E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway
Abstract
:1. Introduction
2. Stilbenes
2.1. Stilbenes’ Biosynthesis
2.2. Stilbenes’ Biological Metabolism
3. Stilbenes: Diseases-Based Biological and Pharmacological Activities
3.1. Anticancer
3.2. Antimicrobial
3.3. Antidiabetic
3.4. Cardiovascular
3.5. Anti-Inflammatory
3.6. Neuroprotection
4. Stilbenes’ Role in Activating the Nrf2 Pathway
5. Stilbenes: Compounds-Based Approach
5.1. RESV
5.2. PTS
5.3. PIC
5.4. PIN and DHS
5.5. PDT
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagumo, M.; Ninomiya, M.; Oshima, N.; Itoh, T.; Tanaka, K.; Nishina, A.; Koketsu, M. Comparative analysis of stilbene and benzofuran neolignan derivatives as acetylcholinesterase inhibitors with neuroprotective and anti-inflammatory activities. Bioorg. Med. Chem. Lett. 2019, 29, 2475–2479. [Google Scholar] [CrossRef]
- Zhan, J.; Hu, T.; Shen, J.; Yang, G.; Ho, C.; Li, S. Pterostilbene is more efficacious than hydroxystilbenes in protecting liver fibrogenesis in a carbon tetracholride-induced rat model. J. Funct. Foods 2021, 84, 104604. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Mascarenhas, R.; Harish, H.M.; Gowda, Y.; Lakshmaiah, V.V.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M.; Almaghasla, M.I.; Rezk, A.A. Stilbenes, a Versatile Class of Natural Metabolites for Inflammation—An Overview. Molecules 2023, 28, 3786. [Google Scholar] [CrossRef] [PubMed]
- Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative Med. Cell. Longev. 2015, 2015, 340520. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Folgado, S.L.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Samarghandian, S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother. 2020, 127, 110234. [Google Scholar] [CrossRef]
- Bhandari, R.; Khanna, G.; Kaushik, D.; Kuhad, A. Divulging the Intricacies of Crosstalk between NF-Kb and Nrf2-Keap1 Pathway in Neurological Complications of COVID-19. Mol. Neurobiol. 2021, 58, 3347–3361. [Google Scholar] [CrossRef] [PubMed]
- de Mendonça, E.L.S.S.; Fragoso, M.B.T.; de Oliveira, J.M.; Xavier, J.A.; Goulart, M.O.F.; de Oliveira, A.C.M. Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants 2022, 11, 129. [Google Scholar] [CrossRef]
- Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2—An update. Free Radic. Biol. Med. 2014, 66, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, C.; Chio, C., II; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 2010, 36, 331–341. [Google Scholar] [CrossRef]
- Valletta, A.; Iozia, L.M.; Leonelli, F. Impact of environmental factors on stilbene biosynthesis. Plants 2021, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Teka, T.; Zhang, L.; Ge, X.; Li, Y.; Han, L.; Yan, X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry 2022, 197, 113128. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, A.; Sady, S.; Sielicka, M. The stilbene profile in edible berries. Phytochem. Rev. 2019, 18, 37–67. [Google Scholar] [CrossRef]
- Wang, J.; Hou, B. Glycosyltransferases: Key players involved in the modification of plant secondary metabolites. Front. Biol. China 2009, 4, 39–46. [Google Scholar] [CrossRef]
- Shimoda, K.; Kubota, N.; Uesugi, D.; Kobayashi, Y.; Hamada, H.; Hamada, H. Glycosylation of stilbene compounds by cultured plant cells. Molecules 2020, 25, 1437. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, L.; Guo, Y.X.; Dong, Y.S.; Zhang, D.J.; Xiu, Z.L. Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2007, 75, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.; Ray, A.B.; Dc’ah, F.K.; Slatkin, D.J.; Schiff, P.L. Constituents od Pterocarpus marsupium. J. Nat. Prod. 1984, 47, 179–181. [Google Scholar] [CrossRef]
- Gabaston, J.; Richard, T.; Cluzet, S.; Palos Pinto, A.; Dufour, M.C.; Corio-Costet, M.F.; Mérillon, J.M. Pinus pinaster Knot: A Source of Polyphenols against Plasmopara viticola. J. Agric. Food Chem. 2017, 65, 8884–8891. [Google Scholar] [CrossRef]
- Fulda, S. Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discov. Today 2010, 15, 757–765. [Google Scholar] [CrossRef]
- Jeong, Y.J.; An, C.H.; Woo, S.G.; Jeong, H.J.; Kim, Y.M.; Park, S.J.; Yoon, B.D.; Kim, C.Y. Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli. Enzym. Microb. Technol. 2014, 54, 8–14. [Google Scholar] [CrossRef]
- Vek, V.; Poljanšek, I.; Humar, M.; Willför, S.; Oven, P. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii. Wood Sci. Technol. 2020, 54, 1645–1662. [Google Scholar] [CrossRef]
- Martínez-Márquez, A.; Morante-Carriel, J.A.; Palazon, J.; Bru-Martínez, R. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures. New Biotechnol. 2018, 42, 62–70. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Potter, T.L.; Horn, B.W. Prenylated stilbenes from peanut root mucilage. Phytochem. Anal. 2006, 17, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Leláková, V.; Béraud-Dufour, S.; Hošek, J.; Šmejkal, K.; Prachyawarakorn, V.; Pailee, P.; Widmann, C.; Václavík, J.; Coppola, T.; Mazella, J.; et al. Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. J. Ethnopharmacol. 2020, 263, 113147. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Zhu, W.; Liu, S.; Guan, Q.; Chen, X.; Huang, W.; Wang, T.; Yang, B.; Tian, J. Molecular characterization of a geranyl diphosphate-specific prenyltransferase catalyzing stilbenoid prenylation from Morus alba. Plant Cell Physiol. 2018, 59, 2214–2227. [Google Scholar] [CrossRef]
- Munakata, R.; Olry, A.; Karamat, F.; Courdavault, V.; Sugiyama, A.; Date, Y.; Krieger, C.; Silie, P.; Foureau, E.; Papon, N.; et al. Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis. New Phytol. 2016, 211, 332–344. [Google Scholar] [CrossRef]
- Yang, T.; Fang, L.; Sanders, S.; Jayanthi, S.; Rajan, G.; Podicheti, R.; Thallapuranam, S.K.; Mockaitis, K.; Medina-Bolivar, F. Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins. J. Biol. Chem. 2018, 293, 28–46. [Google Scholar] [CrossRef] [PubMed]
- Langcake, P.; Pryce, R. A new class of phytoalexins from grapevines. Experientia 1977, 33, 151–152. [Google Scholar] [CrossRef]
- Dubrovina, A.S.; Kiselev, K.V. Regulation of stilbene biosynthesis in plants. Planta 2017, 246, 597–623. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, S.J.; Cui, T.B.; Liu, Z.Y.; Zhao, W. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glycoside biosynthesis by suspension cells cultures of Polygonum multiflorum thunb and production enhancement by methyl jasmonate and salicylic acid. Molecules 2012, 17, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Moses, T.; Mehrshahi, P.; Smith, A.G.; Goossens, A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. J. Exp. Bot. 2017, 68, 4057–4074. [Google Scholar] [CrossRef] [PubMed]
- Cravens, A.; Payne, J.; Smolke, C.D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 2019, 10, 2142. [Google Scholar] [CrossRef]
- Yuan, S.F.; Yi, X.; Johnston, T.G.; Alper, H.S. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture. Microb. Cell Fact. 2020, 19, 143. [Google Scholar] [CrossRef]
- Yan, Z.B.; Liang, J.L.; Niu, F.X.; Shen, Y.P.; Liu, J.Z. Enhanced Production of Pterostilbene in Escherichia coli Through Directed Evolution and Host Strain Engineering. Front. Microbiol. 2021, 12, 710405. [Google Scholar] [CrossRef]
- Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors 2018, 44, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, Y.; Oritani, Y.; Ito, R.; Inagaki, H.; Maruki-Uchida, H.; Ichiyanagi, T.; Ito, T. Absorption and metabolism of piceatannol in rats. J. Agric. Food Chem. 2014, 62, 2541–2548. [Google Scholar] [CrossRef]
- Du, Q.H.; Peng, C.; Zhang, H. Polydatin: A review of pharmacology and pharmacokinetics. Pharm. Biol. 2013, 51, 1347–1354. [Google Scholar] [CrossRef]
- Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
- Roupe, K.A.; Remsberg, C.M.; Yáñez, J.A.; Davies, N.M. Pharmacometrics of Stilbenes: Seguing Towards the Clinic. Curr. Clin. Pharmacol. 2006, 1, 81–101. [Google Scholar] [CrossRef]
- Nunes, S.; Danesi, F.; Del Rio, D.; Silva, P. Resveratrol and inflammatory bowel disease: The evidence so far. Nutr. Res. Rev. 2018, 31, 85–97. [Google Scholar] [CrossRef]
- Danesi, F.; Ferguson, L.R. Could pomegranate juice help in the control of inflammatory diseases? Nutrients 2017, 9, 958. [Google Scholar] [CrossRef]
- Fu, J.; Wu, S.; Wang, M.; Tian, Y.; Zhang, Z.; Song, R. Intestinal metabolism of Polygonum cuspidatum in vitro and in vivo. Biomed. Chromatogr. 2018, 32, e4190. [Google Scholar] [CrossRef]
- Miksits, M.; Maier-Salamon, A.; Aust, S.; Thalhammer, T.; Reznicek, G.; Kunert, O.; Haslinger, E.; Szekeres, T.; Jaeger, W. Sulfation of resveratrol in human liver: Evidence of a major role for the sulfotransferases SULT1A1 and SULT1E1. Xenobiotica 2005, 35, 1101–1119. [Google Scholar] [CrossRef]
- Jenner, A.M.; Rafter, J.; Halliwell, B. Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005, 38, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Nasef, N.A.; Mehta, S.; Ferguson, L.R. Dietary interactions with the bacterial sensing machinery in the intestine: The plant polyphenol case. Front. Genet. 2014, 5, 64. [Google Scholar] [CrossRef]
- Boocock, D.J.; Faust, G.E.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G.S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.; Kulling, S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013, 97, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, X.; Cai, X.; Song, M.; Zheng, J.; Pan, C.; Qiu, P.; Zhang, L.; Zhou, S.; Tang, Z.; et al. Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Mol. Nutr. Food Res. 2016, 60, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef] [PubMed]
- Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: Extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 2002, 302, 369–373. [Google Scholar] [CrossRef]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef]
- Springer, M.; Moco, S. Resveratrol and its human metabolites—Effects on metabolic health and obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Del Rio, D. Gold Standards for Realistic (Poly)phenol Research. J. Agric. Food Chem. 2018, 66, 8221–8223. [Google Scholar] [CrossRef] [PubMed]
- Calamini, B.; Ratia, K.; Malkowski, M.G.; Cuendet, M.; Pezzuto, J.M.; Santarsiero, B.D.; Mesecar, A.D. Pleiotropic mechanisms facilitated by resveratrol and its metabolites. Biochem. J. 2010, 429, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Kapetanovic, I.M.; Muzzio, M.; Huang, Z.; Thompson, T.N.; McCormick, D.L. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother. Pharmacol. 2011, 68, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.W.; Garcia AM, G.; Meyskens, F.L. Differences in the glucuronidation of resveratrol and pterostilbene: Altered enzyme specificity and potential gender differences. Drug Metab. Pharmacokinet. 2014, 29, 112–119. [Google Scholar] [CrossRef]
- Lin, H.S.; Tringali, C.; Spatafora, C.; Wu, C.; Ho, P.C. A simple and sensitive HPLC-UV method for the quantification of piceatannol analog trans-3,5,3′,4′-tetramethoxystilbene in rat plasma and its application for a pre-clinical pharmacokinetic study. J. Pharm. Biomed. Anal. 2010, 51, 679–684. [Google Scholar] [CrossRef]
- Remsberg, C.M.; Martinez, S.E.; Akinwumi, B.C.; Anderson, H.D.; Takemoto, J.K.; Sayre, C.L.; Davies, N.M. Preclinical Pharmacokinetics and Pharmacodynamics and Content Analysis of Gnetol in Foodstuffs. Phytother. Res. 2015, 29, 1168–1179. [Google Scholar] [CrossRef]
- Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene 169 Pharmacometrics of Pterostilbene: Preclinical Pharmacokinetics and Metabolism, Anticancer, Antiinflammatory, Antioxidant and Analgesic Activity. Phytother. Res. 2008, 22, 169–179. [Google Scholar] [CrossRef]
- Chang, T.K.H.; Lee, W.B.K.; Ko, H.H. Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1. Can. J. Physiol. Pharmacol. 2000, 78, 874–881. [Google Scholar] [CrossRef]
- Chun, Y.J.; Oh, Y.K.; Kim, B.J.; Kim, D.; Kim, S.S.; Choi, H.K.; Kim, M.Y. Potent inhibition of human cytochrome P450 1B1 by tetramethoxystilbene. Toxicol. Lett. 2009, 189, 84–89. [Google Scholar] [CrossRef]
- Lin, W.S.; Leland, J.V.; Ho, C.T.; Pan, M.H. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. J. Agric. Food Chem. 2020, 68, 12788–12799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Sun, C.; Chen, X.; Han, L.; Wang, T.; Liu, J.; Chen, X.; Zhao, D. Effect of pterostilbene, a natural derivative of resveratrol, in the treatment of colorectal cancer through top1/tdp1-mediated dna repair pathway. Cancers 2021, 13, 4002. [Google Scholar] [CrossRef] [PubMed]
- Schneider, Y.; Chabert, P.; Stutzmann, J.; Coelho, D.; Fougerousse, A.; Gossé, F.; Launay, J.F.; Brouillard, R.; Raul, F. Resveratrol analog (Z)-3,5,4′-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int. J. Cancer 2003, 107, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.H.; Hsu, L.S.; Lin, C.L.; Hong, H.M.; Pan, M.H.; Way, T.D.; Chen, W.J. 3,5,4′-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Toxicol. Appl. Pharmacol. 2013, 272, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Li, Y.; Hu, S.; Zhou, W.; Meng, Y.; Li, Z.; Zhang, Y.; Sun, J.; Bo, Z.; DePamphilis, M.L.; et al. DHS (trans−4,4′-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene 2019, 38, 2364–2379. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, H.; Moriyama, M.; Ninomiya, K.; Morikawa, T.; Hayakawa, T. Inhibitory Effects of Oligostilbenoids from the Bark of Shorea roxburghii on Malignant Melanoma Cell Growth: Implications for Novel Topical Anticancer Candidates. Biol. Pharm. Bull. 2016, 39, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.H.; Kim, S.Y. A stilbenoid isorhapontigenin as a potential anti-cancer agent against breast cancer through inhibiting sphingosine kinases/tubulin stabilization. Cancers 2019, 11, 1947. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 2002, 86, 774–778. [Google Scholar] [CrossRef]
- Seyed, M.A.; Jantan, I.; Bukhari SN, A.; Vijayaraghavan, K. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. J. Agric. Food Chem. 2016, 64, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Orcajada, S.; Conesa, I.; Vidal-Sánchez, F.J.; Matencio, A.; Albaladejo-Maricó, L.; García-Carmona, F.; López-Nicolás, J.M. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit. Rev. Food Sci. Nutr. 2022, 63, 7269–7287. [Google Scholar] [CrossRef]
- Kita, Y.; Miura, Y.; Yagasaki, K. Antiproliferative and anti-invasive effect of Piceatannol, a polyphenol present in grapes and wine, against hepatoma AH109A cells. J. Biomed. Biotechnol. 2012, 2012, 672416. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Kim, J.; Khan, I.A.; Walker, L.A.; Khan, S.I. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci. 2014, 100, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Eling, T.E.; Baek, S.J.; Shim, M.; Lee, C.H. NSAID activated gene (NAG-1), a modulator of tumorigenesis—PubMed. J. Biochem. Mol. Biol. 2006, 39, 649–655. [Google Scholar]
- Chen, M.K.; Liu, Y.T.; Lin, J.T.; Lin, C.C.; Chuang, Y.C.; Lo, Y.S.; Hsi, Y.T.; Hsieh, M.J. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed. Pharmacother. 2019, 117, 109160. [Google Scholar] [CrossRef]
- Song, J.; Seo, Y.; Park, H. Pinosylvin enhances leukemia cell death via down-regulation of AMPKα expression. Phytother. Res. 2018, 32, 2097–2104. [Google Scholar] [CrossRef]
- Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009, 177, 143–155. [Google Scholar] [CrossRef]
- Singh, D.; Mendonsa, R.; Koli, M.; Subramanian, M.; Nayak, S.K. Antibacterial activity of resveratrol structural analogues: A mechanistic evaluation of the structure-activity relationship. Toxicol. Appl. Pharmacol. 2019, 367, 23–32. [Google Scholar] [CrossRef]
- Plumed-Ferrer, C.; Väkeväinen, K.; Komulainen, H.; Rautiainen, M.; Smeds, A.; Raitanen, J.E.; Eklund, P.; Willför, S.; Alakomi, H.L.; Saarela, M.; et al. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int. J. Food Microbiol. 2013, 164, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mattio, L.; Catinella, G.; Iriti, M.; Vallone, L. Inhibitory activity of stilbenes against filamentous fungi. Ital. J. Food Saf. 2021, 10, 8461. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, B.; Ammazzalorso, A.; Amoroso, R.; Giampietro, L. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev. Res. 2019, 80, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Gangadevi, S.; Badavath, V.N.; Thakur, A.; Yin, N.; De Jonghe, S.; Acevedo, O.; Jochmans, D.; Leyssen, P.; Wang, K.; Neyts, J.; et al. Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. J. Phys. Chem. Lett. 2021, 12, 1793–1802. [Google Scholar] [CrossRef] [PubMed]
- Park, W.H.; Lee, S.J.; Moon, H.I. Antimalarial activity of a new stilbene glycoside from Parthenocissus tricuspidata in mice. Antimicrob. Agents Chemother. 2008, 52, 3451–3453. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Xiao, W.; Hu, J.; Xie, J.; Yuan, J.; Wang, L. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity. Int. J. Antimicrob. Agents 2020, 55, 105821. [Google Scholar] [CrossRef]
- Cave, E.; Crowther, N.J. The Use of 3T3-L1 Murine Preadipocytes as a Model of Adipogenesis. Methods Mol. Biol. 2019, 1916, 263–272. [Google Scholar] [PubMed]
- Zhang, H.; Matsuda, H.; Yamashita, C.; Nakamura, S.; Yoshikawa, M. Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound. Eur. J. Pharmacol. 2009, 606, 255–261. [Google Scholar]
- Tomino, Y. Lessons from the KK-Ay mouse, a spontaneous animal model for the treatment of human type 2 diabetic nephropathy. Nephrourol. Mon. 2012, 4, 524–529. [Google Scholar] [CrossRef]
- Kerem, Z.; Bilkis, I.; Flaishman, M.A.; Sivan, L. Antioxidant Activity and Inhibition of r-Glucosidase by trans-Resveratrol, Piceid, and a Novel trans-Stilbene from the Roots of Israeli Rumex bucephalophorus L. J. Agric. Food Chem. 2006, 54, 1243–1247. [Google Scholar] [CrossRef]
- Pereira, A.C.; Arruda, M.S.; da Silva, E.A.; da Silva, M.N.; Lemos, V.S.; Cortes, S.F. Inhibition of α-glucosidase and hypoglycemic effect of stilbenes from the Amazonian plant Deguelia rufescens var. urucu (Ducke) A.M.G. Azevedo (Leguminosae). Planta Med. 2012, 78, 36–38. [Google Scholar] [CrossRef]
- Colica, C.; Milanović, M.; Milić, N.; Aiello, V.; De Lorenzo, A.; Abenavoli, L. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat. Prod. Commun. 2018, 13, 1195–1203. [Google Scholar] [CrossRef]
- Li, X.; Dai, Y.; Yan, S.; Shi, Y.; Li, J.; Liu, J.; Cha, L.; Mu, J. Resveratrol lowers blood pressure in spontaneously hypertensive rats via calcium-dependent endothelial NO production. Clin. Exp. Hypertens. 2016, 38, 287–293. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Zhang, P.; He, S.; Huang, D. Effect of resveratrol on blood pressure: A meta-analysis of randomized controlled trials. Clin. Nutr. 2015, 34, 27–34. [Google Scholar] [CrossRef]
- Riche, D.M.; Riche, K.D.; Blackshear, C.T.; McEwen, C.L.; Sherman, J.J.; Wofford, M.R.; Griswold, M.E. Pterostilbene on metabolic parameters: A randomized, double-blind, and placebo-controlled trial. Evid.-Based Complement. Altern. Med. 2014, 2014, 459165. [Google Scholar] [CrossRef]
- Wongwat, T.; Srihaphon, K.; Pitaksutheepong, C.; Boonyo, W.; Pitaksuteepong, T. Suppression of inflammatory mediators and matrix metalloproteinase (MMP)-13 by Morus alba stem extract and oxyresveratrol in RAW 264.7 cells and C28/I2 human chondrocytes. J. Tradit. Complement. Med. 2020, 10, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef]
- Sánchez-Fidalgo, S.; Cárdeno, A.; Villegas, I.; Talero, E.; de la Lastra, C.A. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur. J. Pharmacol. 2010, 633, 78–84. [Google Scholar] [CrossRef]
- Shi, G.; Hua, M.; Xu, Q.; Ren, T. Resveratrol improves treatment outcome and laboratory parameters in patients with Takayasu arteritis: A randomized double-blind and placebo-controlled trial. Immunobiology 2017, 222, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.T.; Ko, M.C.; Chen, B.Y.; Huang, J.C.; Hsieh, C.W.; Lee, M.C.; Chiou, R.Y.; Wung, B.S.; Peng, C.H.; Yang, Y.L. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J. Agric. Food Chem. 2008, 56, 6910–6913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shi, J.S.; Zhou, H.; Wilson, B.; Hong, J.S.; Gao, H.M. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol. Pharmacol. 2010, 78, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem. 2005, 280, 37377–37382. [Google Scholar] [CrossRef]
- Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007, 26, 3169–3179. [Google Scholar] [CrossRef]
- Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Witte, A.V.; Kerti, L.; Margulies, D.S.; Flöel, A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 2014, 34, 7862–7870. [Google Scholar] [CrossRef]
- Evans, H.M.; Howe, P.R.C.; Wong, R.H.X. Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients 2017, 9, 27. [Google Scholar] [CrossRef]
- Wong, R.H.X.; Raederstorff, D.; Howe, P.R.C. Acute resveratrol consumption improves neurovascular coupling capacity in adults with type 2 diabetes mellitus. Nutrients 2016, 8, 425. [Google Scholar] [CrossRef]
- Wong, R.H.X.; Nealon, R.S.; Scholey, A.; Howe, P.R.C. Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 393–399. [Google Scholar] [CrossRef]
- Simão, F.; Matté, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways. Eur. J. Neurosci. 2012, 36, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Sun, Z.; Liu, Y.; Jia, Y.; Zhang, B.; Zhang, J. Resveratrol improves cognition and reduces oxidative stress in rats with vascular dementia. Neural Regen. Res. 2013, 8, 2050–2059. [Google Scholar] [PubMed]
- Naik, B.; Nirwane, A.; Majumdar, A. Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats. Cogn. Neurodyn. 2017, 11, 35–49. [Google Scholar] [CrossRef]
- Ban, J.Y.; Jeon, S.Y.; Nguyen, T.T.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective Effect of Oxyresveratrol from Smilacis Chinae Rhizome on Amyloid b Protein (25–35)-Induced Neurotoxicity in Cultured Rat Cortical Neurons. Biol. Pharm. Bull. 2006, 29, 2419–2424. [Google Scholar] [CrossRef]
- Andrabi, S.A.; Spina, M.G.; Lorenz, P.; Ebmeyer, U.; Wolf, G.; Horn, T.F. Oxyresveratrol (trans-2,3′,4,5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 2004, 1017, 98–107. [Google Scholar] [CrossRef]
- Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 555–575. [Google Scholar] [CrossRef]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Igarashi, K.; Hayashi, N.; Nishizawa, M.; Yamamoto, M. Cloning and Characterization of a Novel Erythroid Cell-Derived CNC Family Transcription Factor Heterodimerizing with the Small Maf Family Proteins. Mol. Cell. Biol. 1995, 15, 4184–4193. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ru, X.; Wen, T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Yamamoto, M. The KEAP1NRF2 system in cancer. Front. Oncol. 2017, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Thomas, N.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 2004, 279, 31556–31567. [Google Scholar] [CrossRef]
- Nioi, P.; Nguyen, T.; Sherratt, P.J.; Pickett, C.B. The Carboxy-Terminal Neh3 Domain of Nrf2 Is Required for Transcriptional Activation. Mol. Cell Biol. 2005, 25, 10895–10906. [Google Scholar] [CrossRef]
- Canning, P.; Sorrell, F.J.; Bullock, A.N. Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 2015, 88, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Katoh, Y.; Itoh, K.; Yoshida, E.; Miyagishi, M.; Fukamizu, A.; Yamamoto, M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 2001, 6, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Chowdhry, S.; Zhang, Y.; McMahon, M.; Sutherland, C.; Cuadrado, A.; Hayes, J.D. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013, 32, 3765–3781. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, K.; Geng, M.; Gao, P.; Wu, X.; Hai, Y.; Li, Y.; Li, Y.; Luo, L.; Hayes, J.D.; et al. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 2013, 73, 3097–3108. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.; Killeen, E.; Naquin, R.; Alam, S.; Alam, J. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J. Biol. Chem. 2003, 278, 2396–2402. [Google Scholar] [CrossRef]
- Kaspar, J.W.; Jaiswal, A.K. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression. J. Biol. Chem. 2010, 285, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Shelton, P.; Jaiswal, A.K. The transcription factor NF-E2-related factor 2 (nrf2): A protooncogene? FASEB J. 2013, 27, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of cell protection by heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Talalay, P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 2010, 501, 116–123. [Google Scholar] [CrossRef]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonenn, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kokot, A.; Metze, D.; Mouchet, N.; Galibert, M.D.; Schiller, M.; Luger, T.A.; Böhm, M. α-melanocyte-stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin. Endocrinology 2009, 150, 3197–3206. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, N.; Shin, S.; Slocum, S.L.; Agoston, E.S.; Wakabayashi, J.; Kwak, M.K.; Misra, V.; Biswal, S.; Yamamoto, M.; Kensler, T.W. Regulation of Notch1 signaling by Nrf2: Implications for tissue regeneration. Sci. Signal 2010, 3, ra52. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Ali Shariati, M.; Rebezov, M.; Girish, S.; Thangavel, S.; Dhanapal, A.R.; Fedoseeva, N.; et al. Bioactive compounds in oxidative stress-mediated diseases: Targeting the nrf2/are signaling pathway and epigenetic regulation. Antioxidants 2021, 10, 1859. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Niesen, D.B.; Hessler, C.; Seeram, N.P. Beyond resveratrol: A review of natural stilbenoids identified from 2009-2013. J. Berry Res. 2013, 3, 181–196. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Dai, M.; Yuan, D.; Lei, Y.; Li, J.; Ren, Y.; Zhang, Y.; Cang, H.; Gao, W.; Tang, Y. Expression, purification and structural characterization of resveratrol synthase from Polygonum cuspidatum. Protein Expr Purif. 2022, 191, 106024. [Google Scholar] [CrossRef]
- Dos Santos, F.A.R.; Xavier, J.A.; da Silva, F.C.; Merlin, J.P.J.; Goulart, M.O.F.; Rupasinghe, H.P.V. Antidiabetic, Antiglycation, and Antioxidant Activities of Ethanolic Seed Extract of Passiflora edulis and Piceatannol In Vitro. Molecules 2022, 27, 4064. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Averilla, J.N.; Kim, H.J.; Kim, J.S.; Kim, J.S. Grape Peel Extract and Resveratrol Inhibit Wrinkle Formation in Mice Model Through Activation of Nrf2/HO-1 Signaling Pathway. J. Food Sci. 2019, 84, 1600–1608. [Google Scholar] [CrossRef]
- Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016, 29, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xie, X.; Yuan, L.; Qiu, J.; Duan, W.; Xu, B.; Chen, X. Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signaling pathway. BioFactors 2020, 46, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Yan, Y.; He, X.Y.; Yang, H.; Liang, B.; Wang, J.; He, Y.; Ding, Y.; Yu, H. Effects of Resveratrol on the Mechanisms of Antioxidants and Estrogen in Alzheimer’s Disease. BioMed Res. Int. 2019, 2019, 8983752. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Wang, Y.; Jin, J.; Yang, Z.; Guo, R.; Li, X.; Yang, L.; Li, Z. Resveratrol Treats UVB-Induced Photoaging by Anti-MMP Expression, through Anti-Inflammatory, Antioxidant, and Antiapoptotic Properties, and Treats Photoaging by Upregulating VEGF-B Expression. Oxidative Med. Cell Longev. 2022, 2022, 6037303. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ruan, Q.; Ye, Z.; Chu, Z.; Xi, M.; Li, M.; Hu, W.; Guo, X.; Yao, P.; Xie, W. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns 2021, 47, 133–139. [Google Scholar] [CrossRef]
- Xun, W.; Fu, Q.; Shi, L.; Cao, T.; Jiang, H.; Ma, Z. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. Int. Immunopharmacol. 2021, 99, 107989. [Google Scholar] [CrossRef]
- Hosseini, H.; Teimouri, M.; Shabani, M.; Koushki, M.; Babaei, K.R.; Namvarjah, F.; Izadi, P.; Meshkani, R. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 2020, 119, 105667. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, L.; Wang, R.; Chen, T.; Liu, X.; Jin, F. 3,5,4′-Tri-O-acetylresveratrol attenuates seawater inhalation-induced acute respiratory distress syndrome via thioredoxin 1 pathway. Int. J. Mol. Med. 2018, 41, 3493–3500. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Jin, S.; Pang, Q.; Shan, A.; Feng, X. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J. Anim. Physiol. Anim. Nutr. 2022, 106, 1306–1320. [Google Scholar] [CrossRef]
- Rasheed, M.S.U.; Tripathi, M.K.; Patel, D.K.; Singh, M.P. Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism. Protein Pept. Lett. 2020, 27, 1038–1045. [Google Scholar] [CrossRef]
- Recalde, M.D.; Miguel, C.A.; Noya-Riobó, M.V.; González, S.L.; Villar, M.J.; Coronel, M.F. Resveratrol exerts anti-oxidant and anti-inflammatory actions and prevents oxaliplatin-induced mechanical and thermal allodynia. Brain Res. 2020, 1748, 147079. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Song, X.; Zhao, L.; Li, Z.; Liu, B. Resveratrol Prevents Diabetic Cardiomyopathy by Increasing Nrf2 Expression and Transcriptional Activity. BioMed Res. Int. 2018, 2018, 2150218. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Hu, S.; Ge, S.; Jia, M.; Wang, N. Resveratrol inhibits MRGPRX2-mediated mast cell activation via Nrf2 pathway. Int. Immunopharmacol. 2021, 93, 107426. [Google Scholar] [CrossRef]
- Trusov, N.V.; Semin, M.O.; Shipelin, V.A.; Apryatin, S.A.; Gmoshinski, I.V. Liver gene expression in normal and obese rats received resveratrol and L-carnitine. Vopr. Pitan. 2021, 90, 25–37. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, F.; Liu, M.; Xue, J.; Huang, H. Resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric rat model via Nrf2 signaling pathway. Exp. Ther. Med. 2018, 16, 3233–3240. [Google Scholar] [CrossRef]
- Wu, M.; Ma, L.; Xue, L.; Ye, W.; Lu, Z.; Li, X.; Jin, Y.; Qin, X.; Chen, D.; Tang, W.; et al. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice. Aging 2019, 11, 1030–1044. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.M.; Guan, P.; Luo, L.F.; Qin, L.Y.; Wang, N.; Zhao, Y.S.; Ji, E.S. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci. 2020, 245, 117362. [Google Scholar] [CrossRef]
- Kabel, A.M.; Atef, A.; Estfanous, R.S. Ameliorative potential of sitagliptin and/or resveratrol on experimentally-induced clear cell renal cell carcinoma. Biomed. Pharmacother. 2018, 97, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Lian, N.; Zhang, S.; Huang, J.; Lin, T.; Lin, Q. Resveratrol Attenuates Intermittent Hypoxia-Induced Lung Injury by Activating the Nrf2/ARE Pathway. Lung 2020, 198, 323–331. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liu, M.; Liu, X.; Jiao, Y.; Jin, S.; Shan, A.; Feng, X. Effects of dietary resveratrol supplementation on growth performance and anti-inflammatory ability in ducks (Anas platyrhynchos) through the nrf2/ho-1 and tlr4/nf-κb signaling pathways. Animals 2021, 11, 3588. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Y.; Wang, J.; Wang, X.; Chen, C.; Yin, D.; Zhao, F.; Yin, J.; Guo, M.; Zhang, L.; et al. Resveratrol represses estrogen-induced mammary carcinogenesis through NRF2-UGT1A8-estrogen metabolic axis activation. Biochem. Pharmacol. 2018, 155, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhao, X.; Fu, J.; Wang, X. Resveratrol increase myocardial Nrf2 expression in type 2 diabetic rats and alleviate myocardial ischemia/reperfusion injury (MIRI). Ann. Palliat. Med. 2019, 8, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, V.; Palomera-Ávalos, V.; López-Ruiz, S.; Canudas, A.M.; Pallàs, M.; Griñán-Ferré, C. Maternal resveratrol supplementation prevents cognitive decline in senescent mice offspring. Int. J. Mol. Sci. 2019, 20, 1134. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Ji, S.; Jia, P.; Chen, Y.; Li, Y.; Wang, T. Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. Free Radic. Biol. Med. 2021, 177, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Xiong, Q.; Zhou, M.; Tian, X.; Yue, K.; Li, Y.; Shu, X.; Ru, Q. Resveratrol attenuates methamphetamine-induced memory impairment via inhibition of oxidative stress and apoptosis in mice. J. Food Biochem. 2021, 45, e13622. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.; Wang, T.; Tong, C.; Liu, Y.; Shi, L.; Mao, S.; Shi, X.; Jin, H.; Liu, Y.; Hou, M. Resveratrol ameliorates thoracic blast exposure-induced inflammation, endoplasmic reticulum stress and apoptosis in the brain through the Nrf2/Keap1 and NF-κB signaling pathway. Injury 2021, 52, 2795–2802. [Google Scholar] [CrossRef]
- Javkhedkar, A.A.; Quiroz, Y.; Rodriguez-Iturbe, B.; Vaziri, N.D.; Lokhandwala, M.F.; Banday, A.A. Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, 840–846. [Google Scholar] [CrossRef]
- Rubio-Ruiz, M.E.; Guarner-Lans, V.; Cano-Martínez, A.; Díaz-Díaz, E.; Manzano-Pech, L.; Gamas-Magaña, A.; Castrejón-Tellez, V.; Tapia-Cortina, C.; Pérez-Torres, I. Resveratrol and quercetin administration improves antioxidant DEFENSES and reduces fatty liver in metabolic syndrome rats. Molecules 2019, 24, 1297. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Z.; Li, C.; Pan, Y.; Tang, X.; Wang, X.J. Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. Oxidative Med. Cell Longev. 2019, 2019, 7180284. [Google Scholar] [CrossRef] [PubMed]
- Pierre, C.J.; Azeez, T.A.; Rossetti, M.L.; Gordon, B.S.; La Favor, J.D. Long-term administration of resveratrol and MitoQ stimulates cavernosum antioxidant gene expression in a mouse castration model of erectile dysfunction. Life Sci. 2022, 310, 121082. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of resveratrol on growth performance, intestinal development, and antioxidant status of broilers under heat stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef]
- Ma, S.; Feng, J.; Zhang, R.; Chen, J.; Han, D.; Li, X.; Yang, B.; Li, X.; Fan, M.; Li, C.; et al. SIRT1 Activation by Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in Diabetic Cardiomyopathy Mice. Oxidative Med. Cell Longev. 2017, 2017, 4602715. [Google Scholar] [CrossRef]
- Wang, X.; Fang, H.; Xu, G.; Yang, Y.; Xu, R.; Liu, Q.; Xue, X.; Liu, J.; Wang, H. Resveratrol prevents cognitive impairment in type 2 diabetic mice by upregulating Nrf2 expression and transcriptional level. Diabetes Metab. Syndr. Obes. 2020, 13, 1061–1075. [Google Scholar] [CrossRef]
- Ikeda, E.; Tanaka, D.; Glogauer, M.; Tenenbaum, H.C.; Ikeda, Y. Healing effects of monomer and dimer resveratrol in a mouse periodontitis model. BMC Oral Health 2022, 22, 460. [Google Scholar] [CrossRef] [PubMed]
- Cirmi, S.; Maugeri, A.; Micali, A.; Marini, H.R.; Puzzolo, D.; Santoro, G.; Freni, J.; Squadrito, F.; Irrera, N.; Pallio, G.; et al. Cadmium-induced kidney injury in mice is counteracted by a flavonoid-rich extract of bergamot juice, alone or in association with curcumin and resveratrol, via the enhancement of different defense mechanisms. Biomedicines 2021, 9, 1797. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.N.; Lu, H.P.; Peng, Y.L.; Zhang, B.S.; Gong, X.B.; Su, J.; Zhou, Y.; Pan, M.H.; Xu, L. Oxyresveratrol prevents lipopolysaccharide/D-galactosamine-induced acute liver injury in mice. Int. Immunopharmacol. 2018, 56, 105–112. [Google Scholar] [CrossRef]
- Seo, Y.; Park, J.; Choi, W.; Ju Son, D.; Sung Kim, Y.; Kim, M.K.; Yoon, B.E.; Pyee, J.; Tae Hong, J.; Go, Y.M.; et al. Antiatherogenic Effect of Resveratrol Attributed to Decreased Expression of ICAM-1 (Intercellular Adhesion Molecule-1). Arterioscler. Thromb. Vasc. Biol. 2019, 39, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, H.; Lin, Q.; Liu, X.; Cheng, Y.; Deng, B. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging 2021, 13, 10659–10671. [Google Scholar] [CrossRef]
- Krajka-Kuźniak, V.; Szaefer, H.; Stefański, T.; Sobiak, S.; Cichocki, M.; Baer-Dubowska, W. The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell Mol. Biol. Lett. 2014, 19, 500–516. [Google Scholar] [CrossRef]
- Zhou, Y.; Lan, R.; Xu, Y.; Zhou, Y.; Lin, X.; Miao, J. Resveratrol alleviates oxidative stress caused by Streptococcus uberis infection via activating the Nrf2 signaling pathway. Int. Immunopharmacol. 2020, 89, 107076. [Google Scholar] [CrossRef]
- Cheng, L.; Jin, Z.; Zhao, R.; Ren, K.; Deng, C.; Yu, S. Resveratrol attenuates Inflammation and Oxidative Stress Induced by Myocardial Ischemia-Reperfusion Injury: Role of Nrf2/ARE Pathway. Int. J. Clin. Exp. Med. 2015, 8, 10420–10428. [Google Scholar] [PubMed]
- Abd El-Fattah, A.A.; Fahim, A.T.; Sadik, N.A.H.; Ali, B.M. Resveratrol and curcumin ameliorate di-(2-ethylhexyl) phthalate induced testicular injury in rats. Gen. Comp. Endocrinol. 2016, 225, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.S.; Ayo, J.O.; Danjuma, N.M.; AbdulWahab, A.; Isa, A.S.; Umar, A.H. Modulation of Memory and Neurochemical Changes by Resveratrol and Environmental Enrichment in Rodent Model of Alzheimer’s Disease. Niger. J. Physiol. Sci. 2022, 37, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, E.M.; Ahmed, K.A.; Abdelmonem, M. Resveratrol mitigates diclofenac-induced hepatorenal toxicity in rats via modulation of miR-144/Nrf2/GSH axis. J. Biochem. Mol. Toxicol. 2022, 36, e23129. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Li, Y.; Cao, L.; Du, J.; Zheng, T.; Qian, H.; Gu, Z.; Jeney, G.; Xu, P.; Yin, G. Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 215, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.S.; Cheng, Y.H.; Lee, C.Y.; Chung, C.Y.; Chang, W.C. Resveratrol protects against methylglyoxal-induced hyperglycemia and pancreatic damage in vivo. Nutrients 2015, 7, 2850–2865. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Zhou, X.; Liu, M.; Jin, S.; Shan, A.; Feng, X. Resveratrol relieved acute liver damage in ducks (Anas platyrhynchos) induced by afb1 via modulation of apoptosis and nrf2 signaling pathways. Animals 2021, 11, 3516. [Google Scholar] [CrossRef]
- Wei, Y.; Jia, J.; Jin, X.; Tong, W.; Tian, H. Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. Mol. Med. Rep. 2018, 17, 1493–1498. [Google Scholar] [CrossRef]
- Zhou, N.; Tian, Y.; Liu, W.; Tu, B.; Xu, W.; Gu, T.; Zou, K.; Lu, L. Protective Effects of Resveratrol and Apigenin Dietary Supplementation on Serum Antioxidative Parameters and mRNAs Expression in the Small Intestines of Diquat-Challenged Pullets. Front. Vet. Sci. 2022, 9, 850769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, R.; Man, K.; Yang, X.B. Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway. Pharm. Biol. 2022, 60, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Chang, J.C.; Lin, W.Y.; Li, C.C.; Hsieh, M.; Chen, H.W.; Wang, T.S.; Wu, W.T.; Liu, C.S.; Liu, K.L. Caffeic acid and resveratrol ameliorate cellular damage in cell and Drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway. Free Radic. Biol. Med. 2018, 115, 309–317. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Mahfouz, M.K. Effect of resveratrol and rosuvastatin on experimental diabetic nephropathy in rats. Biomed. Pharmacother. 2016, 82, 685–692. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Wang, S.; Zhang, C.; Zheng, L.; Jia, Y.; Xu, M.; Zhu, T.; Zhang, Y.; Rong, R. Resveratrol Alleviates Inflammatory Responses and Oxidative Stress in Rat Kidney Ischemia-Reperfusion Injury and H2O2-Induced NRK-52E Cells via the Nrf2/TLR4/NF-κB Pathway. Cell. Physiol. Biochem. 2018, 45, 1677–1689. [Google Scholar] [CrossRef]
- Tamaki, N.; Orihuela-Campos, C.R.; Inagaki, Y.; Fukui, M.; Nagata, T.; Ito, H.O. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic. Biol. Med. 2014, 75, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Ma, Y.; Jin, J.; Wang, X. Activation of AMPK/p38/Nrf2 is involved in resveratrol alleviating myocardial ischemia-reperfusion injury in diabetic rats as an endogenous antioxidant stress feedback. Ann. Transl. Med. 2022, 10, 890. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, R.; Wang, J.; Yang, X.; Wen, L.; Feng, J. Resveratrol mitigates the oxidative stress mediated by hypoxic-ischemic brain injury in neonatal rats via nrf2/ho-1 pathway. Pharm. Biol. 2018, 56, 440–449. [Google Scholar] [CrossRef]
- Li, X.N.; Ma, L.Y.; Ji, H.; Qin, Y.H.; Jin, S.S.; Xu, L.X. Resveratrol protects against oxidative stress by activating the keap-1/nrf2 antioxidant defense system in obese-asthmatic rats. Exp. Ther. Med. 2018, 16, 4339–4348. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, G.; Chen, L.; Ding, Y.; Lian, J.; Hong, G.; Lu, Z. Resveratrol protects mice from paraquat-induced lung injury: The important role of SIRT1 and NRF2 antioxidant pathways. Mol. Med. Rep. 2016, 13, 1833–1838. [Google Scholar] [CrossRef]
- Singh, B.; Shoulson, R.; Chatterjee, A.; Ronghe, A.; Bhat, N.K.; Dim, D.C.; Bhat, H.K. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways Downloaded from. Eccles. Health Sci. Lib-Serials 2014, 35, 1872–1880. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Q.; Li, J.; Xiao, M.; Gao, T.; Zhang, X.; Lu, G.; Wang, J.; Guo, Y.; Wen, P.; et al. Co-Treatment with Resveratrol and FGF1 Protects against Acute Liver Toxicity After Doxorubicin Treatment via the AMPK/NRF2 Pathway. Front. Pharmacol. 2022, 13, 940406. [Google Scholar] [CrossRef]
- Lu, G.; Liu, Q.; Gao, T.; Li, J.; Zhang, J.; Chen, O.; Cao, C.; Mao, M.; Xiao, M.; Zhang, X.; et al. Resveratrol and FGF1 Synergistically Ameliorates Doxorubicin-Induced Cardiotoxicity via Activation of SIRT1-NRF2 Pathway. Nutrients 2022, 14, 4017. [Google Scholar] [CrossRef]
- Meng, Q.; Guo, T.; Li, G.; Sun, S.; He, S.; Cheng, B.; Shi, B.; Shan, A. Dietary resveratrol improves antioxidant status of sows and piglets and regulates antioxidant gene expression in placenta by Keap1-Nrf2 pathway and Sirt1. J. Anim. Sci. Biotechnol. 2018, 9, 34. [Google Scholar] [CrossRef]
- Wang, J.; Jia, R.; Celi, P.; Zhuo, Y.; Ding, X.; Zeng, Q.; Bai, S.; Xu, S.; Yin, H.; Lv, L.; et al. Resveratrol Alleviating the Ovarian Function Under Oxidative Stress by Alternating Microbiota Related Tryptophan-Kynurenine Pathway. Front. Immunol. 2022, 13, 911381. [Google Scholar] [CrossRef]
- Achy-Brou CA, A.; Billack, B. Lipopolysaccharide Attenuates the Cytotoxicity of Resveratrol in Transformed Mouse Macrophages. Plant Foods Human. Nutr. 2016, 71, 272–276. [Google Scholar] [CrossRef]
- Li, H.; Shen, Y.; Sun, W.; Xiao, H. Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line. Pathol. Res. Pract. 2021, 225, 153576. [Google Scholar]
- Hosoda, R.; Hamada, H.; Uesugi, D.; Iwahara, N.; Nojima, I.; Horio, Y.; Kuno, A. Different antioxidative and antiapoptotic effects of piceatannol and resveratrol. J. Pharmacol. Exp. Ther. 2021, 376, 385–396. [Google Scholar] [CrossRef]
- Chen, S.; Tamaki, N.; Kudo, Y.; Tsunematsu, T.; Miki, K.; Ishimaru, N.; Ito, H.O. Protective effects of resveratrol against 5-fluorouracil-induced oxidative stress and inflammatory responses in human keratinocytes. J. Clin. Biochem. Nutr. 2021, 69, 238–246. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Du, Y.; Li, G.; Wang, L.; Zhou, F. Resveratrol Ameliorated Vascular Calcification by Regulating Sirt-1 and Nrf2. Transpl. Transplant. Proc. 2016, 48, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Daverey, A.; Agrawal, S.K. Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res. 2018, 1692, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Caldeira-Dias, M.; Viana-Mattioli, S.; Machado, J.S.R.; Carlström, M.; Cavalli, R.C.; Sandrim, V.C. Resveratrol and grape juice: Effects on redox status and nitric oxide production of endothelial cells in in vitro preeclampsia model. Pregnancy Hypertens. 2021, 23, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Afzal, S.; Zheng, Y.F.; Münch, G.; Li, C.G. Synergistic Protective Effect of Curcumin and Resveratrol against Oxidative Stress in Endothelial EAhy926 Cells. Evid.-Based Complement. Altern. Med. 2021, 2021, 2661025. [Google Scholar] [CrossRef] [PubMed]
- Ferraresi, A.; Esposito, A.; Girone, C.; Vallino, L.; Salwa, A.; Ghezzi, I.; Thongchot, S.; Vidoni, C.; Dhanasekaran, D.N.; Isidoro, C. Resveratrol Contrasts LPA-Induced Ovarian Cancer Cell Migration and Platinum Resistance by Rescuing Hedgehog-Mediated Autophagy. Cells 2021, 10, 3213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, G.; Wang, T.; Cao, W.; Zhang, L.; Chen, X. Nrf2–Keap1 pathway–mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide–treated rheumatoid arthritis fibroblast-like synoviocytes. Ann. N. Y. Acad. Sci. 2019, 1457, 166–178. [Google Scholar] [CrossRef]
- Leong, C.W.; Wong, C.H.; Lao, S.C.; Leong, E.C.; Lao, I.F.; Law, P.T.; Fung, K.P.; Tsang, K.S.; Waye, M.M.; Tsui, S.K.; et al. Effect of resveratrol on proliferation and differentiation of embryonic cardiomyoblasts. Biochem Biophys Res Commun. 2007, 360, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Sabzevary-Ghahfarokhi, M.; Soltani, A.; Luzza, F.; Larussa, T.; Rahimian, G.; Shirzad, H.; Bagheri, N. The protective effects of resveratrol on ulcerative colitis via changing the profile of Nrf2 and IL-1β protein. Mol. Biol. Rep. 2020, 47, 6941–6947. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Nicol, C.J.B.; Lo, S.S.; Hung, S.W.; Wang, C.J.; Lin, C.H. Resveratrol Mitigates Oxygen and Glucose Deprivation-Induced Inflammation, NLRP3 Inflammasome, and Oxidative Stress in 3D Neuronal Culture. Int. J. Mol. Sci. 2022, 23, 11678. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Li, L.; Wang, J.; Zhao, B.; Pan, J.; Wang, L.; Liu, X.; Liu, X.; Liu, Z. Resveratrol Prevents Acrylamide-Induced Mitochondrial Dysfunction and Inflammatory Responses via Targeting Circadian Regulator Bmal1 and Cry1 in Hepatocytes. J. Agric. Food Chem. 2019, 67, 8510–8519. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, Y.; Yu, H.; Shan, A.; Shen, J.; Zhou, C.; Zhao, Y.; Fang, H.; Wang, X.; Wang, J.; et al. Resveratrol inhibits aflatoxin B1-induced oxidative stress and apoptosis in bovine mammary epithelial cells and is involved the Nrf2 signaling pathway. Toxicon 2019, 164, 10–15. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Feng, Z.; Bergan, R.; Li, B.; Qin, Y.; Zhao, L.; Zhang, Z.; Shi, M. Involvement of the PI3K/Akt/Nrf2 Signaling Pathway in Resveratrol-Mediated Reversal of Drug Resistance in HL-60/ADR Cells. Nutr. Cancer 2019, 71, 1007–1018. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Yang, J.; He, Y.; Wan, H.; Li, C. Analogs of imine resveratrol alleviate oxidative stress-induced neurotoxicity in PC12 cells via activation of Nrf2. FEBS Open Bio 2021, 11, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, X.; Tao, Z.; Wang, X.J.; Pan, Y. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. Food Chem. 2015, 173, 218–223. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, E.Y.; Ha, H.K.; Jo, C.M.; Lee, W.J.; Lee, S.S.; Kim, J.W. Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress. Asian-Australas. J. Anim. Sci. 2016, 29, 288–298. [Google Scholar] [CrossRef]
- Csiszár, A.; Csiszar, A.P.J.T.; Gautam, T.; Kleusch, C.; Hoffmann, B.; Tucsek, Z.; Toth, P.; Sonntag, W.E.; Ungvari, Z. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 303–313. [Google Scholar] [CrossRef]
- Bigagli, E.; Cinci, L.; Paccosi, S.; Parenti, A.; D’Ambrosio, M.; Luceri, C. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int. Immunopharmacol. 2017, 43, 147–155. [Google Scholar] [CrossRef]
- Moghadam, D.; Zarei, R.; Vakili, S.; Ghojoghi, R.; Zarezade, V.; Veisi, A.; Sabaghan, M.; Azadbakht, O.; Behrouj, H. The effect of natural polyphenols Resveratrol, Gallic acid, and Kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: Role of SIRT1/Nrf2 signaling pathway and oxidative stress. Mol. Biol. Rep. 2023, 50, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Wang, J.; Zhang, X.; Wang, J.; Li, J.; Liu, Q.; Lu, G.; Xiao, M.; Gao, T.; Guo, Y.; et al. Resveratrol Attenuates High Glucose-Induced Osteoblast Dysfunction via AKT/GSK3β/FYN-Mediated NRF2 Activation. Front. Pharmacol. 2022, 13, 862618. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yang, M.; Shen, Y.; Kang, L.; Zhu, X.; Dong, W.; Lei, X. Resveratrol Attenuates Hyperoxia Lung Injury in Neonatal Rats by Activating SIRT1/PGC-1α Signaling Pathway. Am. J. Perinatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, M.N.; Deng, J.; Zhang, C.H.; Liu, M.W. Resveratrol exhibits neuroprotection against paraquat-induced PC12 cells via heme oxygenase 1 upregulation by decreasing MiR-136-5p expression. Bioengineered 2022, 13, 7065–7081. [Google Scholar] [CrossRef] [PubMed]
- Gurusinghe, S.; Cox, A.G.; Rahman, R.; Chan, S.T.; Muljadi, R.; Singh, H.; Leaw, B.; Mockler, J.C.; Marshall, S.A.; Murthi, P.; et al. Resveratrol mitigates trophoblast and endothelial dysfunction partly via activation of nuclear factor erythroid 2-related factor-2. Placenta 2017, 60, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Xue, M.; Weickert, M.O.; Thornalley, P.J. Reversal of insulin resistance in overweight and obese subjects by trans-resveratrol and hesperetin combination—Link to dysglycemia, blood pressure, dyslipidemia, and low-grade inflammation. Nutrients 2021, 13, 2374. [Google Scholar] [CrossRef]
- Saldanha, J.F.; Leal, V.O.; Rizzetto, F.; Grimmer, G.H.; Ribeiro-Alves, M.; Daleprane, J.B.; Carraro-Eduardo, J.C.; Mafra, D. Effects of Resveratrol Supplementation in Nrf2 and NF-κB Expressions in Nondialyzed Chronic Kidney Disease Patients: A Randomized, Double-Blind, Placebo-Controlled, Crossover Clinical Trial. J. Ren. Nutr. 2016, 26, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Spath, E.; Kromp, K. Components of red sandalwood. III. The synthesis of pterostilbene. Ber. Dtsch. Chem. Ges. B 1941, 74, 189–192. [Google Scholar]
- Spath, E.; Schlager, J. On the constituents of ‘Red Sandalwood’ [Pterocarpus santalinus]. 2: The constitution of pterostilbene. Ber. Dtsch. Chem. Ges. B 1941, 73, 881–884. [Google Scholar]
- Langcake, P.; Cornford, C.A.; Pryce, R.J. Identification of pterostilbene as a phytoalexin from vitis vinifera leaves. Phytochemistry 1979, 18, 1025–1027. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef]
- Medina-Bolivar, F.; Condori, J.; Rimando, A.M.; Hubstenberger, J.; Shelton, K.; O’Keefe, S.F.; Bennett, S.; Dolan, M.C. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 2007, 68, 1992–2003. [Google Scholar] [CrossRef]
- Cassiano, C.; Eletto, D.; Tosco, A.; Riccio, R.; Monti, M.C.; Casapullo, A. Determining the effect of pterostilbene on insulin secretion using chemoproteomics. Molecules 2020, 25, 2885. [Google Scholar] [CrossRef]
- Estrela, J.M.; Ortega, A.; Mena, S.; Rodriguez, M.L.; Asensi, M. Pterostilbene: Biomedical applications. Crit. Rev. Clin. Lab. Sci. 2013, 50, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Seo, K.H.; Yokoyama, W. Chemistry of Pterostilbene and Its Metabolic Effects. J. Agric. Food Chem. 2020, 68, 12836–12841. [Google Scholar] [CrossRef]
- Nagarajan, S.; Mohandas, S.; Ganesan, K.; Xu, B.; Ramkumar, K.M. New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules 2022, 27, 6316. [Google Scholar] [CrossRef] [PubMed]
- Bhakkiyalakshmi, E.; Sireesh, D.; Sakthivadivel, M.; Sivasubramanian, S.; Gunasekaran, P.; Ramkumar, K.M. Anti-hyperlipidemic and anti-peroxidative role of pterostilbene via Nrf2 signaling in experimental diabetes. Eur. J. Pharmacol. 2016, 777, 9–16. [Google Scholar] [CrossRef]
- Zhou, J.; Ci, X.; Ma, X.; Yu, Q.; Cui, Y.; Zhen, Y.; Li, S. Pterostilbene activates the Nrf2-dependent antioxidant response to ameliorate arsenic-induced intracellular damage and apoptosis in human keratinocytes. Front. Pharmacol. 2019, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Bhakkiyalakshmi, E.; Shalini, D.; Sekar, T.V.; Rajaguru, P.; Paulmurugan, R.; Ramkumar, K.M. Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br. J. Pharmacol. 2014, 171, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Li, H.; Ho, Z.Y.; Dai, X.Y.; Chen, Q.; Li, R.; Liang, B.; Zhu, H. Pterostilbene’s protective effects against photodamage caused by UVA/UVB irradiation. Pharmazie 2018, 73, 651–658. [Google Scholar] [PubMed]
- Li, H.; Jiang, N.; Liang, B.; Liu, Q.; Zhang, E.; Peng, L.; Deng, H.; Li, R.; Li, Z.; Zhu, H. Pterostilbene protects against UVB-induced photo-damage through a phosphatidylinositol-3-kinase-dependent Nrf2/ARE pathway in human keratinocytes. Redox Rep. Report. 2017, 22, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Xiao, W.; Gu, W.T.; Zhang, Z.T.; Xu, S.H.; Chen, Z.Q.; Xu, Y.H.; Zhang, L.Y.; Wang, S.M.; Nie, H. Pterostilbene prevents methylglyoxal-induced cytotoxicity in endothelial cells by regulating glyoxalase, oxidative stress and apoptosis. Food Chem. Toxicol. 2021, 153, 112244. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, C.; Wang, B.; Ma, Z.; Wang, D.; Gong, B.; Di, S.; Jiang, S.; Li, Y.; Li, T.; et al. Pterostilbene attenuates high glucose-induced oxidative injury in hippocampal neuronal cells by activating nuclear factor erythroid 2-related factor 2. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Yeh, C.T.; Kuo, K.T.; Yadav, V.K.; Fong, I.H.; Kounis, N.G.; Hu, P.; Hung, M.Y. Pterostilbene increases LDL metabolism in HL-1 cardiomyocytes by modulating the PCSK9/HNF1α/SREBP2/LDLR signaling cascade, upregulating epigenetic hsa-miR-335 and hsa-miR-6825, and LDL receptor expression. Antioxidants 2021, 10, 1280. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Wang, Z.; Jiang, J.; Piao, Y.; Li, L.; Jin, S.; Li, L.; Zhu, L.; Yan, G. Pterostilbene suppresses oxidative stress and allergic airway inflammation through AMPK/Sirt1 and Nrf2/HO-1 pathways. Immun. Inflamm. Dis. 2021, 9, 1406–1417. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Li, Q.; Mi, Y.; Zhou, D.; Meng, Q.; Chen, G.; Li, N.; Hou, Y. Pterostilbene Alleviates Aβ1-42-Induced Cognitive Dysfunction via Inhibition of Oxidative Stress by Activating Nrf2 Signaling Pathway. Mol. Nutr. Food Res. 2021, 65, 2000711. [Google Scholar] [CrossRef]
- Kosuru, R.; Kandula, V.; Rai, U.; Prakash, S.; Xia, Z.; Singh, S. Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats. Cardiovasc. Drugs Ther. 2018, 32, 147–163. [Google Scholar] [CrossRef]
- Hseu, Y.C.; Gowrisankar, Y.V.; Wang, L.W.; Zhang, Y.Z.; Chen, X.Z.; Huang, P.J.; Yen, H.R.; Yang, H.L. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol. 2021, 44, 102007. [Google Scholar] [CrossRef]
- Xue, E.X.; Lin, J.P.; Zhang, Y.; Sheng, S.R.; Liu, H.X.; Zhou, Y.L.; Xu, H. Pterostilbene inhibits inflammation and ROS production in chondrocytes by activating Nrf2 pathway. Oncotarget 2017, 8, 41988–42000. [Google Scholar] [CrossRef]
- Zhang, E.; Huang, J.; Wang, K.; Yu, Q.; Zhu, C.; Ren, H. Pterostilbene Protects against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Upregulating the Nrf2 Pathway and Inhibiting NF-κB, MAPK, and NLRP3 Inflammasome Activation. J. Med. Food 2020, 23, 952–960. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.; Jiang, A.; Wu, D.; Li, S.; Liu, Z.; Wei, Z.; Yang, Z.; Guo, C. Protective Effects of Pterostilbene on Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting NF-κB and Activating Nrf2/HO-1 Signaling Pathways. Front. Pharmacol. 2021, 11, 591836. [Google Scholar] [CrossRef]
- Benlloch, M.; Obrador, E.; Valles, S.L.; Rodriguez, M.L.; Sirerol, J.A.; Alcácer, J.; Pellicer, J.A.; Salvador, R.; Cerdá, C.; Sáez, G.T.; et al. Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells in Vivo: A Physiological Glucocorticoids-and Nrf2-Dependent Mechanism. Antioxid. Redox Signal. 2016, 24, 974–990. [Google Scholar] [CrossRef]
- Fan, X.; Wang, L.; Huang, J.; Lv, H.; Deng, X.; Ci, X. Pterostilbene Reduces Acetaminophen-Induced Liver Injury by Activating the Nrf2 Antioxidative Defense System via the AMPK/Akt/GSK3β Pathway. Cell. Physiol. Biochem. 2018, 49, 1943–1958. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, D.; Ortiz, V.; Türck, P.; Campos-Carraro, C.; Zimmer, A.; Teixeira, R.; Bianchi, S.; de Castro, A.L.; Schenkel, P.C.; Belló-Klein, A.; et al. Stilbenoid pterostilbene complexed with cyclodextrin preserves left ventricular function after myocardial infarction in rats: Possible involvement of thiol proteins and modulation of phosphorylated GSK-3β. Free Radic. Res. 2018, 52, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Lian, W.; Wang, G.; Qiu, M.; Lin, L.; Zeng, R. Pterostilbene induces Nrf2/HO-1 and potentially regulates NF-κB and JNK–Akt/mTOR signaling in ischemic brain injury in neonatal rats. 3 Biotech 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, J.; Zhang, Y.; Wu, D.; Li, S.; Jiang, A.; Du, C.; Xie, G. Pterostilbene Exerts Hepatoprotective Effects through Ameliorating LPS/D-Gal-Induced Acute Liver Injury in Mice. Inflammation 2021, 44, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Millán, I.; Desco, M.D.C.; Torres-Cuevas, I.; Pérez, S.; Pulido, I.; Mena-Mollá, S.; Mataix, J.; Asensi, M.; Ortega, Á.L. Pterostilbene prevents early diabetic retinopathy alterations in a rabbit experimental model. Nutrients 2020, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Obrador, E.; Salvador, R.; Marchio, P.; López-Blanch, R.; Jihad-Jebbar, A.; Rivera, P.; Vallés, S.L.; Banacloche, S.; Alcácer, J.; Colomer, N.; et al. Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1G93A Mice. Mol. Neurobiol. 2021, 58, 1345–1371. [Google Scholar] [CrossRef] [PubMed]
- Dornadula, S.; Thiruppathi, S.; Palanisamy, R.; Umapathy, D.; Suzuki, T.K.; Mohanram, R. Differential proteomic profiling identifies novel molecular targets of pterostilbene against experimental diabetes. J. Cell Physiol. 2019, 234, 1996–2012. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Duan, Z.; Xu, J.; Liang, J.; Zhang, S.; Zhang, H.; Zhang, X.; Wang, Y. Pterostilbene reduces endothelial cell injury in vascular arterial walls by regulating the Nrf2 mediated AMPK/STAT3 pathway in an atherosclerosis rat model. Exp. Ther. Med. 2019, 19, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Lu, W.; Zhang, K.; Zhou, W. Pterostilbene reduces endothelial cell apoptosis by regulation of the Nrf2 mediated TLR 4/MyD88/NF κB pathway in a rat model of atherosclerosis. Exp. Ther. Med. 2020, 20, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hua, C.; Yang, X.; Fan, X.; Song, H.; Peng, L.; Ci, X. Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis: In vivo. Food Funct. 2020, 11, 4471–4484. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Fu, S.; Ren, B.; Ma, L.; Sun, D. Based on Network Pharmacology and Gut Microbiota Analysis to Investigate the Mechanism of the Laxative Effect of Pterostilbene on Loperamide-Induced Slow Transit Constipation in Mice. Front. Pharmacol. 2022, 13, 913420. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Lu, F.; Zhang, X.; Liu, S.; Mu, P. SIRT1 Is Involved in the Neuroprotection of Pterostilbene against Amyloid β 25–35-Induced Cognitive Deficits in Mice. Front. Pharmacol. 2022, 13, 877098. [Google Scholar] [CrossRef]
- Banik, K.; Ranaware, A.M.; Harsha, C.; Nitesh, T.; Girisa, S.; Deshpande, V.; Fan, L.; Nalawade, S.P.; Sethi, G.; Kunnumakkara, A.B. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol. Res. 2020, 153, 104635. [Google Scholar] [CrossRef]
- Zomer AP, L.; Rodrigues, C.A.; Maldaner, L. Piceatannol: Um estilbeno natural com um espectro amplo de atividades biológicas. Res. Soc. Dev. 2022, 11, e49211932221. [Google Scholar] [CrossRef]
- Krambeck, K.; Santos, D.; Sousa Lobo, J.M.; Amaral, M.H. Benefits of skin application of piceatannol—A minireview. Australas. J. Dermatol. 2023, 64, e21–e25. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Hao, Y.; Wang, Z.; Liu, J.; Wang, J. Piceatannol alleviate ROS-mediated PC-12 cells damage and mitochondrial dysfunction through SIRT3/FOXO3a signaling pathway. J. Food Biochem. 2022, 46, e13820. [Google Scholar] [CrossRef]
- Khan, I.; Preeti, K.; Kumar, R.; Khatri, D.K.; Singh, S.B. Piceatannol promotes neuroprotection by inducing mitophagy and mitobiogenesis in the experimental diabetic peripheral neuropathy and hyperglycemia-induced neurotoxicity. Int Immunopharmacol. 2023, 116, 109793. [Google Scholar] [CrossRef] [PubMed]
- Kil, J.S.; Jeong, S.O.; Chung, H.T.; Pae, H.O. Piceatannol attenuates homocysteine-induced endoplasmic reticulum stress and endothelial cell damage via heme oxygenase-1 expression. Amino Acids 2017, 49, 735–745. [Google Scholar] [CrossRef]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Gao, Y.; Niu, X.; Deng, X.; Wang, J.; Feng, H.; Guo, Z.; Qiu, J. Piceatannol Alleviates Clostridium perfringens Virulence by Inhibiting Perfringolysin O. Molecules 2022, 27, 5145. [Google Scholar] [CrossRef] [PubMed]
- Binmahfouz, L.S.; Eid, B.G.; Bagher, A.M.; Shaik, R.A.; Binmahfouz, N.S.; Abdel-Naim, A.B. Piceatannol SNEDDS Attenuates Estradiol-Induced Endometrial Hyperplasia in Rats by Modulation of NF-κB and Nrf2/HO-1 Axes. Nutrients 2022, 14, 1891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.H.; Chen, X.; Zhang, N.; Li, G. Piceatannol attenuates behavioral disorder and neurological deficits in aging mice: Via activating the Nrf2 pathway. Food Funct. 2018, 9, 371–378. [Google Scholar] [CrossRef]
- Shi, X.; Fu, L. Piceatannol inhibits oxidative stress through modification of Nrf2-signaling pathway in testes and attenuates spermatogenesis and steroidogenesis in rats exposed to cadmium during adulthood. Drug Des. Dev. Ther. 2019, 13, 2811–2824. [Google Scholar] [CrossRef]
- Li, H.; Shi, Y.; Wang, X.; Li, P.; Zhang, S.; Wu, T.; Yan, Y.; Zhan, Y.; Ren, Y.; Rong, X.; et al. Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem. Biol. Interact. 2019, 310, 108754. [Google Scholar] [CrossRef] [PubMed]
- Wahdan, S.A.; Azab, S.S.; Elsherbiny, D.A.; El-Demerdash, E. Piceatannol protects against cisplatin nephrotoxicity via activation of Nrf2/HO-1 pathway and hindering NF-κB inflammatory cascade. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 1331–1345. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, J.; Wang, Z.; Yu, L.L.; Wang, J. Piceatannol protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis through modulating PI3K/Akt Signaling Pathway. Nutrients 2019, 11, 1515. [Google Scholar] [CrossRef]
- Adiabouah Achy-Brou, C.A.; Billack, B. A comparative assessment of the cytotoxicity and nitric oxide reducing ability of resveratrol, pterostilbene and piceatannol in transformed and normal mouse macrophages. Drug Chem. Toxicol. 2017, 40, 36–46. [Google Scholar] [CrossRef]
- Zhu, T.; Fang, F.; Sun, D.; Yang, S.; Zhang, X.; Yu, X.; Yang, L. Piceatannol Inhibits P. acnes–Induced Keratinocyte Proliferation and Migration by Downregulating Oxidative Stress and the Inflammatory Response. Inflammation 2020, 43, 347–357. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Ye, J.; Pan, Z.; Hu, P.; Zhong, X.; Qiu, F.; Zhang, D.; Huang, Z. Protective Effect of Piceatannol against Cerebral Ischaemia–Reperfusion Injury Via Regulating Nrf2/HO-1 Pathway In Vivo and Vitro. Neurochem. Res. 2021, 46, 1869–1880. [Google Scholar] [CrossRef]
- Kivimäki, K.; Leppänen, T.; Hämäläinen, M.; Vuolteenaho, K.; Moilanen, E. Pinosylvin shifts macrophage polarization to support resolution of inflammation. Molecules 2021, 26, 2772. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, C.; Zou, L.; Zheng, Z.; Ouyang, J. Efficient biosynthesis of pinosylvin from lignin-derived cinnamic acid by metabolic engineering of Escherichia coli. Biotechnol. Biofuels Bioprod. 2022, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- Bakrim, S.; Machate, H.; Benali, T.; Sahib, N.; Jaouadi, I.; Omari, N.E.; Aboulaghras, S.; Bangar, S.P.; Lorenzo, J.M.; Zengin, G.; et al. Natural Sources and Pharmacological Properties of Pinosylvin. Plants 2022, 11, 1541. [Google Scholar] [CrossRef] [PubMed]
- Bien-Aime, S.; Yu, W.; Uhrich, K.E. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin. Macromol. Biosci. 2016, 16, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Hsieh, M.C.; Lin, C.C.; Lo, Y.S.; Ho, H.Y.; Hsieh, M.J.; Lin, J.T. Pinosylvin inhibits migration and invasion of nasopharyngeal carcinoma cancer cells via regulation of epithelial-mesenchymal transition and inhibition of MMP-2. Oncol. Rep. 2021, 46, 143. [Google Scholar] [CrossRef] [PubMed]
- Eräsalo, H.; Hämäläinen, M.; Leppänen, T.; Mäki-Opas, I.; Laavola, M.; Haavikko, R.; Yli-Kauhaluoma, J.; Moilanen, E. Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J. Nat. Prod. 2018, 81, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Avila, J.G.; de Vivar, A.R.; García, A.M.; Marín, J.C.; Aranda, E.; Céspedes, C.L. Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 2003, 64, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.J.; Liu, X.D.; Qian, Y.P.; Shang, Y.J.; Li, X.Z.; Dai, F.; Fang, J.G.; Jin, X.L.; Zhou, B. 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg. Med. Chem. 2009, 17, 2360–2365. [Google Scholar] [CrossRef]
- Kimura, Y.; Sumiyoshi, M.; Baba, K. Antitumor and Antimetastatic Activity of Synthetic Hydroxystilbenes Through Inhibition of Lymphangiogenesis and M2 Macrophage Differentiation of Tumor-associated Macrophages. Anticancer Res. 2016, 36, 137–148. [Google Scholar] [PubMed]
- Chen, L.; Chen, Z.; Xu, Z.; Feng, W.; Yang, X.; Qi, Z. Polydatin protects Schwann cells from methylglyoxal induced cytotoxicity and promotes crushed sciatic nerves regeneration of diabetic rats. Phytother. Res. 2021, 35, 4592–4604. [Google Scholar] [CrossRef] [PubMed]
- Savio, M.; Ferraro, D.; Maccario, C.; Vaccarone, R.; Jensen, L.D.; Corana, F.; Mannucci, B.; Bianchi, L.; Cao, Y.; Stivala, L.A. Resveratrol analogue 4,4′-dihydroxy-trans-stilbene potently inhibits cancer invasion and metastasis. Sci Rep. 2016, 6, 19973. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Pai, G.B.; Subramanian, M.; Gupta, P.; Tyagi, M.; Patro, B.S.; Chattopadhyay, S. Resveratrol analogue, trans-4,4′-dihydroxystilbene (DHS), inhibits melanoma tumor growth and suppresses its metastatic colonization in lungs. Biomed. Pharmacother. 2018, 107, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Koskela, A.; Reinisalo, M.; Hyttinen, J.; Kaarniranta, K.; Karjalainen, R. Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells. Mol. Vis. 2014, 2, 760–769. [Google Scholar]
- Wang, T.; Dai, F.; Li, G.H.; Chen, X.M.; Li, Y.R.; Wang, S.Q.; Ren, D.M.; Wang, X.N.; Lou, H.X.; Zhou, B.; et al. Trans-4,4′-dihydroxystilbene ameliorates cigarette smoke-induced progression of chronic obstructive pulmonary disease via inhibiting oxidative stress and inflammatory response. Free Radic. Biol. Med. 2020, 152, 525–539. [Google Scholar] [CrossRef]
- Wang, C.N.; Sang, M.M.; Gong, S.N.; Yang, J.F.; Cheng, C.Y.; Sun, F. Two resveratrol analogs, pinosylvin and 4,4′-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Bioorganic Chem. 2020, 104, 104295. [Google Scholar] [CrossRef]
- Şöhretoğlu, D.; Baran, M.Y.; Arroo, R.; Kuruüzüm-Uz, A. Recent advances in chemistry, therapeutic properties and sources of polydatin. Phytochem. Rev. 2018, 17, 973–1005. [Google Scholar] [CrossRef]
- Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022, 27, 6474. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Gravandi, M.M.; Abdian, S.; Akkol, E.K.; Farzaei, M.H.; Sobarzo-Sánchez, E. The neuroprotective role of polydatin: Neuropharmacological mechanisms, molecular targets, therapeutic potentials, and clinical perspective. Molecules 2021, 26, 5985. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Wang, Y.; Li, J.; Liu, Z.; Lang, S.; Ouyang, W.; Zhang, J. Comprehensive metabolism study of polydatin in rat plasma and urine using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1117, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Negrea, B.-M.; Stoilov-Linu, V.; Pop, C.-E.; Deák, G.; Crăciun, N.; Făgăraș, M.M. Expansion of the Invasive Plant Species Reynoutria japonica Houtt in the Upper Bistrița Mountain River Basin with a Calculus on the Productive Potential of a Mountain Meadow. Sustainability 2022, 14, 5737. [Google Scholar] [CrossRef]
- Huang, B.; Liu, J.; Meng, T.; Li, Y.; He, D.; Ran, X.; Chen, G.; Guo, W.; Kan, X.; Fu, S.; et al. Polydatin prevents lipopolysaccharide (LPS)-induced Parkinson’s disease via regulation of the AKt/GSK3β-Nrf2/NF-κB signaling axis. Front. Immunol. 2018, 9, 2527. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Lei, X.; Liu, H.; Zhao, H.; Guo, J.; Chen, Y.; Xu, Y.; Cheng, Y.; Liu, C.; Cui, J.; et al. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial–mesenchymal transition. J. Cell Mol. Med. 2017, 21, 3264–3276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Yu, H.W.; Yang, Y.Z.; Wu, W.Y.; Chen, T.Y.; Jia, K.K.; Kang, L.L.; Jiao, R.Q.; Kong, L.D. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol. 2018, 18, 124–137. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Z.; Wen, D.; Guo, J.; Xiong, Q.; Li, P.; Zhao, L.; Wang, J.; Wu, C.; Dong, L. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun. Inflamm. Dis. 2021, 9, 959–970. [Google Scholar] [CrossRef]
- Zhao, X.; Qin, J.; Li, H.; Feng, X.; Lv, Y.; Yang, J. Effect of Polydatin on Neurological Function and the Nrf2 Pathway during Intracerebral Hemorrhage. J. Mol. Neurosci. 2020, 70, 1332–1337. [Google Scholar] [CrossRef]
- Lv, R.; Du, L.; Zhang, L.; Zhang, Z. Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci. 2019, 217, 119–127. [Google Scholar] [CrossRef]
- Li, R.; Maimai, T.; Yao, H.; Liu, X.; He, Z.; Xiao, C.; Wang, Y.; Xie, G. Protective effects of polydatin on LPS-induced endometritis in mice. Microb. Pathog. 2019, 137, 103720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Pei, Z.; Gao, H.; Shi, W.; Sun, M.; Xu, Q.; Zhao, J.; Meng, W.; Xiao, K. Protective effects of polydatin against sulfur mustard-induced hepatic injury. Toxicol. Appl. Pharmacol. 2019, 367, 1–11. [Google Scholar] [CrossRef]
- Bheereddy, P.; Yerra, V.G.; Kalvala, A.K.; Sherkhane, B.; Kumar, A. SIRT1 Activation by Polydatin Alleviates Oxidative Damage and Elevates Mitochondrial Biogenesis in Experimental Diabetic Neuropathy. Cell. Mol. Neurobiol. 2021, 41, 1563–1577. [Google Scholar] [CrossRef]
- Gu, L.; Liu, J.; Xu, D.; Lu, Y. Polydatin prevents LPS-induced acute kidney injury through inhibiting inflammatory and oxidative responses. Microb. Pathog. 2019, 137, 103688. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Min, J.; Chen, Y.; Li, H.; Zhang, Y. Polydatin attenuates orbital oxidative stress in Graves’ orbitopathy through the NRF2 pathway. Chem. Biol. Interact. 2020, 315, 108894. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.T.; Zhang, D.M.; Wan, Z.Y.; Li, T.S.; Jiao, R.Q.; Chen, T.Y.; Zhao, X.J.; Kong, L.D. Polydatin enhances glomerular podocyte autophagy homeostasis by improving Nrf2-dependent antioxidant capacity in fructose-fed rats. Mol. Cell Endocrinol. 2021, 520, 111079. [Google Scholar] [CrossRef]
- Zhan, J.; Li, X.; Luo, D.; Yan, W.; Hou, Y.; Hou, Y.; Chen, S.; Luan, J.; Zhang, Q.; Lin, D. Polydatin Attenuates OGD/R-Induced Neuronal Injury and Spinal Cord Ischemia/Reperfusion Injury by Protecting Mitochondrial Function via Nrf2/ARE Signaling Pathway. Oxidative Med. Cell Longev. 2021, 2021, 6687212. [Google Scholar] [CrossRef]
- Chen, G.; Liu, G.; Cao, D.; Jin, M.; Guo, D.; Yuan, X. Polydatin protects against acute myocardial infarction-induced cardiac damage by activation of Nrf2/HO-1 signaling. J. Nat. Med. 2019, 73, 85–92. [Google Scholar] [CrossRef]
- Gong, W.; Li, J.; Chen, Z.; Huang, J.; Chen, Q.; Cai, W.; Liu, P.; Huang, H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating CKIP-1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys. Free Radic. Biol. Med. 2017, 106, 393–405. [Google Scholar] [CrossRef]
- Huang, Q.H.; Xu, L.Q.; Liu, Y.H.; Wu, J.Z.; Wu, X.; Lai, X.P.; Li, Y.C.; Su, Z.R.; Chen, J.N.; Xie, Y.L. Polydatin Protects Rat Liver against Ethanol-Induced Injury: Involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-B p65 Pathway. Evid.-Based Complement. Altern. Med. 2017, 2017, 7953850. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, K.; Sheng, S.; Cui, J. Polydatin ameliorates chemotherapy-induced cognitive impairment (chemobrain) by inhibiting oxidative stress, inflammatory response, and apoptosis in rats. Biosci. Biotechnol. Biochem. 2020, 84, 1201–1210. [Google Scholar] [CrossRef]
- Tang, S.; Tang, Q.; Jin, J.; Zheng, G.; Xu, J.; Huang, W.; Li, X.; Shang, P.; Liu, H. Polydatin inhibits the IL-1β-induced inflammatory response in human osteoarthritic chondrocytes by activating the Nrf2 signaling pathway and ameliorates murine osteoarthritis. Food Funct. 2018, 9, 1701–1712. [Google Scholar] [CrossRef]
- Li, D.; Zhao, H.; Xu, P.; Lin, Q.; Zhao, T.; Li, C.; Cui, Z.K.; Tian, G. Polydatin activates the Nrf2/HO-1 signaling pathway to protect cisplatin-induced hearing loss in guinea pigs. Front. Pharmacol. 2022, 13, 887833. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wang, Y.; Gu, Y.; Wang, J.; Zhang, H.; Gao, H.; Jin, Q.; Zhao, L. Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci. 2019, 218, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Chen, C.; Hao, J.; Huang, J.; Wang, S.; Liu, P.; Huang, H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol. Cell. Endocrinol. 2015, 399, 178–189. [Google Scholar] [CrossRef]
- Ye, J.; Piao, H.; Jiang, J.; Jin, G.; Zheng, M.; Yang, J.; Jin, X.; Sun, T.; Choi, Y.H.; Li, L.; et al. Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways. Sci. Rep. 2017, 7, 11895. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Sample (n) | Route of Administration | Intervention Time | Doses | Condition/ Disease | Nrf2 Pathway |
---|---|---|---|---|---|---|
Kim et al. [140] | 7 mice/ group | Oral | 6 months | I: 40 mg/kg | Progressive kidney damage caused by aging | RESV improved proteinuria, histological changes, inflammation and ↑ NRF2Nrf2 expression, improving oxidative stress and mitochondrial dysfunction. |
Bhattarai et al. [141] | 5 rats/ group | Subcutaneous and palatal gum injection | 2 weeks | I: RESV and DMSO groups: 5 mg/kg body weight daily | Alveolar bone loss | RESV almost completely inhibited the alterations promoted by the oxidative stress ↑ HO-1, mediated by NRF2. |
Wang et al. [142] | 6 rats/ group | Intradermal injection | 24 days | I: 10 mg/kg | Rheumatoid arthritis | RESV ↓ AA scores and serum levels of antioxidant enzymes, and inhibited ROS production by activating the SIRT1/Nrf2 signaling pathway. |
Kong et al. [143] | 10 mice/ group | Gavage | 15 days | I: 40 mg/kg or 20 mg/kg) | Alzheimer’s disease | RESV ↑ the antioxidant capacity of animals in the experimental group, such as SOD, CAT, GPx, through the NRF-2/HO-1 signaling pathway. |
Cui et al. [144] | 10 mice/ group | Gavage | 6 weeks | I: 2 mg/kg | Photoaging | A protective effect was seen against photoaging though the ↓ in the expression of matrix metalloproteinases and inflammatory factors, inhibiting the ROS production measured by the MAPK and COX-2 pathways, in addition to promoting the NRF2 signaling pathway. |
Zhou et al. [145] | 6 rats/ group | Subcutaneous injection | 2 weeks | C: rats’ cutaneous wounds were only washed daily with physiological saline I: rats’ cutaneous wounds were washed daily with physiological saline followed by RESV local application. | Wound healing | RESV ↑ Nrf2 and Mn-SOD, and subsequently attenuated oxidative stress, promoting the acceleration and quality of healing of cutaneous wounds. |
Xun et al. [146] | 6 piglets/ group | Intraperitoneal injection | 21 days | I: 10, 30 or 90 mg/kg | Induced intestinal integrity and inflammation | RESV protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in piglets challenged with diquat (organic herbicide). |
Hosseini et al. [147] | 10 mice/ group | Oral | 16 weeks | C: Standard chow diet (10 kcal% fat) I1: a high fat diet (HFD, 55.9 kcal% fat) I2: HFD-supplemented with 0.4% HFD + RESV groups | Non-alcoholic fatty liver disease | RESV attenuated HFD induced methylation of the Nrf2 promoter in the liver of mice, and this effect was correlated with ↓ in triglyceride levels and ↓ in expression of genes related to lipogenesis, such as FAS and SREBP-1c. |
Zhao et al. [148] | 8 rats/ Group | No description | 7 days | I: 50 mg/kg for 7 days | Acute respiratory distress induced by seawater inhalation | AC-Res attenuated respiratory distress via Trx-1 and Nrf2, both in animals. |
Yang et al. [149] | 10 ducks/ group | Oral | 15 days | I: the basal diet supplemented with 400 mg/kg RESV | Birds subjected to heat stress | RESV significantly activated the SIRT1-NRF1/NRF2 signaling pathways, and ↑ SOD and CAT. NF-κB/NLRP3 inflammasome signaling pathways were repressed under acute heat stress. Meanwhile, RESV supplement further inhibited the NLRP3 inflammasome pathway. |
Rasheed et al. [150] | No description | Intraperitoneal | 9 weeks | I: 10 mg/kg | Parkinson’s disease | RESV promotes the catalytic activity of the xenobiotic-metabolizing enzyme, Cyp2d22/CYP2D6, which partially contributes to Nrf2 activation in pesticide-induced parkinsonism. |
Recalde et al. [151] | 16 rats/ group | Intraperitoneal injection | 21 days | I: (RESV ethanol 0.1%) in their drinking water | Hemotherapy-induced peripheral neuropathic pain (cancer) | RESV prevented the upregulation of NFκB, TNF-α, ATF3 and c-fos, while ↑ expression of Nrf2, NQO-1, HO-1 and the redox-sensitive deacetylase SIRT1. RESV treatment was also able to restore TBARS levels and the GSH/GSSG ratio. |
Wang et al. [152] | 18 mice/ group | Oral | Until 6 months | I: 10 mg/kg/day for 1 month. After another month, a subset of mice was used for experimentation; the remaining mice were maintained for another 2 or 5 months (corresponding to 3 or 6 months after RESV treatment) and then were used for experimentation | Diabetic cardiomyopathy | RESV prevents DM-induced cardiomyopathy, in part, by ↑ Nrf2 expression and transcriptional activity. |
Wang et al. [153] | 7 mice/ group | Intragastric administration | No description | I: 5, 10, 20 mg/kg | Allergy | RESV exerts an inhibitory effect on MRGPRX2-mediated mast cell activation by targeting the Nrf2 pathway, and may present a promising new therapeutic agent for allergy, avoiding anaphylactoid reactions. |
Trusov et al. [154] | No description | Oral | No description | C: standard balanced diet I1: high-fat-high-carbohydrate diet (HFCD) with an excess of total fat (30%) and fructose (20% solution instead of drinking water) I2: the same diets supplemented with RESV in a low (25 mg/kg body weight as RESV and 300 mg/kg as L-carnitine) or high (50 and 600 mg/kg body weight, respectively) doses | Obesity | RESV combined with L-carnitine caused ↓ in the number of positive cells for Nrf2 and ICAM-2 in the liver of rats treated with diets with high concentrations of carbohydrate and fat, but had the opposite effect on the kidneys. RESV + L-carnitine at a low dose by the same group caused alterations in the expression profiles of the studied marker genes, indicating a possible hypolipidemic effect. |
Wang et al. [155] | 12 rats/ group | Intraperitoneal injection | 18 h | I: 30 mg/kg was administered at 6 h after surgery and then again at 12 h | Pediatric acute kidney injury | In the RESV group, the induced kidney injury was alleviated by ↓ the expression of TNF-α, IL-1β and KIM-1. Nrf2 signaling is known to effectively inhibit inflammation. Further, there were ↑ in the expression of HO-1 and NQO1in the RESV group. |
Wu et al. [156] | 15 mouse/ group | Gavage | Alternate days for 2 weeks | I1: 30 mg/kg I2: 100 mg/kg | Ovarian aging | RESV alleviated the loss of oogonial stem cells and showed a mitigating effect on induced oxidative apoptosis in mouse ovaries, which can be attributed to attenuation of oxidative levels in the ovaries activating Nrf2. Further, ↑ SIRT1 and FOXO1 and ↓ NF-κB. |
Sun et al. [157] | 6 rats/ group | Gavage | 5 weeks | I: 30 mg/kg | Induced myocardial injury | RESV attenuated the oxidative stress through the expression of antioxidant molecules via Nrf2. Furthermore, AMPK may play a role in Nrf2/HO-1 signaling by RESV. |
Kabel et al. [158] | 10 rats/ group | Gavage | 24 weeks | I: 30 mg/kg | Renal carcinoma | Intervention induced improvement in renal functions with a significant ↑ in tissue antioxidant defenses and Nrf2/HO-1 content associated with a significant ↓ in TGF-β1, TNF-α, IL-6 and STAT3 and alleviated histopathological and immunohistochemical changes compared to the untreated renal carcinoma group. |
Lian et al. [159] | 10 rats/ group | Oral | 12 weeks | I: 50 mg kg | Obstructive sleep apnea associated with lung injury | Nrf2 and HO-1 protein levels were ↓ in the chronic intermittent hypoxia group compared to the control group. Rats in the RESV group had ↓ percentages of apoptotic cells, levels of IL-6, TNF-α, Bax, and cleaved caspase-3, and ↑ levels of Nrf2 protein and HO-1. |
Yang et al. [160] | 60 ducks/ group | Oral | 15 days | I: basal diet supplemented with 400 mg/kg RESV | Growth performance and anti-inflammatory ability | Dietary RESV can improve growth performance and ↓ inflammation through Nrf2/HO-1 and TLR4/NF-κB signaling pathways in ducks. |
Zhou et al. [161] | 8 rats/ group | Intragastric | 18 weeks | I: 50 mg/kg every other day | Breast cancer | RESV treatment could upregulate the expression of Nrf22 and UGT1A8, accelerate metabolic elimination of catechol estrogens, inhibit estrogen-induced DNA damage and suppress the pathological development of breast cancer. |
Xu et al. [162] | 10 rats/ group | Intraperitoneal injection | 7 days | I: 20 mg/kg | Type 2 diabetes | RESV ↑ Nrf2 expression in a diabetic heart by stimulating SIRT1 or inhibiting GSK3β, alleviating myocardial oxidative stress and improving ischemia–reperfusion injury. |
Izquierdo et al. [163] | Until 20 mice/ group | Oral | 2 months | I: 1 g/kg | Senescence | Maternal RESV supplementation may prevent cognitive impairment in mouse offspring through epigenetic alterations and Nrf2 signaling pathways. |
Chen et al. [164] | 12 piglets/ group | Intraperitoneal injection | 15 days | I: 300 mg/kg | Redox status and intestinal microbiota | RESV and PTS administration ↑ jejunal SOD activity and SOD 2 mRNA and protein expression of IUGR piglets, promoting Nrf2 nuclear translocation. PTS was superior to RESV in ↑ Nrf2 nuclear translocation and inhibiting MDA accumulation in the jejunum of IUGR piglets. Further, RESV modulated the composition of the fecal microbiota of IUGR piglets. |
Zeng et al. [165] | 10 mice/ group | Intragastric | 32 days | I: 10 to 100 mg/kg | Methamphetamine-induced memory deficit | Pretreatment with RESV in methamphetamine-induced memory dysfunction was possibly related to activation of the Keap1-Nrf2 pathway and ↓ of apoptosis, suggesting benefits of using this antioxidant in this condition. |
Cong et al. [166] | 15 mice/ group | Intraperitoneal injection | 10 days | I1: 25 mg/kg I2: 50 mg/kg | Traumatic brain injury | RESV has a protective effect on brain injury induced by chest blast exposure, likely mediated by Nrf2/Keap1 and NF-κB signaling pathways. |
Javkhedkar et al. [167] | 8–12 rats/ group | Oral | 9 weeks | I: 50 mg/kg | Renal interstitial inflammation in the pathogenesis of hypertension | Long-term RESV administration restores Nrf2 expression, improves inflammation and attenuates the development of hypertension. |
Rubio-Ruiz et al. [168] | 16 rats/ group | Oral | 20 weeks | I: RESV and quercetin 50–0.95 mg/kg/day, respectively | Fatty liver in metabolic syndrome | RESV + quercetin has beneficial effects on oxidative stress in fatty liver of rats with metabolic syndrome through the improvement of antioxidant capacity and overexpression of the Nrf2 factor, which increases enzymes antioxidants and GSH recycling. |
Chen et al. [169] | 5–6 mice/ group | Intragastric | 13 days | I: 200 mg/kg | Colitis and colon cancer | The RESV analogue studied has stronger anticolitis effects than RESV, with even greater ability to stimulate the Nrf2 pathway than the parent compound. |
Pierre et al. [170] | 16–17 mice/ group | Oral | 8 weeks | I: 1–10 mg/kg | Erectile Dysfunction | RESV and MitoQ were ineffective in reversing the effects of androgen deprivation on vascular reactivity; however, treatment with high doses of RESV upregulated several important antioxidant genes including CAT, SOD1, GSTm1, Prdx3, and Nrf2. |
Kim et al. [140] | 8 mice/ group | Oral | 2 weeks | I: 2 mg/kg | Photoaging | Nrf2-dependent antioxidant enzymes induced by grape skin extract or RESV, including HO-1 in the liver and skin, as well as inhibited metalloproteinases and attenuated UVB-induced photoaging through activation of the Nrf2/HO-1 signaling pathway. |
Wang et al. [171] | 9 birds/ group | Oral | 21 days | I: 400 mg/kg | Intestinal growth and development | RESV may improve intestinal development and antioxidant function in broiler chickens under heat stress. Further, the RESV group shows ↑activities of GPX, GST and mRNA levels of Nrf2 and SOD1. |
Ma et al. [172] | 10 mice/ group | Intraperitoneal injection | 5 days | I: 25 mg/kg | Diabetic cardiomyopathy | RESV actives SIRT1, induces ↑ expression of Nrf1 and Nrf2 and ameliorates diabetic cardiomyopathy. |
Wang et al. [173] | 7–8 mice/ group | Oral | 4 months | I: 30 mg/kg | Cognitive impairment caused by type 2 DM | RESV prevented the cognitive impairment induced by DM2 through anti-inflammatory and antioxidant activities. This effect was accompanied by the upregulation of Nrf2 transcriptional activity and ↑ expression of antioxidant genes. |
Ikeda et al. [174] | No description | Intraperitoneal injection | on day 15 after periodontitis induction | I: 10 mg/kg | Periodontitis | RESV dimer induced greater periodontal bone healing when compared to the use of RESV monomer. It appears that periodontal bone healing in both groups was likely related to master regulation of Nrf2 and downregulation of IL-1β in the RESV dimer group. |
Cirmi et al. [175] | 7 mice/ group | Oral or Intraperitoneal injection | 14 days | I: 20 mg/kg | Cadmium-induced kidney injury | Cadmium caused damage to glomeruli and tubules and ↑ expression of Nrf2 genes. RESV significantly improved all parameters. |
Jia et al. [176] | 10 mice/ group | Intraperitoneal injection | 6 days | I: Oxyresveratrol 40–80 mg/kg | Acute liver injury | Hepatoprotective efficacy of oxy-resveratrol was seen due to the prevention of TLR4/NF-κB pathway activation, induced activation of the Keap1-Nrf2 signaling pathway, and decreased hepatocyte apoptosis. |
Seo et al. [177] | 5 mice/ group | Intraperitoneal injection | 8 days | I: 20 mg/kg | Atherosclerosis | RESV inhibits ICAM-1 expression via transcriptional regulation of FERM-kinase and Nrf2 interaction, thus blocking monocyte adhesion, suggesting that RESV improves inflammation and delays the onset of atherosclerosis. |
Zhang et al. [178] | 3 mice/ group | Intragastric | 12 weeks | I: 10 mL/kg 10% | Diabetic neuropathy | RESV may attenuate the severity of diabetic neuropathy by protecting peripheral nerves from apoptosis, inhibiting the NF-κB pathway, and ↑ Nrf2 expression. |
Krajka-Kuźniak et al. [179] | 3 mice/ group | Topical use | 3 days | I1: 8 µM/kg I2: 16 µM/kg | Mouse epidermis | RESV and its methylthioderivatives activate Nrf2 in mouse epidermis and promotes upregulation of GST. |
Zhou et al. [180] | 6 mice/ group | Gavage | Day 14 of pregnancy until parturition | I: 50 mg/kg | Streptococcus uberis infection | RESV can function as an activator of the p62–Keap1/Nrf2 signaling pathway to improve oxidative injury caused by S. uberis in mammary glands as well as in EpH4-Ev cells. |
Cheng et al. [181] | 10 rats/ group | Intravenous | After ischemia induction, RESV was administered 5 min before reperfusion | I: 100 μmol/L | Myocardial ischemia | RESV exerted significant antioxidant and cardioprotective effects after myocardial ischemia, possibly through activation of the Nrf2/ARE signaling pathway. |
El-Fattah et al. [182] | 6–8 rats/ group | Oral | 30 days before and 45 after the induction of testicular dysfunction | I: 80 mg/kg | Di-(2-ethylhexyl)phthalate-induced testicular dysfunction | Pretreatment with RESV and curcumin were able to recover the lesions induced in this model. The chemoprotective effects of these compounds may be due to their intrinsic antioxidant properties, along with increased gene expression levels of Nrf2, HSP 60, HSP 70 and HSP 90. |
Yang et al. [149] | 15 ducks/ group | Oral | 22 days | I: 300, 400 or 500 mg/kg | Ileitis caused by LPS | RESV alleviated acute ileitis induced by duck LPS through Nrf2 and NF-κB signaling pathways, and dietary RESV 500 mg/kg is more efficient. |
Muhammad et al. [183] | 7 mice/ group | Oral | 8 weeks | I: 200 mg/kg | Alzheimer’s disease | Induced memory deficit was improved by RESV. Both Aβ and Nrf2 ↑ significantly in the group that received RESV, with isolated treatment with this compound being the most effective. |
Elbaz et al. [184] | 8 rats/ group | Oral | 7 days | I: 20 mg/kg | Diclofenac-induced hepatorenal toxicity | A potential therapeutic role for RESV in mitigating the hepatorenal insult induced by diclofenac has been demonstrated, possibly via modulation of the Nrf2/GSH axis. |
Jia et al. [185] | 30 animals/ group | Oral | 60 days | I: 0, 0.1, 0.3, and 0.6 g/kg | Induced liver damage | RESV protection against H2O2-induced liver damage, inflammation and immunotoxicity was due to its antioxidant property and its ability to modulate Nrf2 and TLR2-Myd88-NF-κB signaling pathways. |
Cheng et al. [186] | 6 mice/ group | Oral | 12 weeks | I: 10 mg/kg | Hyperglycemia and pancreatic damage | RESV treatment markedly improved the blood glucose level of the oral glucose tolerance test and promoted Nrf2 phosphorylation in the pancreas of mice treated with methylglyoxal. |
Liu et al. [187] | 90 ducks/ group | Gavage | 70 days | I: 500 mg/kg | Acute liver damage induced by aflatoxins | RESV increased phase II enzyme activity, activate Nrf2 signaling pathway, and protect duck liver from toxicity, oxidative stress, and inflammatory reaction. |
Wei et al. [188] | 10 rats/ group | No description | 8 weeks | I: 50 mg/kg | Osteoarthritis | RESV improves inflammatory damage and protects against osteoarthritis in a rat model via NF-κB and HO-1/Nrf-2 signaling. |
Zhou et al. [189] | 50 animals/ groups | Oral | 7 days | I: 500 mg/kg | Diquat-induced intestinal oxidative stress | Dietary supplementation with RESV and apigenin attenuates oxidative stress involving NRF2 signaling pathways in diquat-challenged pullets. |
Zhang et al. [190] | 5 mice/ group | Intraperitoneal injection | 7 days | I: 20 mg/kg | Osteogenic potential | RESV ↓ oxidative stress by alleviating proliferation, mitigating ROS activity, ↑ SOD enzyme activity and improving GSH concentration, been confirmed by gene expression of SOD1 and Sirt1/Nrf2. |
Wu et al. [191] | 53–54 animals/ group | No description | Until 40 days | I: 0.5 mM/mL | Cerebellar neurotoxicity in spinocerebellar ataxia type 3 | RESV and caffeic acid were able to ↑ activation of Nrf2 in this model. |
Hussein and Mahfouz [192] | 6 rats/ group | Oral | 8 weeks | I: 5 mg/kg | Diabetic nephropathy | RESV alone or co-administered with rosuvastatin improved antioxidant status back to control values. RESV with rosuvastatin remarkably normalizes the renal expression of TGF-β1, fibronectin, NF-κB/p65, Nrf2, Sirt1 and FoxO1 in the diabetic rat group. |
Li et al. [193] | 5 rats/ group | Intragastrical administration | 24 h | I: RESV was diluted in sterile saline to 0.23 μg/kg, 1,5 mL | Renal ischemia–reperfusion injury (IRI) | RESV Shows renoprotection exerting significant effects on inflammatory responses, oxidative stress and apoptosis through the Nrf2/TLR4/NF-κB pathway. |
Tamaki et al. [194] | 6 rats/ group | Oral | 3 weeks | I: 10 mg/kg | Periodontitis | RESV exhibited multiple beneficial effects in preventing periodontitis and ↓ oxidative stress through its activation of both Sirt1/AMPK and Nrf2/antioxidant. |
Xu et al. [195] | 10 rats/ group | Intraperitoneal injection | 6 weeks | I: 20 mg/kg | Myocardial ischemia–reperfusion in diabetic rats | RESV can inhibit oxidative stress and alleviate MIR by activating the AMPK/p38/Nrf2 signaling pathway. |
Gao et al. [196] | 12 rats/ group | Intraperitoneal injection | 7 days | I: 40 mg/kg | Hypoxic-ischemic encephalopathy (HIE) | RESV exhibited neurotherapeutic potential through upregulation of expression of Nrf2 and HO-1 signaling pathway proteins and thereby attenuate oxidative stress and inflammatory response. |
Li et al. [197] | 6 rats/ group | Oral | 6 weeks | I: RESV supplement of 0.03% | Oxidative stress in obese asthmatic rats | RESV significantly ↑ CAT, GSH, GPx, and total SOD levels compared to obese, asthmatic, and untreated obese asthmatic rats. Furthermore, it significantly ↓ levels of Keap-1 and↑ Nrf2 in the heart, lung and kidney tissues of rats compared to untreated controls. |
Li et al. [198] | 6 mice/ group | Intraperitoneal injection | 72 h | I: 30 mg/kg | Lung injury | RESV is a SIRT1 activator and strongly ↑ SIRT1 expression and attenuated lung injury. Furthermore, RESV treatment ↑ the expression of NRF2 and GSH, ↑ the activity of HO-1, SOD and CAT, but ↓ the MDA expression. |
Singh et al. [199] | No description | Subcutaneous pellet | Every other month, until 8 months | I: 50 mg/kg | Breast cancer | RESV alone or in combination with 17β-estradiol significantly ↑ the expression of Nrf2 in breast tissues. Expression of antioxidant genes regulated by NRF2, NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage were ↑ in breast tissues treated with RESV and RESV + 17β-estradiol. |
Xu et al. [200] | 6 mice/ group | Intraperitoneal injection | 7 days | I: 10 mg/kg | Acute liver toxicity | RESV/FGF1↓ oxidative stress and thereby alleviated liver injury by promoting nuclear translocation of Nrf2 and subsequently ↑ expression of antioxidant proteins in an AMPK-dependent. |
Lu et al. [201] | 6 mice/ group | Intraperitoneal injection | 7 days | I: 10 mg/kg | Doxorubicin-induced cardiotoxicity | RESV could reduce the growth-promoting activity of FGF1. The co-treatment of RESV and FGF1 exhibits a more powerful cardio-antioxidative capacity in a treated model. The inhibition of SIRT1/NRF2 abolished RESV in combination with FGF1 on cardioprotective action. |
Meng et al. [202] | 20 animals/ group | Oral | 20 days | I: 30 mg/kg | Pregnancy and lactation | In the placenta, Nrf2 protein expression was ↑ and Keap1 protein expression was ↓ by dietary RESV. mRNA expression of antioxidant genes including CAT, GPX1, GPX4, SOD1 and HO1. |
Wang et al. [203] | 10 animals/ group | Oral or intraperitoneal injection | 28 days | I: 600 mg/kg | Ovarian oxidative stress | RESV reversed the tryptophan-kynurenine pathway, ↑ levels of Nrf2 and SIRT1, and ↓ FoxO1 and P53. |
Author and Year | Cell Culture | Intervention Time | Concentration | Condition/Disease | Mechanism in Nrf2 |
---|---|---|---|---|---|
Achy-Brou et al. [204] | Macrophages | Until 24 h | Increasing concentrations of RESV or PTS (0, 5, 10, 20 or 30 μM) | Macrophage stimulation by the danger signal LPS | LPS stimulation ↓ the cytotoxicity of RESV but not of PTS in these cells. RESV and PTS were each found to separately and significantly ↑ caspase 3 activity, which is related to NRF2. LPS stimulation prevented caspase 3 activation by PTS and ↓ caspase 3 activation by RESV in cells. |
Bhattarai et al. [141] | Human gingival fibroblasts | 48 h | 0–200 μM | Alveolar bone loss | RESV almost completely inhibited the alterations promoted by the oxidative stress ↑ HO-1, mediated by NRF2. |
Cui et al. [144] | Human epidermal keratin-forming cells | 24 h | 0, 10, 20, 40, 60, 80, and 100 μM | Photoaging | A protective effect of RESV was seen against photoaging in the cells studied due to the ↓ in the expression of matrix metalloproteinases and inflammatory factors, inhibiting the production of ROS measured by the MAPK and COX-2 pathways, in addition to promoting the Nrf2 signaling pathway. |
Li et al. [205] | Microglial cells | 24 h | 50 μM | Inflammation and oxidative stress in microglial cells | RESV attenuated rotenone-induced inflammation and oxidative stress in this cells through ↑ inhibition of STAT1 and Keap1 and upregulation of Nrf2 and SLC7A11. |
Hosoda et al. [206] | Myoblasts | 4 h | No description | Antioxidant and antiapoptotic effect | Piceatannol and RESV were different in cytotoxicity, oxidant scavenging activities and cytoprotective mechanisms. The protection of piceatannol against ROS-induced apoptosis was superior to that of RESV. In addition to the SIRT-1-dependent pathway, PIC exerted HO-1-related Nrf2-mediated antioxidant and antiapoptotic effects, which could be an advantage of PIC compared to RESV. |
Zhou et al. [145] | Human umbilical vein endothelial cells | 24 h | 100 nM | Wound healing | RESV ↑ Nrf2 and Mn-SOD, and subsequently attenuated oxidative stress, promoting the acceleration and quality of healing of cutaneous wounds. |
Hosseini et al. [147] | HepG2 cells | 48 h | 10, 20, 25, 40, 50, 80, 100, and 200 μM | Non-alcoholic fatty liver disease | Treatment of HepG2 cells with high glucose ↑ the Nrf2 promoter methylation, while RESV reversed this effect. Treatment of cells with RESV can prevent high glucose-induced ROS production and the expression of antioxidant genes controlled by Nrf2. RESV attenuates NAFLD through epigenetic modification of Nrf2 signaling. |
Chen et al. [207] | Human keratinocytes | 24 h | 0.1–1.0 μM | Protective effects against oxidative stress induced by 5-fluorouracil (chemotherapy) and inflammatory responses | RESV suppressed 5-FU-induced ROS overproduction, upregulating antioxidant defense genes through activation of Nrf2 and SIRT-1 expression. Regarding inflammatory responses, RESV suppressed 5-FU-induced expression of pro-inflammatory cytokines via nuclear translocation of NF-κB. |
Chen et al. [164] | Jejunal enterocitos | 25 h | 0, 1, 2.5, 5, 10, 25, 50 μM | Redox status and intestinal microbiota | RESV and PTS protected against H2O2-induced mitochondrial dysfunction by facilitating mitochondrial biogenesis and ↑ the activities of mitochondrial complexes. In addition, both RESV and PTS efficiently mitigated mitochondrial oxidative stress by ↑ SIRT3 protein expression and the deacetylation of SOD2 and peroxiredoxin 3. |
Zhao et al. [148] | Alveolar macrophage cell and alveolar epithelial cell | 4 h | 40 µg/mL | Acute respiratory distress induced by seawater inhalation | RESV attenuated respiratory distress via Trx-1 and Nrf2, at the cellular level. |
Rasheed et al. [150] | Neuroblastoma cells | 48 h | No description | Parkinson’s disease | RESV promotes the catalytic activity of the xenobiotic-metabolizing enzyme, Cyp2d22/CYP2D6, which partially contributes to Nrf2 activation in pesticide-induced parkinsonism. |
Wang et al. [153] | Human mast cells | 24 h | 0, 6.25, 12.5, 25, 50, 100, 200, 400, 800 μM | Allergy | RESV exerts an inhibitory effect on MRGPRX2-mediated mast cell activation by targeting the Nrf2 pathway. |
Zhang et al. [208] | Vascular smooth muscle cells | Until 72 h | 5 mM or 10 mM | Vascular calcification | RESV may improve oxidative injury of vascular smooth muscle cells by preventing vascular calcification-induced calcium deposition and mitochondrial dysfunction through involvement of SIRT-1 and Nrf2. |
Wang et al. [155] | Human kidney 2 cells | Until 12 h | Different doses, but no description | Pediatric acute kidney injury | RESV ↓ the inflammatory response induced by LPS in kidney cells in vitro and induced activation of Nrf2 signaling, including nuclear Nrf2 accumulation and ↑ expression of Nrf2 target genes HO-1 and NQO1. |
Zhou et al. [161] | Non-tumorigenic human breast epithelial cell line MCF-10A | 48 h | 30 μM | Breast cancer | RESV-induced upregulation of UGT1A8 expression was abolished by silencing NRF2 gene with its specific siRNA. Likewise, RESV failed to protect DNA damage induced in Nrf2 knockdown cells, demonstrating that the protective effects for the mammary epithelial cell neoplastic transformation of RESV are based on NRF2-UGT1A8-estrogen metabolism axis. |
Daverey et al. [209] | Human astrocytes-spinal cord | Until 48 h | 10 mM | Protection of astrocytes against oxidative stress | RESV significantly ↑ astrocyte survival after oxidative stress, demonstrating a better effect on cell viability than curcumin and showed significant inhibition of ROS production. |
Caldeira-Dias et al. [210] | Human umbilical vein endothelial cells | 24 h | 1 μM | Pre-eclampsia | RESV and polyphenol-rich grape juice have potentially beneficial effects on endothelial cells incubated with pre-eclampsia-derived cells, which could help manage the disease via Nrf2/ARE. |
Zhou et al. [211] | Human cardiovascular endothelial cell | Until 14 h | 50 mM | Endothelial dysfunction | RESV and curcumin ↑ Nrf2 translocation and Nrf2 and HO-1 protein expressions, as well as SOD activity and total cellular NAD production, than compounds alone. The results demonstrate that the combination produced a strong synergy in activity against induced oxidative stress. |
Ferraresi et al. [212] | SKOV3 and OVCAR3 human ovarian cancer cells | 72 h | 100 μM | Ovarian cancer | RESV inhibiting the Hedgehog pathway and restoration of autophagy, counteracts LPA-induced malignancy, supporting its inclusion in the therapy of ovarian cancer for limiting metastasis and chemoresistance. |
Zhang et al. [213] | Human rheumatoid arthritis fibroblast-like synoviocytes | 24 h | 0, 1, 10, 20, and 40 μM | Rheumatoid arthritis | RESV inhibits ROS production by activating the Nrf2-Keap1 pathway, thereby inhibiting NF-κB activation and the proliferation and migration of rheumatoid arthritis-related fibroblasts to induce apoptosis. |
Chen et al. [169] | Human colon cancer LS174T and Caco2 cells | 24 h | 5 μM | Colitis and colon cancer | The inductor agent upregulated a wide range of endogenous Nrf2 target genes in vitro with greater potency than its parent compound RESV. |
Leong et al. [214] | Cardiomyoblast cell line H9c2 | 96 h | 30–120 microM | Prevention of cardiovascular diseases | RESV promoted entry into cell cycle arrest but extended the myogenic differentiation progress, also in modulating cell cycle control and differentiation in cardiomyoblasts. |
Lu et al. [201] | Myoblast cell line | 24 h | 20 µM | Doxorubicin-induced cardiotoxicity (chemotherapy) | Co-treatment of RESV and FGF1 exhibits a more powerful cardio-antioxidative capacity in a model treated with doxorubicin. SIRT1/NRF2 inhibition abolished RESV in combination with FGF1 in cardioprotective action. |
Sabzevary-Ghahfarokhi et al. [215] | Epithelial cells isolated from colon tissue | 24 and 48 h | 190 nM or 75 nM | Ulcerative colitis | Nrf2 is prevalent in inflamed tissues of patients with ulcerative colitis. RESV can reverse the inflammatory effects of TNF-α by ↓ IL-1β and ↑ IL-11 production, but Nrf2 gene expression was not altered. |
Krajka-Kuźniak et al. [179] | Human keratinocites | 48 h | 20 or 60 μM | Human keratinocytes | RESV and its methylthioderivatives activate Nrf2 in human keratinocytes with upregulation of GST isoenzymes. |
Chiang et al. [216] | Neuroblastoma cells | 48 h | 10 µM | Glucose oxygen deprivation | RESV rescued oxidative stress, Nrf2, and ↓ Nrf2 antioxidant target genes, like SOD, Gpx GSH, CAT, and HO-1. These protective effects of RESV are affected by blocking AMPK antagonists. |
Tan et al. [217] | Epithelial-like morphology isolated from hepatocellular carcinoma cells | 28 h | 50 μM | Mitochondrial dysfunction and circadian cycle | Beneficial effects of RESV on stimulation of the Nrf2/NQO-1 pathway and expression of the mitochondrial respiratory complex in cells. Likewise, the inhibitory effects of RESV on NF-κB inflammation signaling were acrylamide-dependent. |
Zhou et al. [180] | Epithelial cell line isolated from the mammary glands of a mouse | 52 h | 50 mg/kg | Streptococcus uberis infection | RESV can function as an activator of the p62–Keap1/Nrf2 signaling pathway to improve oxidative injury caused by S. uberis in mammary glands as well as in EpH4-Ev cells. |
Zhou et al. [218] | Mammary epithelial cells | 24 h | 43.81 μM | Oxidative stress and apoptosis in cells contaminated by aflatoxins | RESV exhibits a good regulatory effect about expression of mRNA transcripts of Nrf2, Keap1, NQO1, HO-1, SOD2 and HSP70 for components of the Nrf2 signaling pathway. |
Li et al. [219] | Human promyelocytic leukemia cells | Until 72 h | 25, 50, 100, and 200 mol/L | Acute myelogenous leukemia | RESV reverses drug resistance of studied cells by regulating the PI3K/Akt/Nrf2 signaling pathway. |
Zhang et al. [220] | Pheochromocytoma of the rat adrenal medulla cells | 24 h | 25, 50 or 100 μM | Neurotoxicity | The neuroprotective effect of the RESV analogue was achieved by several pathways, including direct elimination of ROS, rescue of endogenous antioxidants and activation of Nrf2 way antioxidant response elements. |
Li et al. [221] | Breast cancer cell | 24 h | RESV dimers dissolved in DMSO to give a final 0.1% solution | Elimination of ROS and Nrf2 activation | RESV and its dimers play an important role in activating the Nrf2/ARE signaling pathway. |
Kima et al. [222] | Human lung cancer cells | Until 24 h | 50 µM | Lung cancer | RESV-loaded nanoparticles restored H2O2-induced ROS levels by inducing cellular uptake of RESV in cells. Furthermore, RESV activated Nrf2-Keap1, thereby accumulating abundance of Nrf2. |
Csiszár et al. [223] | Cerebromicrovascular endothelial cells | 24 h | 10 µmol/L | Antiaging effect | The treatment of aged cerebromicrovascular endothelial cells with Nrf2 activated by RESV significantly ↓ cellular production of ROS and inhibited apoptosis. |
Wu et al. [191] | Neuroblastoma cells | 27 h | 3 µM | Cerebellar neurotoxicity in spinocerebellar ataxia type 3 | RESV and caffeic acid ↑ the levels of antioxidant and autophagy protein expression with consequently corrected levels of ROS, mitochondrial membrane potential, mutant ataxin-3 in cells. Further, RESV enhanced the transcriptional activity of Nrf2. |
Bigagli et al. [224] | Human granulocytes and monocytes | Until 48 h | 5–10 μM | Lipopolysaccharide (LPS)-mediated cellular inflammation | An anti-inflammatory effect of RESV and hydroxy-tyrosol at nutritionally relevant low concentrations was seen, involving inhibition of granulocyte and monocyte activation and Nrf2 activation. |
Moghadan et al. [225] | Human hepatocellular carcinoma cells | 72 h | 0, 10, 20, and 40 μM | Hepatocellular carcinoma | Low concentration of berry-derived polyphenols (RESV, gallic acid, and kuromanin chloride) upregulates hTERT expression in the hepatocellular carcinoma cell line through induction of the signaling pathway SIRT1/Nrf2. |
Xuan et al. [226] | Mouse preosteoblast cell line | 14 days | 5 μM | Diabetic osteoporosis | Osteoblastic dysfunction under high glucose condition was significantly improved by RESV through activation of Nrf2 to suppress oxidative stress by the AKT/glycogen synthase kinase 3β (GSK3β)/FYN axis. |
Li et al. [193] | Rat tubular epithelial cell | 4 h | 100 μmol/mL | Renal ischemia–reperfusion injury (IRI) | RESV shows renoprotection exerting significant effects on inflammatory responses, oxidative stress and apoptosis through the Nrf2/TLR4/NF-κB pathway. |
Yang et al. [227] | Rats cortical neurons | 24 h | 10, 20, 40,60 and 80 mM | Ischemia/Reperfusion | After treatment with RESV, Nrf-2 was significantly translocated to the nuclei, expressions of Nrf-2 in the nuclei and NQO-1 and HO-1 in the cytoplasm were significantly ↑, suggesting that RESV ↑ activation of the Nrf-2/ARE signaling pathway during this injury. |
Zhang et al. [228] | Pheochromocytoma of the rat adrenal medulla cells | 24 h | 25–75 μM | Exposure to paraquat | RESV showed neuroprotection as it reduces the response to oxidative stress and apoptosis and promotes the activity of the Nrf2 signaling pathway, cellular activity and survival rate in cells treated with paraquat. |
Singh et al. [199] | Non-tumorigenic human breast epithelial cell | Until 48 h | 50 µM | Breast cancer | RESV alone or in combination with 17β-estradiol significantly ↑ the expression of Nrf2 in breast tissues. Expression of antioxidant genes regulated by NRF2, NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage were ↑ in breast tissues treated with RESV and RESV + 17β-estradiol. |
Xu et al. [200] | Primary mouse hepatocytes | 24 h | 20 μM | Acute liver toxicity | RESV/FGF1 ↓ oxidative stress and thereby alleviated liver injury by promoting nuclear translocation of Nrf2 and subsequently ↑ expression of antioxidant proteins in an AMPK-dependent. |
Gurusinghe et al. [229] | Placental explants | Until 48 h | 50, 100 or 200 mM | Trofloblastic and endothelial dysfunction | RESV, can mitigate the ↑ in placental production of sFlt-1 and activin A that occurs in response to placental injury in vitro and improve induced endothelial dysfunction in pre-eclampsia in vitro, mediated by Nrf2. |
Author and Year | Population | Intervention and Control Groups and Sample n | Route of Administration | Intervention Time | Dose | Condition/Disease | Mechanism in Nrf2 |
---|---|---|---|---|---|---|---|
Rabbani et al. [230] | Overweight and obese subjects | 32 overweight and obese subjects with normal, impaired fasting, or impaired postprandial glucose, in crossover groups | Oral | 8 weeks, with 6 weeks washout between crossover treatment periods | RESV 90 mg and 120 mg hesperetin | Insulin resistance in overweight and obese individuals | RESV and hesperetin showed a negative correlation between methylglyoxal levels and also peripheral blood mononuclear cell activity with quinone reductase enzyme activity, an important Nrf2 activation marker. In addition, an improvement in the inflammatory profile and insulin resistance was seen in individuals in the intervention group. |
Saldanha et al. [231] | Chronic kidney disease individuals | 20 nondialyzed chronic kidney disease individuals, in crossover groups | Oral | 4 weeks, with 8 weeks washout between crossover treatment periods | RESV 500 mg | Chronic kidney disease | RESV supplementation in patients with chronic kidney disease not on dialysis showed no antioxidant and anti-inflammatory effect. |
Author and Year | Cell Culture | Intervention Time | Concentration | Condition/Disease | Mechanism Based on Nrf2 |
---|---|---|---|---|---|
Bhakkiyalakshmi et al. [241] | HEK293T cells | 24 h | I1: 5 µM I2: 10 µM | Oxidative stress | ↑ dose of PTS induced a ↑Nrf2 protein. PTS activated Nrf2 expression, via direct inhibition of Keap1–Nrf2 PPI, ↓ ROS and ↑ antioxidant enzymes. |
Zhou et al. [242] | HaCaT cells | 24 h | I1: 3.75 µM I2: 7.5 µM I3: 15 µM I4: 30 µM | Protective effect on cytotoxicity | ↓ ROS and MDA, and improved arsenic-induced SOD depletion via NRF2. |
Bhakkiyalakshmi et al. [243] | INS-1E (pancreatic β-cells) | 48 h | I1: 2 µM I2: 4 µM I3: 8 µM I4: 16 µM | Diabetes mellitus | Activated the Nrf2 pathway dose and time dependently, and also ↑ the expression of HO-1, SOD, CAT and GPx. |
Deng et al. [244] | HUVECs | 24 h | I1: 5 µM I2: 10 µM I3: 50 µM | UVA/UVB radiation | ↑ Nrf2 levels in the nucleus of cells, and ↓ levels of carbonyl proteins and MDA. |
Li et al. [245] | HaCaT cells | 24 h | I1: 5µ M I2: 10µ M | Damage from UVB radiation | Attenuated UVB-induced cell death, ↓ROS, and ↑Nrf2. Aided in the repair of damaged DNA through a PI3K-dependent activation of the Nrf2/ARE pathway. |
Tang et al. [246] | HUVECs | 24 h | I1: 12.5 µM I2: 25 µM I3: 50 µM | Methylglyoxal (MGO)-induced cytotoxicity | ↑ GLO-1 and GSH, suppressing oxidative stress and ↑ Nrf2, SOD, HO-1 and CAT. |
Yang et al. [247] | Neuroblastoma cells SH-SY5Y | 24 h | I1: 2.5 µM I2: 5 µM I3: 10 µM | Diabetic encephalopathy | ↓ glucose, ROS and LDH levels; ↑cell viability, Nrf2, HO-1 and GST. |
Lin et al. [248] | Cardiomyocyte cell line (SCC065) | 24 h | I1: 2.5 µM I2: 5 µM | Cardiomyocytes | ↓ PCSK9/SREBP2 interaction and mRNA expression by ↑ hsa-miR-335, hsa-miR-6825 expression, and LDLR mRNA expression. |
Author and Year | Sample (n) | Route of Administration | Intervention | Condition | Mechanism in Nrf2 |
---|---|---|---|---|---|
Xu et al. [249] | 8 BALB/c mice/group | Itraperitoneal injection | C: OVA 10 μg + 200 μL of saline solution I1: OVA + 30 mg/kg PTS I2: OVA + 50 mg/kg PTS | Asthma | ↓ inflammation and IL-4, IL-13, IL-5, MDA, while ↑ SOD and CAT, regulating the AMPK/Sirt1 and Nrf2/HO-1 signaling pathway |
Xu et al. [250] | 10 Swiss–Kunming mice/group | Intracerebroventricular injection (ICV) | I1: ICV Aβ1–42 + 10 mg/kg PTS I2: ICV Aβ1–42 + 20 mg/kg PTS I3: ICV Aβ1–42 + 40 mg/kg PTS | Cognitive dysfunction | ↓ loss of neurons and ROS in Aβ1–42; ↑ SOD and HO-1; and promotes Keap1-associated protein-1 and p62 binding that, ↑Nrf2 activation. |
Kosuru et al. [251] | 8 Sprague Dawley rats/group | Oral | C: 65% corn starch I1: 20 mg/kg/day of PTS I2: 20 mg/kg/day of PTS + 65% high-fructose diet | Cardiovascular and inflammatory diseases associated with diabetes | ↓cardiac hypertrophy, hypertension, oxidative stress, inflammation, NF-κb expression and NLRP3 inflammasome; and ↑Nrf2, HO-1, via AMPK/Nrf2/HO-1. |
Bhakkiyalakshmi et al. [241] | 6 swiss albino mice/group | Intraperitoneall | C: Healthy I1: Healthy + PTS (10 mg/kg) I2: Diabetic (STZ 50 mg/kg) I3: Diabetic + PTS (5 mg/kg) I4: Diabetic + PTS (10 mg/kg) I5: Diabetic + GB (600 µg/kg) | Diabetes | Regulated glycemia, insulin, and lipoproteins (VLDL-c, LDL-c, HDL-c). Furthermore, ↓ LPO, and ↑ Nrf2, SOD, CAT, GSH, gpx, via Keap1/Nrf2. |
Hseu et al. [252] | Zebrafish embryos | Immersion | C: DMSO (0.1%) I1: PTS 2.5 µM I2: PTS 5.0 µM | Melanogenesis | ↓ ROS, activating the Nrf2, leading to ↑ HO-1, γ-GCLC and NQO-1. Also, inhibited tyrosinase expression/activity and endogenous pigmentation in the zebrafish model. |
Xue et al. [253] | 6 Sprague Dawley rats/group | P.O. | C1: ACL + sunflower oil C2: ACLX + sunflower oil I1: ACLX + PTS (30 mg/kg) | Osteoarthritis | ↓COX-2, INOs, PGE2, NO, and ROS, also ↑Nrf2, inhibits IL-1β-induced inflammation in chondrocytes. |
Zhang et al. [254] | 10 BALB/c mice/group | Intraperitoneal injection | C1: PBS I1: PTS (50 mg/kg) I2: LPS (30 µg/kg) + D-GalN (600 mg/kg) I3: PTS (12.5 mg/kg) + L/D I4: PTS (25 mg/kg) + L/D I5: PTS (50 mg/kg) + L/D | Acute liver failure | Protected against acute liver failure, ↓ lethality, and ALT, AST, IL-6, IL-1b, TNF-α, MDA and MPO, improved histology from the liver, and ↑ GSH and SOD. Furthermore, ↓ NLRP3, MAPK and NF-κb pathways, and ↑ expression of the NRF2 pathway. |
Zhang et al. [255] | 10 BALB/c mice/group | Intraperitoneal injection | C: Healthy I1: LPS-induced I2: LPS + PTS (10 mg/kg) I3: LPS + PTS (20 mg/kg) I4: LPS + PTS (40 mg/kg) I5: LPS + DEX (5 mg/kg) | Acute lung injury | Improve acute lung injury, ↓ MPO, COX-2, inos, TNF-α, IL-6, IL-1β and MDA induced by LPS and ↑ SOD, CAT and GSH-Px, via Nrf2/HO-1/ARE. |
Benlloch et al. [256] | nu/nu nude mice | Intravenous administration | I1: A2058 + PTS (50 mg/mL) I2: MeWo + PTS (50 mg/mL) I3: MelJuso + PTS (50 mg/mL) | Cancer | ↓ the growth of human melanoma, pancreatic cancer and ROS in vivo. Also ↑ expression of the NRF2 pathway. |
Fan et al. [257] | 5 C57BL/6 mice/group | Intraperitoneal injection | C: saline solution I1: PTS (50 mg/kg I2: APAP (900 mg/kg) I3: APAP (900 mg/kg) + DMSO (0.05 mL/kg) I4: APAP (900 mg/kg) + PTS (50 mg/kg) | Hepatotoxicity | ↓ ALT, AST, histological lesions, MDA, and MPO. Also, ↑ liver GSH and SOD levels, and was able to activate the Nrf2/HO-1 signaling pathway. |
Lacerda et al. [258] | 7–8 Wistar adult rats/group | - | C: IAM I: IAM PTS + PBS (100 mg/kg) | Myocardial infarction | PTS + PBS, ↓ LPO and trxr, and ↑ GST and grx. Additionally, ↑ the expression of Nrf2 and p-GSK-3b, while ↓ p-GSK-3b/GSK-3b ratio of infarcted animals, promoting an improvement in systolic function post-infarction. |
Zeng et al. [259] | 14 Rat pups Sprague Dawley/ group | Oral gavage | C: Healthy I1: 12.5 mg/kg I2: 25 mg/kg I3: 50 mg/kg | Hypoxic–ischemic brain injury | ↓ NF-κb, NO, TNF-α, IL-1β, IL-6, ROS and MDA, furthermore, ↑ GSH and regulated the NRF2/HO-1 and JNK pathway and activated PI3K/Akt-mTOR signals. |
Liu et al. [260] | BALB/c mice | Injected intraperitoneally | C: Healthy I1: LPS (50μg/kg) + D-Gal (500 mg/kg) I2: PTS (10 mg/kg) + LPS (50 μg/kg) + D-Gal (500 mg/kg) I3: PTS (20 mg/kg) + LPS (50 μg/kg) + D-Gal (500 mg/kg) I4: PTS (40 mg/kg) + LPS (50 μg/kg) + D-Gal (500 mg/kg) I5: PTS (40 mg/kg) | Acute liver injury | ↓ LPS/D-Gal-induced inflammatory infiltration, hemorrhage and hepatic cord dissociation by reducing MPO activity in the liver. In addition ↓ALT, AST, TNF-α, IL-6, IL-1β and NF-κb, also upregulated Nrf2 and HO-1. |
Millán et al. [261] | 12 New Zealand rabbits/group | Subcutaneously administered | C: non-diabetic I1: diabetic (alloxan—100 mg/kg) I2: diabetic + PTS (50 mg/kg) | Retinopathy caused by diabetes | ↓ ROS, and rate of cell death, and activate the PI3K/AKT/GSK3β/NRF2 pathway, ↑ SOD, CAT, GPX, and GSH/GSSG ratio. |
Obrador et al. [262] | Wild-type B6SJLF1/J Mice | Orally | I1: Nicotinamide riboside (185 mg/kg) I2: PTS (30 mg/kg) | Amyotrophic lateral sclerosis | ↑ Survival and improved loss of neuromotor functions associated with ALS in transgenic mice |
Dornadula et al. [263] | Swiss albino mice | Intraperitoneally administered | C: Healthy I1: Healthy + PTS (5 mg/kg) I2: Diabetic (STZ—50 mg/kg) I3: Diabetic + PTS (5 mg/kg) I4: Diabetic + glibenclamide (600 μg/kg) | Diabetes | ↑ Nrf2, SOD, CAT, GPx, NQO-1 and HO-1, ↓ NO production and inhibition of INOS activation. |
Tang et al. [264] | 12 Sprague Dawley rats/group | Orally | C: PBS I: PTS (10 mg/kg) | Atherosclerosis | ↓ Inflammatory response, atherogenesis, aortic plaque size, macrophage infiltration, oxidative stress and apoptosis cell. Also, ↑ Nrf2, and ↓ stat3. |
Xiong et al. [265] | 6–10 Sprague Dawley rats/group | Orally | C: Healthy I1: phosfate buffer saline (PBS) I2: PTS (10 mg/kg) | Atherosclerosis | ↓ HDL-c, TC, LDL-c, IL-1, TNF-α and IL-6. Furthermore, ↑ endothelial cell viability and regulated apoptosis by activating the Nrf2 pathway via the TLR-4/myd88/NF-κb pathway. |
Yang et al. [266] | 5 BALB/C mice/group | Injected intraperitoneall | C: 1% DMSO I1: LPS (1 mg/kg) I2: PTS (50 mg/kg) I3: LPS + PTS (12.5 mg/kg) I4: LPS + PTS (25 mg/kg) I5: LPS + PTS (50 mg/kg) | Pulmonary fibrosis | ↓ NF-κb, NOD-type NLRP3 receptor, MPO, TNF-α, IL-6, MDA, and IL-1β, and ↑ IL-10, SOD, and GSH. Also, activated Nrf2 nuclear translocation and activated HO-1 and NAD(P)H genes. |
Yao et al. [267] | 10 Kunming male mice/group | Intragastric administration | C: CMC-Na (10 mL/kg) STC: LOP (5 mg/kg) + CMC-Na (10 mL/kg) I1: LOP (5 mg/kg) + PTS (30 mg/kg) I2: LOP (5 mg/kg) + PTS (60 mg/kg) | Laxative effect | Improved intestinal motility disorder, ↓ apoptosis, ROS, MDA, and ↑ PI3K/AKT and Nrf2/HO-1 signaling, GPx in addition, to promoting the secretion of the intestinal hormone, gastrin and motilin, and restoring microbial diversity. |
Zhu et al. [268] | KM mice | Intragastric administration | I1: Aβ25–35 (9 nmol/3 μL) + PTS (10 mg/kg) I2: Aβ25–35 (9 nmol/3 μL) + PTS (40 mg/kg) | Alzheimer’s | Showed more effective neuroprotective effects against cognitive dysfunction, and improved neuronal plasticity and alleviated neuronal loss both in vivo. Also, ↑ SIRT1, Nrf2 and SOD. |
Author and Year | Sample (n) | Route of Administration | Intervention Time | Dose | Condition/Disease | Mechanism in Nrf2 |
---|---|---|---|---|---|---|
Wang et al. [276] | ICR mice | Intraperitoneally | 24 h | I: 5, 10 or 20 mg/kg | Cerebral ischemia–reperfusion injury | ↓ MDA and LDH, ↑ SOD, GSH-Px,HO-1 and NQO1 |
Binmahfouz et al. [277] | 6 Wistar rats/group | Oral gavage | 4 consecutive weeks | I: 5 or 10 mg/kg | Endometrial hyperplasia | Inhibited lipid peroxidation, ↑ SOD, CAT, and HO-1, ↓ MDA. Protected the increase in inflammatory markers ↓ IL-6, TNF-α and NF-κB |
Zhang et al. [278] | 6 Kunming mice/group | Orally administered | 8 weeks | I: 20 mg/kg | Behavioral disorders and neurological deficits | ↓ MDA levels and ↑ SOD, CAT and ↑ the expression of Nrf2, HO-1 and NOQ1 |
Shi et al. [279] | 8 Wistar rats/group | Oral gastric gavage | 28 days | I: 10 mg/kg | Testicular health, spermatogenesis and steroidogenesis | ↑ NQO1, HO-1, γGCS and GPx, SOD, CAT, ↓MDA |
Li et al. [280] | 8 Sprague Dawley rats/group | Intraperitoneal injection | 12 weeks | I: 5 or 10 mg/kg | Diabetic cardiomyopathy | ↓ IL-6 and TNF-α, ↑ Nrf2 expression, via Nrf2/HO-1 and SOD |
Wahdan et al. [281] | 15 Wistar rats/group | Intraperitoneal injection | 7 days | I: 10 mg/kg | Cisplatin nephrotoxicity | ↑ HO-1, GCLC and GCLM, GSH. ↓ NF-κB, (IL-1β, TNF-α, iNOS, COX-2, MDA |
Author and Year | Cell Culture | Intervention Time | Concentration | Condition/Disease | Mechanism in Nrf2 |
---|---|---|---|---|---|
Hao et al. [282] | Cells ARPE-19 | 24 h | 15 μM | Prevent macular degeneration | ↑ antioxidant genes, catalytic subunit glutamate-cysteine ligase (GCLc), SOD and HO-1, ↓ ROS |
Kil et al. [274] | Endothelial cells | ECs were pre-incubated for 6 h with Pic before 12 h exposure to 3 mM Hcy | 10 μM | Prevent endothelial cell apoptosis | Induced HO-1 expression, ↓ ROS |
Achy-Brou et al. [283] | RAW 264.7 macrophages cells | 24 and 48 h | 3, 10, 20 or 30 μM | Cytotoxicity and ability to reduce NO | Are cytotoxic to transformed RAW 264.7 macrophages inhibit ↓ NO expression via Nrf2 |
Zhu et al. [284] | Human keratinocyte cells (HaCaT cell line) | 24 h | 15 μM | Preventing the proliferation of acne vulgaris | ↓ NF-κB, ↑ HO-1 and NQO1 |
Li et al. [280] | H9C2 rat cardiac myoblasts | 48 h | 10 μM | Diabetic cardiomyopathy | ↓ IL-6 and TNF-α, ↑ Nrf2 expression, via Nrf2/HO-1, SOD |
Hosoda et al. [206] | C2C12 myoblasts | 24 h | 10 μM | Antioxidant and antiapoptotic effects | ↓ ROS, ↑ HO-1 |
Wang et al. [285] | Highly differentiated rat adrenal pheochromocytoma cells (PC12 cells) | 24 h | 2.5; 10 and 40 μM | Cerebral ischemia–reperfusion injury | ↓ MDA and LDH, ↑ HO-1 and NQO1 |
Author and Year | Cell Culture | Intervention Time | Concentration | Condition/Disease | Mechanism in Nrf2 |
---|---|---|---|---|---|
Koskela et al. [298] | The human retinal pigment epithelial (ARPE-19) cell line | 24 h | 5 μM | Cell death induced by oxidative stress | PIN, ↑ HO-1, it was observed in this work that Nrf2 levels did not show variations in the time intervals analyzed, maintaining basal levels |
Wang et al. [299] | Normal human lung epithelial Beas-2B cells, human breast carcinoma MDA-MB-231 cells and RAW 264.7 cells | 24 h | 0.5–4 μM | Chronic obstructive pulmonary disease | DHS activates Nrf2-mediated defensive response, treatment with the compound positively regulated the levels of NQO1 and GCLM, ↑ Nrf2 and its regulated genes |
Author and Year | Sample (n) | Route of Administration | Intervention Time | Dose | Condition/Disease | Mechanism in Nrf2 |
---|---|---|---|---|---|---|
Wang et al. [299] | 18 C57BL/6 mice/group | Intraperitoneal injection | 16 weeks | I: 2 or 4 mg/kg | Chronic obstructive pulmonary disease (COPD) | DHS activates Nrf2-mediated defensive response, treatment with the compound positively regulated the levels of NQO1 and GCLM, ↑ Nrf2 and its regulated genes |
Wang et al. [300] | 12–13 mice/group | Intragastric administration | 2 weeks | I: 100 mg/kg | Oligoasthenospermia | PIN and DHS ↓ ROS and MDA, through activation of the Nrf2/ARE pathway |
Author and Year | Sample (n) | Route of Administration | Intervention | Condition | Mechanism in NRF2 |
---|---|---|---|---|---|
Cao et al. [307] | 30 C57BL/6 mice/ group | Intraperitoneal injection | C: non-irradiated + saline control I1: irradiation + saline I2: irradiation + PDT (100 mg/kg) I3: irradiation + WR2721 (100 mg/kg) | Radiation-induced lung injury | ↓ Acute inflammation and fibrosis caused by radiation. Also ↑ SIRT3, Nrf2 and PGC-1α. |
Zhao et al. [308] | 8 Sprague-Dawley rats/group | Intragastric administration | C: control vehicle I1: fructose vehicle I2: fructose + PDT (7.5 mg/kg) I3: fructose + PDT (15 mg/kg) I4: fructose + PDT (30 mg/kg) I5: fructose + pioglitazone (4 mg/kg) | Fructose-induced non-alcoholic fatty liver disease | Activate the Nrf2 antioxidant pathway, suggest that augmentation of mir-200a to control the Keap1/Nrf2 pathway is a therapeutic strategy for fructose-associated liver inflammation. |
Chen et al. [309] | 14 C57BL/6 mice/group | Oral gavage | C: sham group I1: PDT I2: DSS (5% g/mL) I3: DSS + PDT | Ulcerative colitis | ↓ TNF-α, IL-4, IL-6, CPX-2, inos, NF-κb, p65, and p38, while↑ IL-10, Nrf2, HO-1 and NQO1expression. It also improved intestinal inflammatory response and colonic epithelial barrier dysfunction. |
Zhao et al. [310] | 18 Wistar rats/group | Intraperitoneal injection |
C: model group
I1: PDT (50 mg/kg) I2: sham (only stripping blood vessels without ligation + saline) | Neurological function | ↓ NO and MDA, and ↑ SOD, GSSG and GSH in brain tissue. Furthermore, ↑ Nrf2, NQO1 and HO-1, and ↓ oxidative stress, through the NRF2/ARE pathway. |
Lv et al. [311] | 8 Sprague Dawley rats/group | Intraperitoneal injection | C: Sham I1: SCI I2: SCI + PDT 20 mg/kg I3: SCI + PDT 40 mg/kg | SCI | ↓ ROS, LDH and apoptosis status via NRF2/HO-1 in addition to regulating the expression of Nrf2. |
Huang et al. [306] | 12 Wistar rats/group | Intragastric administration | C: Healthy I1: ethanol I2: silymarin (100 mg/kg) I3: PDT (25 mg/kg) I4: PDT (50 mg/kg) I5: PDT (100 mg/kg) | Parkinson’s disease | ↑ p-AKT, p-GSK-3βser9 and Nrf2 levels, and suppressed NF-κb activation, via AKT/GSK3β-NRF2. |
Li et al. [312] | 12 BALB/c mice/ group | Intraperitoneal injection + vaginal | C: Healthy I1: LPS I2: LPS + PDT (20 mg/kg) I3: LPS + PDT (40 mg/kg) I4: LPS + PDT (80 mg/kg) | Endometriosis | ↓TNF-α, IL-1β, and IL-6, NF-κb activation in a dose-dependent manner. Also, ↑ Nrf2 and HO-1. |
Zhang et al. [313] | 8 ICR mice/ group | Intragastrically administered | C: without treatment I1; SM (40 mg/kg) I2: SM + PDT (100 mg/kg) I3: SM + PDT (200 mg/kg) I4: SM + PDT (400 mg/kg) I5: NAC (200 mg/kg) | Sulfur mustard-induced liver injury | ↑ Sirt1, HO-1, NQO1 and Nrf2, via the Sirt1/Nrf2 pathway. |
Bheereddy et al. [314] | Sprague Dawley rats | Orally | I1: PDT (25 mg/kg) I2: PDT (50 mg/kg)) | Diabetes mellitus | ↑ SIRT1 driven by PGC-1α, facilitating Nrf2-directed antioxidant signaling. |
Gu et al. [315] | C57BL/6 mice | Intraperitoneal injection | C: Healthy I1: PDT (20 mg/kg) I2: PDT (40 mg/kg) I3: PDT (80 mg/kg) I4: LPS (10 mg/kg) | Acute kidney injury | ↓ Creatinine, TNF-α, IL-1β, IL-6, MDA, and NF-κb, increased Nrf2 and HO-1 expression. |
Li et al. [316] | 8 BALB/c mice/group | Intragastric | C: Healthy I1: Graves’ orbitopathy I2: Graves’ orbitopathy + PDT (50 mg/kg) I3: PDT (50 mg/kg) | Ocular injury | Attenuated orbital muscle adipose tissue expansion and lipid droplet accumulation through the Keap1/Nrf2/ARE pathway. It also ↓ ROS induced by H2O2, and ↑ the expression of NAD(P)H and NQO1. |
Gu et al. [317] | 8 Sprague Dawley rats/group | - | C: standard diet + water I1: fructose-vehicle group receiving PBS I2: PDT (7.5 mg/kg) I3: PDT (15 mg/kg) I4: PDT (30 mg/kg) I5: chloroquine (50 mg/kg) | Fructose-induced kidney injury | ↑ Nrf2, antioxidant activity, and suppressed autophagy to protect against fructose-induced podocyte injury. |
Zhan et al. [318] | C57BL/6J mice | - | I1: PDT (15 µMol/L) I2: PDT (30 µMol/L) | Ischemia/reperfusion injury of the spinal cord | ↑ Neuronal viability and protected against apoptosis and mitochondrial injury in a dose-dependent manner. Mechanistically, downregulated keap1 and ↑ nrf2, nqo-1 and ho-1, and also reversed neuronal and mitochondrial damage in a mouse model. |
Chen et al. [319] | Sprague Dawley rats | Intraperitoneal injection | I1: PDT (10 mg/kg) I2: PDT (100 mg/kg) I3: PDT (250 mg/kg) I4: PDT (500 mg/kg) | Acute Myocardial Infarction (AMI) | ↓ hypoxia-induced H9c2 cell apoptosis and ROS generation, by ↑ Nrf2/HO-1 signaling. |
Chen et al. [295] | 8 Sprague Dawley rats/group | Intraperitoneal injection | C: non-PDT treatment (1% Tween 80) I1: PDT (25 mg/kg) I2: PDT (50 mg/kg) | Sciatic nerve in diabetes mellitus | ↓ ROS and upregulated the expression of Nrf2 and GLO1 and inhibited the expression of Keap1 and RAGE. |
Gong et al. [320] | 12 C57BL/6J mice/group | Intraperitoneal injection | C: diabetic model (STZ 50 mg/kg) I1: Diabetic + PDT (100 mg/kg) I2: Diabetic + PDT (200 mg/kg) I3: Diabetic + metformin (195 mg/kg) | Diabetes mellitus | ↑ activity of Nrf2, CKIP-1, and antioxidant effect. Suggested that PDT could ↑ the CKIP-1-Nrf2-ARE pathway to prevent OSS-induced insult in gmcs and diabetic mice. |
Huang et al. [321] | 12 Wistar rats/group | Intragastrically | C: non-PDT treatment I1: ethanol I2: silymarin (100 mg/kg) I3: PDT (25 mg/kg) I4: PDT (50 mg/kg) I5: PDT (100 mg/kg) | Alcoholic liver injury | ↑ Nrf2 and HO-1. In addition, ↓TNF-α, IL-1 β and IL-6 through downregulation of TLR4 and NF-κB. |
Tong et al. [322] | 6 Sprague Dawley rats/group | Intraperitoneal injected | C: Sham operated I1: doxorubicin-treated (2 mg/kg) I2: PDT (50 mg/kg) I3: doxorubicin (2 mg/kg) + PDT (50 mg/kg) | Cognitive impairment induced by chemotherapy (chemobrain) | Protected against learning and memory impairment by restoring the histopathological architecture of the hippocampus. Furthermore, it suppressed oxidative stress through the upregulation of nrf2. |
Tang et al. [323] | 5 C57BL/6 wild-mices/ Group | Intraperitoneal injection | C: Sham operated I1: surgical destabilization of the medial meniscus I2: surgical destabilization of the medial meniscos + PDT (100 mg/kg) | Osteoartitis | Suppressed the overproduction of pro-inflammatory mediators, including PGE2, TNF-α, NO, COX-2, inos and IL-6 in IL-1β-induced chondrocytes. |
Li et al. [324] | 7 guinea pigs/group | Intraperitoneal injection | C: non-PDT treatment I1: cisplatin (12 mg/kg) I2: 2% DMSO + cisplatin (12 mg/kg) I3: PDT (40 mg/kg) I4: dexamethasone (10 mg/kg) + cisplatin (12 mg/kg) I5: PDT (20 mg/kg) + cisplatin (12 mg/kg) I6: PDT (40 mg/kg) + cisplatin (12 mg/kg) I7: PDT (80 mg/kg) + cisplatin (12 mg/kg) | Hearing loss | ↓ ABR, promote Nrf2 nuclear translocation, ↑ Nrf2 and HO-1 expression, and, thus reducing the loss of ohcs. |
Zeng et al. [325] | BALB/c mice | Intraperitoneal injection | C: saline solution I1: ovalbumin (20 µg) + PDT (100 mg/kg) | Asthma | ↓ lung ROS, TGF-β1 expression and fibroblasts. In addition to reversing the expression of (NOX), promoting the expression of HO-1 mediated by Nrf2. |
Huang et al. [326] | 10 Sprague Dawley rats/group | Gavage | C: healthy I1: PDT (150 mg/kg) | Diabetic nephropathy | ↓ the expression of FN and TGF-β1 exposed to ages. It also ↑ Nrf2, HO-1 and SOD1. Activation of the Nrf2-ARE pathway by PDT led to suppression of the overproduction of ROS markedly driven by ages. |
Ye et al. [327] | 3–5 BALB/c mice/ Group | - | C: healthy I: PDT (40 µM) | Allergy | ↓ TNF-α, IL-4, IL-1β and IL-8, and downregulated the downstream signaling pathway including MAPK, PI3K/AKT and NF-κb. It also targets the Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, E.L.S.S.; Xavier, J.A.; Fragoso, M.B.T.; Silva, M.O.; Escodro, P.B.; Oliveira, A.C.M.; Tucci, P.; Saso, L.; Goulart, M.O.F. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals 2024, 17, 232. https://doi.org/10.3390/ph17020232
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals. 2024; 17(2):232. https://doi.org/10.3390/ph17020232
Chicago/Turabian StyleMendonça, Elaine L. S. S., Jadriane A. Xavier, Marilene B. T. Fragoso, Messias O. Silva, Pierre B. Escodro, Alane C. M. Oliveira, Paolo Tucci, Luciano Saso, and Marília O. F. Goulart. 2024. "E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway" Pharmaceuticals 17, no. 2: 232. https://doi.org/10.3390/ph17020232
APA StyleMendonça, E. L. S. S., Xavier, J. A., Fragoso, M. B. T., Silva, M. O., Escodro, P. B., Oliveira, A. C. M., Tucci, P., Saso, L., & Goulart, M. O. F. (2024). E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals, 17(2), 232. https://doi.org/10.3390/ph17020232