Using the Cocrystal Approach as a Promising Drug Delivery System to Enhance the Dissolution and Bioavailability of Formononetin Using an Imidazole Coformer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coformer Screening for Cocrystal Formation Through Thermal Analysis
2.2. Characterization of FMN Cocrystal
2.2.1. Thermal Analysis
2.2.2. PXRD Analysis
2.2.3. ATR-FTIR Analysis
2.2.4. 13C-Solid-State NMR Analysis
2.3. Powder Dissolution Experiment
2.4. Rat Oral Pharmacokinetics
2.5. Physical Stability of Cocrystal
3. Materials and Methods
3.1. Materials
3.2. Coformer Screening by Thermal Analysis
3.3. Preparation of FMN Cocrystal
3.4. Characterization of Cocrystal
3.4.1. Differential Scanning Calorimetry (DSC)
3.4.2. Thermogravimetric Analysis (TGA)
3.4.3. Polarized Light Microscopy and Hot Stage Microscope (HSM)
3.4.4. Powder X-Ray Diffraction (PXRD)
3.4.5. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.4.6. 13C-Solid-State NMR
3.5. Powder Dissolution Experiment
HPLC Method for Powder Dissolution Experiment
3.6. Rat Oral Pharmacokinetics
3.6.1. Pharmacokinetic Studies
3.6.2. LC/MS/MS Determination of FMN in Plasma
3.7. Physical Stability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aliya, S.; Alhammadi, M.; Park, U.; Tiwari, J.N.; Lee, J.-H.; Han, Y.-K.; Huh, Y.S. The potential role of formononetin in cancer treatment: An updated review. Biomed. Pharmacother. 2023, 168, 115811. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wang, X.-Q.; Tian, Z. Focusing on formononetin: Recent perspectives for its neuroprotective potentials. Front. Pharmacol. 2022, 13, 905898. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Kaur, H.; Chandra Arya, G.; Bhatti, R. Neuroprotective potential of formononetin, a naturally occurring isoflavone phytoestrogen. Chem. Biol. Drug Des. 2024, 103, e14353. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lou, Y.; Lin, S.; Tan, X.; Zheng, Y.; Yu, H.; Jiang, R.; Wei, Y.; Huang, H.; Qi, X. Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation. J. Ethnopharmacol. 2024, 322, 117576. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of formononetin, a type of methoxylated isoflavone, and its role in cancer therapy through the modulation of signal transduction pathways. Int. J. Mol. Sci. 2023, 24, 9719. [Google Scholar] [CrossRef]
- Qnais, E.; Alqudah, A.; Wedyan, M.; Gammoh, O.; Alkhateeb, H.; Al-Noaimi, M. Formononetin suppresses hyperglycaemia through activation of GLUT4-AMPK pathway. Pharmacia 2023, 70, 527–536. [Google Scholar] [CrossRef]
- Fang, Y.; Ye, J.; Zhao, B.; Sun, J.; Gu, N.; Chen, X.; Ren, L.; Chen, J.; Cai, X.; Zhang, W. Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis. Redox Biol. 2020, 36, 101677. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Wang, J.; Huang, J.; Huang, W.; Huang, Y. Physicochemical properties and in vitro release of formononetin nano-particles by ultrasonic probe-assisted precipitation in four polar organic solvents. Food Chem. 2024, 461, 140918. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Z.; Wang, X.; Shi, Y.; Lu, Y.; Fang, S.; Liang, X. Formononetin/methyl-β-cyclodextrin inclusion complex incorporated into electrospun polyvinyl-alcohol nanofibers: Enhanced water solubility and oral fast-dissolving property. Int. J. Pharm. 2021, 603, 120696. [Google Scholar] [CrossRef]
- Agarwal, A.; Wahajuddin, M.; Chaturvedi, S.; Singh, S.K.; Rashid, M.; Garg, R.; Chauhan, D.; Sultana, N.; Gayen, J.R. Formulation and Characterization of Phytosomes as Drug Delivery System of Formononetin: An Effective Anti-Osteoporotic Agent. Curr. Drug Deliv. 2024, 21, 261–270. [Google Scholar] [CrossRef]
- Huang, S.; Xue, Q.; Xu, J.; Ruan, S.; Cai, T. Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. J. Pharm. Sci. 2019, 108, 2982–2993. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Yoon, W.; Yun, J.; Ban, E.; Yun, H.; Kim, A. Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int. J. Pharm. 2019, 557, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, C.; Tian, F.; Xiao, Z.; Sun, Z.; Lu, L.; Dai, W.; Zhang, Q.; Mei, X. Improving the dissolution rate and bioavailability of curcumin via co-crystallization. Pharmaceuticals 2024, 17, 489. [Google Scholar] [CrossRef]
- Xing, C.; Chen, T.; Wang, L.; An, Q.; Jin, Y.; Yang, D.; Zhang, L.; Du, G.; Lu, Y. Two novel co-crystals of naproxen: Comparison of stability, solubility and intermolecular interaction. Pharmaceuticals 2022, 15, 807. [Google Scholar] [CrossRef]
- Kozakiewicz-Latała, M.; Junak, A.; Złocińska, A.; Pudło, W.; Prusik, K.; Szymczyk-Ziółkowska, P.; Karolewicz, B.; Nartowski, K.P. Adjusting the melting point of an Active Pharmaceutical Ingredient (API) via cocrystal formation enables processing of high melting drugs via combined hot melt and materials extrusion (HME and ME). Addit. Manuf. 2022, 60, 103196. [Google Scholar] [CrossRef]
- GUIDANCE DOCUMENT: Regulatory Classification of Pharmaceutical Co-Crystals. 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-classification-pharmaceutical-co-crystals (accessed on 25 August 2024).
- Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics 2018, 10, 18. [Google Scholar] [CrossRef]
- Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009, 9, 2950–2967. [Google Scholar] [CrossRef]
- Saganowska, P.; Wesolowski, M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J. Therm. Anal. Calorim. 2018, 133, 785–795. [Google Scholar] [CrossRef]
- Yamashita, H.; Hirakura, Y.; Yuda, M.; Teramura, T.; Terada, K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm. Res. 2013, 30, 70–80. [Google Scholar] [CrossRef]
- Byrn, S.R.; Pfeiffer, R.R.; Stowell, J.G. Chapter 3. The X-Ray Powder Diffraction Method. In Solid-State Chemistry of Drugs, 2nd ed.; SSCI, Incorporated: West Lafayette, IN, USA, 1999. [Google Scholar]
- Mitran, R.-A.; Ioniţă, S.; Lincu, D.; Soare, E.M.; Atkinson, I.; Rusu, A.; Pandele-Cuşu, J.; Iordache, C.; Pongratz, I.; Pop, M.M. Mechanochemical Synthesis of Resveratrol–Piperazine Cocrystals. Materials 2024, 17, 3145. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.U.; Umar, M.N.; Khan, E.; Al-Joufi, F.A.; Abed, S.N.; Said, M.; Ullah, H.; Iftikhar, M.; Zahoor, M.; Khan, F.A. Levofloxacin cocrystal/salt with phthalimide and caffeic acid as promising solid-state approach to improve antimicrobial efficiency. Antibiotics 2022, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Salmon, D.J.; Smith, M.M.; Desper, J. Cyanophenyloximes: Reliable and versatile tools for hydrogen-bond directed supramolecular synthesis of cocrystals. Cryst. Growth Des. 2006, 6, 1033–1042. [Google Scholar] [CrossRef]
- Chow, S.F.; Chen, M.; Shi, L.; Chow, A.H.; Sun, C.C. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm. Res. 2012, 29, 1854–1865. [Google Scholar] [CrossRef]
- Guo, B.; Liao, C.; Liu, X.; Yi, J. Preliminary study on conjugation of formononetin with multiwalled carbon nanotubes for inducing apoptosis via ROS production in HeLa cells. Drug Des. Dev. Ther. 2018, 12, 2815–2826. [Google Scholar] [CrossRef]
- Vogt, F.G.; Clawson, J.S.; Strohmeier, M.; Edwards, A.J.; Pham, T.N.; Watson, S.A. Solid-state NMR analysis of organic cocrystals and complexes. Cryst. Growth Des. 2009, 9, 921–937. [Google Scholar] [CrossRef]
- An, J.-H.; Lim, C.; Ryu, H.C.; Kim, J.S.; Kim, H.M.; Kiyonga, A.N.; Park, M.; Suh, Y.-G.; Park, G.H.; Jung, K. Structural characterization of febuxostat/l-pyroglutamic acid cocrystal using solid-state 13C-nmr and investigational study of its water solubility. Crystals 2017, 7, 365. [Google Scholar] [CrossRef]
- Pindelska, E.; Sokal, A.; Szeleszczuk, L.; Pisklak, D.M.; Kolodziejski, W. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids. J. Pharm. Biomed. Anal. 2014, 100, 322–328. [Google Scholar] [CrossRef]
- Li, P.; Chu, Y.; Wang, L.; Wenslow, R.M.; Yu, K.; Zhang, H.; Deng, Z. Structure determination of the theophylline–nicotinamide cocrystal: A combined powder XRD, 1D solid-state NMR, and theoretical calculation study. CrystEngComm 2014, 16, 3141–3147. [Google Scholar] [CrossRef]
- Dalpiaz, A.; Pavan, B.; Ferretti, V. Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs? Drug Discov. Today 2017, 22, 1134–1138. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Luo, C.; Huang, C.; Qiu, R.; Deng, Z.; Zhang, H. Cocrystals of natural products: Improving the dissolution performance of flavonoids using betaine. Cryst. Growth Des. 2019, 19, 3851–3859. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Wang, N.; Shen, P.; Dou, H.; Ma, K.; Gao, Y.; Zhang, J.; Qian, S. Mechanistic study on complexation-induced spring and hover dissolution behavior of ibuprofen-nicotinamide cocrystal. Cryst. Growth Des. 2018, 18, 7343–7355. [Google Scholar] [CrossRef]
- Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst. Growth Des. 2022, 22, 6323–6337. [Google Scholar] [CrossRef]
- Ban, E.; An, S.H.; Park, B.; Park, M.; Yoon, N.-E.; Jung, B.H.; Kim, A. Improved solubility and oral absorption of emodin-nicotinamide cocrystal over emodin with PVP as a solubility enhancer and crystallization inhibitor. J. Pharm. Sci. 2020, 109, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, Y.; Qiao, N.; Chen, Y.; Gao, L. Preparation and characterization of carbamazepine cocrystal in polymer solution. Pharmaceutics 2017, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, B.; Liu, M.; Xing, W.; Hu, K.; Yang, S.; He, G.; Gong, N.; Du, G.; Lu, Y. Design, preparation, characterization and evaluation of five cocrystal hydrates of fluconazole with hydroxybenzoic acids. Pharmaceutics 2022, 14, 2486. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Li, Q.; Wang, W.; Liu, M.; Yang, S.; Zhang, L.; Yang, D.; Du, G.; Lu, Y. A Novel Cocrystal of Daidzein with Piperazine to Optimize the Solubility, Permeability and Bioavailability of Daidzein. Molecules 2024, 29, 1710. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, L.; Tao, Y.; Zhang, B.; Zhang, L.; Yang, S.; Yang, D.; Lu, Y.; Du, G. New Cocrystals of Ligustrazine: Enhancing Hygroscopicity and Stability. Molecules 2024, 29, 2208. [Google Scholar] [CrossRef]
- Klein, S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010, 12, 397–406. [Google Scholar] [CrossRef]
Sample | 2Θ (Degree) |
---|---|
FMN | 7.5°, 9.9°, 14.9°, 16.2°, 22.4°, 25.2° |
IMD | 13°, 20.5°, 20.8°, 21°, 26° |
FMN-IMD cocrystal | 8.8°, 11.4°, 13.7°, 18.3°, 19.3°, 20.8° |
Interactions | FMN | IMD | FMN-IMD Cocrystal |
---|---|---|---|
v(C=O) | 1638 | - | 1626 |
N-H bending | - | 1543 | - |
Skeleton vibration of aromatic compound | 1606/1567/1512 | - | 1607/1581/1510 |
Intermolecular O-H···N (H bond) | - | - | broad ~2400/1865 |
Carbon Atom | FMN, δ | Carbon Atom | IMD, δ | Carbon Atom | FMN-IMD Cocrystal, δ |
---|---|---|---|---|---|
2 | 152.7 | 2 | 137.2 | 2 | 154.0 |
3 | 125.1 | 4 | 128.0 | 3 | 127.3 |
4 | 175.8 | 5 | 116.2 | 4 | 177.5 |
5 | 131.9 | - | - | 5 | 134.4 |
6 | 115.3 | - | - | 6 | 116.1 |
7 | 164.9 | - | - | 7 | 165.8 |
8 | 101.6 | - | - | 8 | 102.2 |
9 | 158.7 | - | - | 9 | 158.8 |
10 | 114.7 | - | - | 10 | 116.1 |
1′ | 123.1 | - | - | 1′ | 125.0 |
2′ | 124.1 | - | - | 2′ | 125.0 |
3′ | 107.4 | - | - | 3′ | 110.9 |
4′ | 157.7 | - | - | 4′ | 161.7 |
5′ | 117.1 | - | - | 5′ | 120.5 |
6′ | 127.0 | - | - | 6′ | 129.9 |
O-CH3 | 56.2 | - | - | O-CH3 | 55.7 |
- | - | - | - | unknown | 136.2 |
Parameters | FMN | FMN-IMD Cocrystal |
---|---|---|
AUCt (ng·h/mL) | 10.44 ± 3.19 | 37.38 ± 20.97 * |
AUCinf (ng·h/mL) | 16.37 ± 1.51 | 44.52 ± 19.11 |
Cmax (ng/mL) | 1.81 ± 0.73 | 8.93 ± 6.66 * |
Tmax (h) | 5.00 ± 2.00 | 0.44 ± 0.38 * |
T1/2 (h) | 7.10 ± 3.35 | 5.60 ± 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lim, S.; Kim, M.; Ban, E.; Kim, Y.; Kim, A. Using the Cocrystal Approach as a Promising Drug Delivery System to Enhance the Dissolution and Bioavailability of Formononetin Using an Imidazole Coformer. Pharmaceuticals 2024, 17, 1444. https://doi.org/10.3390/ph17111444
Kim J, Lim S, Kim M, Ban E, Kim Y, Kim A. Using the Cocrystal Approach as a Promising Drug Delivery System to Enhance the Dissolution and Bioavailability of Formononetin Using an Imidazole Coformer. Pharmaceuticals. 2024; 17(11):1444. https://doi.org/10.3390/ph17111444
Chicago/Turabian StyleKim, Jongyeob, Sohyeon Lim, Minseon Kim, Eunmi Ban, Yongae Kim, and Aeri Kim. 2024. "Using the Cocrystal Approach as a Promising Drug Delivery System to Enhance the Dissolution and Bioavailability of Formononetin Using an Imidazole Coformer" Pharmaceuticals 17, no. 11: 1444. https://doi.org/10.3390/ph17111444
APA StyleKim, J., Lim, S., Kim, M., Ban, E., Kim, Y., & Kim, A. (2024). Using the Cocrystal Approach as a Promising Drug Delivery System to Enhance the Dissolution and Bioavailability of Formononetin Using an Imidazole Coformer. Pharmaceuticals, 17(11), 1444. https://doi.org/10.3390/ph17111444