ADSA Annual Meeting, Pittsburgh, PA, USA, 25–28 June 2017; American Dairy Science Association: Champaign, IL, USA, 2017. [Google Scholar]
- Li, S.; Lv, Q.; Sun, X.; Tang, T.; Deng, X.; Yin, Y.; Li, L. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. J. Pharm. Pharmacol. 2020, 72, 1092–1100. [Google Scholar] [CrossRef]
- Duncan, S.H.; Leitch, E.C.M.; Stanley, K.N.; Richardson, A.J.; Laven, R.A.; Flint, H.J.; Stewart, C.S. Effects of esculin and esculetin on the survival of Escherichia coli O157 in human faecal slurries, continuous-flow simulations of the rumen and colon and in calves. Br. J. Nutr. 2004, 91, 749–755. [Google Scholar] [CrossRef]
- Coelho, M.; Silva, S.; Costa, E.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M. Anthocyanin recovery from grape by-products by combining ohmic heating with food-grade solvents: Phenolic composition, antioxidant, and antimicrobial properties. Molecules 2021, 26, 3838. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Sonbol, F.; Elbanna, T.; El-Ekhnawy, E. Exposure to sublethal concentrations of benzalkonium chloride induces antimicrobial resistance and cellular changes in Klebsiellae pneumoniae clinical isolates. Microb. Drug Resist. 2019, 25, 631–638. [Google Scholar] [CrossRef]
- Negm, W.A.; El-Aasr, M.; Kamer, A.A.; Elekhnawy, E. Investigation of the Antibacterial Activity and Efflux Pump Inhibitory Effect of Cycas thouarsii R. Br. Extract against Klebsiella pneumoniae Clinical Isolates. Pharmaceuticals 2021, 14, 756. [Google Scholar] [CrossRef]
- Elekhnawy, E.A.; Sonbol, F.I.; Elbanna, T.E.; Abdelaziz, A.A. Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt. J. Med. Hum. Genet. 2021, 22, 51. [Google Scholar] [CrossRef]
- Elekhnawy, E.; Negm, W.A. The potential application of probiotics for the prevention and treatment of COVID-19. Egypt. J. Med. Hum. Genet. 2022, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.A.; Abd El-Rahman, H.S.M. Anti-shigellosis activity of the aqueous extract of garlic, clove and fenugreek. J. Food Saf. 2022, 42, e12978. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Miotto, A.; Lins, T.A.; Montero, E.; Oshima, C.; Alonso, L.G.; Perfeito, J. Immunohistochemical analysis of the COX-2 marker in acute pulmonary injury in rats. Ital. J. Anat. Embryol. Arch. Ital. Anat. Embriol. 2009, 114, 193–199. [Google Scholar]
RT (min) | Compound Name | Precursor m/z | Error ppm | Formula | MS/MS | Ontology | Reference | |
---|---|---|---|---|---|---|---|---|
1 | 1.06 | 3-Hydroxy-3-Methylglutaric acid (meglutol) | 161.0457 | −0.3 | C6H10O5 | 73.02, 101.02, 116.98, 143.05, 161.04 | Hydroxy fatty acids | [23,24] |
2 | 1.09 | Malic acid | 133.0147 | −2.3 | C4H6O5 | 71.013, 88.04, 115.00, 132.88, 133.01 | Beta hydroxy acids and derivatives | [25] |
3 | 1.10 | Quinic acid | 191.0554 | 1.9 | C7H12O6 | 111.14, 155.01, 164.95, 173.05, 190.95, 191.05 | Quinic acid and derivatives | [26] |
4 | 1.11 | Myricetin | 317.0536 | 1.5 | C15H10O8 | 151.03, 179.10, 316.88, 317.06 | Flavonols | [27] |
5 | 1.14 | Caffeic acid | 179.059 | −12.9 | C9H8O4 | 134.97, 179.05 | Hydroxycinnamic acids | [28] |
6 | 1.12 | D-3-Phenyllactic acid | 165.0401 | 0.1 | C9H10O3 | 59.01433:107 71.01071:71 72.9928:217 75.00829:600 78.91574:37 89.94, 165.03 | Phenyl-propanoic acids | [29] |
7 | 1.19 | Citrulline | 174.0763 | 0.2 | C6H13N3O3 | 131.07, 173.89, 174.07 | L-alpha-amino acids | [30] |
8 | 1.28 | Quercitrin | 447.114 | 31.5 | C21H20O11 | 152.01, 300.08, 301.10, 447.128 | Flavonoid-3-O-glycosides | [31] |
9 | 1.31 | Pantothenate | 218.1013 | 1.8 | C9H17NO5 | 71.01, 182.02, 200.09, 218.09 | Secondary alcohols | [32] |
10 | 1.62 | Citraconic acid | 128.958 | 6.9 | C5H6O4 | 60.99, 68.99, 84.98, 129.00 | Methyl-branched fatty acids | [33] |
11 | 1.66 | 2-Methylglutaric acid | 145.0981 | −0.7 | C6H10O4 | 87.05, 113.01, 130.06, 145.09 | Methyl-branched fatty acids | [34] |
12 | 1.99 | Adenosine | 266.0899 | −5.6 | C10H13N5O4 | 107.04, 114.96, 135.04, 202.92, 222.91, 266.08 | Purine nucleosides | [35] |
13 | 2.32 | Phlorizin | 435.1451 | −29.5 | C21H24O10 | 57.03, 123.02 167.07 273.07, 435.18 | Flavonoid O-glycosides | [36] |
14 | 2.58 | Isookanin-7-glucoside | 449.1079 | 2.3 | C21H22O11 | 151.00, 287.05, 449.22 | Flavonoid-7-O-glycosides | [37] |
15 | 3.47 | Cyanidin-3-O-(2″-O-beta-glucopyranosyl-beta-glucopyranoside) | 609.1558[M-2H]− | −12.1 | C27H31O16 | 218.94, 239.05, 255.02, 285.04, 609.21 | Anthocyanidin-3-O-glycosides | [38] |
16 | 4.30 | Kaempferol-7-neohesperidoside | 593.1472 | 6 | C27H30O15 | 285.02, 477.05, 315.06 593.10, 593.14 | Flavonoid-7-O-glycosides | [39] |
17 | 4.12 | 3,4-Dihydroxy benzoic acid | 153.0189 | 0.4 | C7H6O4 | 109.03, 135.00, 153.01 | Hydroxybenzoic acid derivatives | [40] |
18 | 4.99 | eriodictyol-7-O-glucoside | 449.105 | 8.7 | C21H22O11 | 269.09, 287.05, 403.19, 449.19 | Flavonoid-7-O-glycosides | [41] |
19 | 5.06 | Kaempferol-3-O-α-L-rhamnoside | 431.12 | 19.7 | C21H20O10 | 89.03, 285.10, 313.07, 395.01, 430.86, 431.11 | Flavonoid-3-O-glycosides | [42] |
20 | 5.37 | Daidzein-8-C-glucoside | 415.1895 | 42.9 | C21H20O9 | 267.13, 295.01, 325.12, 415.198 | Isoflavonoid C-glycosides | [43] |
21 | 6.77 | Luteolin-7-O-glucoside | 447.0955 | −0.9 | C21H20O11 | 174.95, 151.92, 253.01, 285.03, 447.19 | Flavonoid-7-O-glycosides | [44] |
22 | 7.16 | Maritimetin-6-O-glucoside | 447.1435 | 16.3 | C21H20O11 | 133.04, 285.06, 447.27 | Aurone O-glycosides | [45] |
23 | 7.69 | Kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) | 739.191 | −0.1 | C33H40O19 | 283.13, 430.01, 593.12, 739.34 | Flavonoid-7-O-glycosides | [46] |
24 | 7.97 | Cyanidin-3-O-galactoside | 447.0926[M-2H]− | 0.1 | C21H21O11 | 150.99, 285.04, 447.25 | Anthocyanidin-3-O-glycosides | [47] |
25 | 8.41 | Daidzein | 253.0529 | 1.2 | C15H10O4 | 135.00, 184.93, 208.93, 225.04, 253.04 | Isoflavones | [48] |
26 | 10.69 | Datiscin | 593.2539 | 32.4 | C27H30O15 | 285.03, 539.40, 593.25 | Flavonoid-3-O-glycosides | [39] |
27 | 10.77 | Formononetin | 267.0353 | −16.4 | C16H12O4 | 252.04, 223.91, 267.11 | 4’-O-methylisoflavones | [45] |
28 | 10.92 | Apigenin | 269.0839 | −4.3 | C15H10O5 | 151.00, 225.05, 269.04 | Flavones | [45] |
29 | 10.74 | Acacetin | 283.0617 | 0.7 | C16H12O5 | 225.05, 252.90, 282.15, 283.05 | 4’-O-methylated flavonoids | [49] |
30 | 11.60 | 3,5,7-Trihydroxy-4’-methoxyflavone | 299.1027 | −27.7 | C16H12O6 | 284.03, 299.09 | Flavonols | [41] |
31 | 13.27 | Luteolin | 285.0825 | −16.9 | C15H10O6 | 151.03, 256.04, 285.04 | Flavones | [44] |
32 | 15.12 | Apigenin-7-O-glucoside | 431.1832 | 19.7 | C21H20O10 | 268.03, 269.12, 310.91, 431.25 | Flavonoid-7-O-glycosides | [45] |
33 | 15.28 | Neohesperidin dihydrochalcone | 611.1158 | 6.5 | C28H36O15 | 504.10, 565.11, 611.35 | Flavonoid O-glycosides | [50] |
34 | 15.84 | Esculin | 339.2002 | 0.8 | C15H16O9 | 179.00, 320.90, 339.19 | Coumarin glycosides | [51] |
35 | 15.90 | Hesperetin | 301.0704 | 3.9 | C16H14O6 | 174.92, 255.22, 301.06 | 4’-O-methylated flavonoids | [52] |
36 | 16.77 | Quercetin-3,4’-O-di-beta-glucopyranoside | 625.119 | 26.5 | C27H30O17 | 301.21, 625.13 | Flavonoid-3-O-glycosides | [53] |
Isolate Code | MIC (µg/mL) |
---|---|
S1 | 64 |
S2 | 256 |
S3 | 512 |
S4 | 128 |
S5 | 128 |
S6 | 64 |
S7 | 256 |
S8 | 128 |
S9 | 512 |
S10 | 256 |
Groups | IL-6 (pg/mg Tissues) | IL-1β (pg/mg Tissues) | ||
---|---|---|---|---|
Small intestine | Caecum | Small intestine | Caecum | |
Normal control | 89.3 ± 3.3 ** | 93.4 ± 4.6 ** | 19.7 ± 2.9 ** | 22.4 ± 1.2 ** |
S. typhimurium-infected group | 302.4 ± 7.2 | 320.3 ± 8.8 | 98.2 ± 3.7 | 97.3 ± 4.5 |
Ciprofloxacin-treated group | 95.8 ± 9.2 ** | 100.4 ± 5.6 ** | 22.9 ± 4.7 ** | 25.3 ± 4.6 ** |
Fenugreek-extract-treated group | 100.2 ± 6.7 ** | 105 ± 6 ** | 24.5 ± 6.7 ** | 29.2 ± 3.9 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, J.; Negm, W.A.; Elekhnawy, E.; Alqahtani, M.J.; Moglad, E.; Ibrahim, S.; El-Sherbeni, S.A. Outlining the Phytoconstituents of Greek Clover Herb Extract and Assessment of Its Effect against Foodborne Infections Caused by Salmonella typhimurium. Pharmaceuticals 2024, 17, 259. https://doi.org/10.3390/ph17020259
Alqahtani J, Negm WA, Elekhnawy E, Alqahtani MJ, Moglad E, Ibrahim S, El-Sherbeni SA. Outlining the Phytoconstituents of Greek Clover Herb Extract and Assessment of Its Effect against Foodborne Infections Caused by Salmonella typhimurium. Pharmaceuticals. 2024; 17(2):259. https://doi.org/10.3390/ph17020259
Chicago/Turabian StyleAlqahtani, Jawaher, Walaa A. Negm, Engy Elekhnawy, Moneerah J. Alqahtani, Ehssan Moglad, Sarah Ibrahim, and Suzy A. El-Sherbeni. 2024. "Outlining the Phytoconstituents of Greek Clover Herb Extract and Assessment of Its Effect against Foodborne Infections Caused by Salmonella typhimurium" Pharmaceuticals 17, no. 2: 259. https://doi.org/10.3390/ph17020259
APA StyleAlqahtani, J., Negm, W. A., Elekhnawy, E., Alqahtani, M. J., Moglad, E., Ibrahim, S., & El-Sherbeni, S. A. (2024). Outlining the Phytoconstituents of Greek Clover Herb Extract and Assessment of Its Effect against Foodborne Infections Caused by Salmonella typhimurium. Pharmaceuticals, 17(2), 259. https://doi.org/10.3390/ph17020259