Anti-Inflammatory Activity of Pequi Oil (Caryocar brasiliense): A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Information Sources and Search Strategy
2.4. Study Selection
2.5. Quality Analysis in Individual Studies
3. Results and Discussion
3.1. Study Selection
3.2. Characteristics of the Included Studies (n = 10)
3.3. Quality of Individual Studies
3.4. Physiology and Control of the Inflammatory Process
3.5. Anti-Inflammatory Effect of Pequi Oil in Inflammatory Pathologies
3.5.1. Atherosclerosis
3.5.2. Ulcerative Colitis
3.5.3. Pulmonary Inflammation, Local Inflammation, and Nociception
3.5.4. Autoimmune Diseases
3.5.5. Antioxidant Activity of Pequi Oil and Impacts on Inflammatory Processes
3.5.6. Pequi Oil Anti-Inflammatory Effect Correlation with Physical Activity and with Genetic Polymorphisms
3.6. Nanostructured Pequi Oil
3.7. Pequi Oil Anti-Inflammatory Mechanisms of Action
3.8. Toxicity Aspects of Pequi Oil
3.9. Relevance of the Description of the Characterization and Methodology of Extraction of Pequi Oil
3.10. Future Perspectives
3.11. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res. 2019, 139, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.S.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef]
- Pimentel, V.P.; Vieira, V.A.M.; Mitidieri, T.L.; Oliveira, F.F.S.; Pieroni, J.P. Biodiversidade brasileira como fonte da inovação farmacêutica: Uma nova esperança. Revista do BNDES 2015, 43, 41–89. [Google Scholar]
- Neto, J.A.R.; Tarôco, B.R.P.; dos Santos, H.B.; Thomé, R.G.; Wolfram, E.; de A Ribeiro, R.I.M. Using the plants of Brazilian Cerrado for wound healing: From traditional use to scientific approach. J. Ethnopharmacol. 2020, 260, 112547. [Google Scholar] [CrossRef] [PubMed]
- Valli, M.; Russo, H.M.; Bolzani, V.S. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An. Acad. Bras. Cienc. 2018, 90, 763–778. [Google Scholar] [CrossRef]
- Torres, L.R.d.O.; de Santana, F.C.; Torres-Leal, F.L.; de Melo, I.L.; Yoshime, L.T.; Matos-Neto, E.M.; Seelaender, M.C.; Araújo, C.M.; Cogliati, B.; Mancini-Filho, J. Pequi (Caryocar brasiliense Camb.) almond oil attenuates carbon tetrachloride-induced acute hepatic injury in rats: Antioxidant and anti-inflammatory effects. Food Chem. Toxicol. 2016, 97, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [PubMed]
- NIHR. Registering a Review of Animal Studies on PROSPERO National Institute for Health Research: International Prospective Register of Systematic Reviews. 2020, pp. 1–12. Available online: https://www.crd.york.ac.uk/PROSPERO/export_record_pdf.php (accessed on 2 February 2023).
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 1–10. [Google Scholar] [CrossRef]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2020, 372, 71. [Google Scholar] [CrossRef]
- Aguilar, E.; Jascolka, T.; Teixeira, L.; Lages, P.; Ribeiro, A.; Vieira, E.; Peluzio, M.; Alvarez-Leite, J. Paradoxical effect of a pequi oil-rich diet on the development of atherosclerosis: Balance between antioxidant and hyperlipidemic properties. Braz. J. Med Biol. Res. 2012, 45, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.d.S.; Pires, J.; Gomes, H.; Pohlmann, A.R.; Guterres, S.S.; e Silva, P.M.R.; Martins, M.A.; Ferrarini, S.R.; Bernardi, A. Pequi (Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 2020, 12, 1075. [Google Scholar] [CrossRef]
- Junior, A.J.; Leitão, M.M.; Bernal, L.P.T.; dos Santos, E.; Kuraoka-Oliveira, M.; Justi, P.; Argandoña, E.J.S.; Kassuya, C.A.L. Analgesic and Anti-inflammatory Effects of Caryocar brasiliense. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2020, 19, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Vilela, A.L.; Lordelo, G.S.; Akimoto, A.K.; Alves, P.C.Z.; Pereira, L.C.d.S.; Klautau-Guimarães, M.d.N.; Grisolia, C.K. Genetic polymorphisms influence runners’ responses to the dietary ingestion of antioxidant supplementation based on pequi oil (Caryocar brasiliense Camb.): A before-after study. Genes Nutr. 2011, 6, 369–395. [Google Scholar] [CrossRef]
- Miranda-Vilela, A.L.; Ribeiro, I.F.; Grisolia, C.K. Association between interleukin 6 -174 G/C promoter gene polymorphism and runners’ responses to the dietary ingestion of antioxidant supplementation based on pequi (Caryocar brasiliense Camb.) oil: A before-after study. Genet. Mol. Biol. 2016, 39, 554–566. [Google Scholar] [CrossRef]
- Montalvão, T.M. Anti-inflammatory Effect of Antioxidant Pequi (Caryocar Brasiliense) Oil Capsules and Antioxidant Effect of Vitamin D and Physical Activity on Systemic Lupus Erythematosus Patients. J. Rheum. Dis. Treat. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Moreno, L.G.; Evangelista-Silva, P.H.; Santos, E.C.; Prates, R.P.; Lima, A.C.; Mendes, M.F.; Ottone, V.O.; Ottoni, M.H.F.; Pereira, W.F.; Melo, G.E.B.A.; et al. Pequi Oil, a MUFA/Carotenoid-Rich Oil, Exhibited Protective Effects against DSS-Induced Ulcerative Colitis in Mice. Eur. J. Lipid Sci. Technol. 2021, 123, 2000332. [Google Scholar] [CrossRef]
- Roll, M.M.; Miranda-Vilela, A.L.; Longo, J.P.F.; Agostini-Costa, T.d.S.; Grisolia, C.K. The pequi pulp oil (Caryocar brasiliense Camb.) provides protection against aging-related anemia, inflammation and oxidative stress in Swiss mice, especially in females. Genet. Mol. Biol. 2018, 41, 858–869. [Google Scholar] [CrossRef]
- Miranda-Vilela, A.L.; Pereira, L.C.; Gonçalves, C.A.; Grisolia, C.K. Pequi fruit (Caryocar brasiliense Camb.) pulp oil reduces exercise-induced inflammatory markers and blood pressure of male and female runners. Nutr. Res. 2009, 29, 850–858. [Google Scholar] [CrossRef]
- Jackson, S.J.; Andrews, N.; Ball, D.; Bellantuono, I.; Gray, J.; Hachoumi, L.; Holmes, A.; Latcham, J.; Petrie, A.; Potter, P.; et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 2017, 51, 160–169. [Google Scholar] [CrossRef]
- Panigrahy, D.; Gilligan, M.M.; Serhan, C.N.; Kashfi, K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol. Ther. 2021, 227, 107879. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.-F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front. Immunol. 2021, 12, 595722. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.H.; Milic, I.; Heiss, C.; Ademowo, O.S.; Polidori, M.C.; Devitt, A.; Griffiths, H.R. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid. Redox Signal. 2020, 33, 166–190. [Google Scholar] [CrossRef] [PubMed]
- Mughees, M.; Kaushal, J.B.; Sharma, G.; Wajid, S.; Batra, S.K.; Siddiqui, J.A. Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin. Cancer Biol. 2022, 86, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-J.; Liu, J.-X.; Liu, M.-N.; Yao, Y.-D.; Liu, Z.-Q.; Liu, L.; He, H.-H.; Zhou, H. Macrophage 3D migration: A potential therapeutic target for inflammation and deleterious progression in diseases. Pharmacol. Res. 2021, 167, 105563. [Google Scholar] [CrossRef] [PubMed]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Zhong, K.; Wang, C.; Xu, X. The associations between endocrine disrupting chemicals and markers of inflammation and immune responses: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2022, 234, 113382. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Liu, S.; Shen, D.; Zhu, J.; Liu, K. Role of Resolvins in the Inflammatory Resolution of Neurological Diseases. Front. Pharmacol. 2020, 11, 612. [Google Scholar] [CrossRef]
- Locati, M.; Curtale, G.; Mantovani, A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 123–147. [Google Scholar] [CrossRef]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef]
- Xavier-Santos, J.B.; Passos, J.G.R.; Gomes, J.A.S.; Cruz, J.V.C.; Alves, J.S.F.; Garcia, V.B.; da Silva, R.M.; Lopes, N.P.; Araujo-Junior, R.F.; Zucolotto, S.M.; et al. Topical gel containing phenolic-rich extract from Ipomoea pes-capre leaf (Convolvulaceae) has anti-inflammatory, wound healing, and antiophidic properties. Biomed. Pharmacother. 2022, 149, 112921. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Silva, S.S.; Reis, R.L. Challenges and opportunities on vegetable oils derived systems for biomedical applications. Mater. Sci. Eng. C 2022, 134, 112720. [Google Scholar] [CrossRef]
- Kotlyarov, S.; Kotlyarova, A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 1308. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, N.; Choudhury, R. Inflammation and atherosclerosis: What is on the horizon? Heart 2020, 106, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Pedro-Botet, J.; Climent, E.; Benaiges, D. Arteriosclerosis e inflamación. Nuevos enfoques terapéuticos. Med. Clínica 2020, 155, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.W.; Zaitsev, K.; Kim, K.-W.; Ivanov, S.; Saunders, B.T.; Schrank, P.R.; Kim, K.; Elvington, A.; Kim, S.H.; Tucker, C.G.; et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 2020, 21, 1194–1204. [Google Scholar] [CrossRef]
- Gajendran, M.; Loganathan, P.; Jimenez, G.; Catinella, A.P.; Ng, N.; Umapathy, C.; Ziade, N.; Hashash, J.G. A comprehensive review and update on ulcerative colitis. Dis. Mon. 2019, 65, 100851. [Google Scholar] [CrossRef]
- Maloy, K.J.; Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Danese, S. New therapies for inflammatory bowel disease: From the bench to the bedside. Gut 2012, 61, 918–932. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef]
- Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M.; Yu, J. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009, 2, 1–11. [Google Scholar]
- Karpathiou, G.; Péoc’h, M.; Sundaralingam, A.; Rahman, N.; Froudarakis, M.E. Inflammation of the Pleural Cavity: A Review on Pathogenesis, Diagnosis and Implications in Tumor Pathophysiology. Cancers 2022, 14, 1415. [Google Scholar] [CrossRef] [PubMed]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi, Z.C.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef]
- Gonçalves-De-Albuquerque, C.F.; Silva, A.R.; Burth, P.; Castro-Faria, M.V.; Castro-Faria-Neto, H.C. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediat. Inflamm. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Gad, M.Z. Omega-9 fatty acids: Potential roles in inflammation and cancer management. J. Genet. Eng. Biotechnol. 2022, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cazzoletti, L.; Zanolin, M.E.; Spelta, F.; Bono, R.; Chamitava, L.; Cerveri, I.; Garcia-Larsen, V.; Grosso, A.; Mattioli, V.; Pirina, P.; et al. Dietary fats, olive oil and respiratory diseases in Italian adults: A population-based study. Clin. Exp. Allergy 2019, 49, 799–807. [Google Scholar] [CrossRef]
- Brito, R.M.; Barcia, M.T.; Farias, C.A.A.; Zambiazi, R.C.; de Marchi, P.G.F.; Fujimori, M.; Honorio-França, A.C.; França, E.L.; Pertuzatti, P.B. Bioactive compounds of pequi pulp and oil extracts modulate antioxidant activity and antiproliferative activity in cocultured blood mononuclear cells and breast cancer cells. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef]
- de Figueiredo, P.R.L.; Oliveira, I.B.; Neto, J.B.S.; de Oliveira, J.A.; Ribeiro, L.B.; Viana, G.S.d.B.; Rocha, T.M.; Leal, L.K.A.M.; Kerntopf, M.R.; Felipe, C.F.B.; et al. Caryocar coriaceum Wittm. (Pequi) fixed oil presents hypolipemic and anti-inflammatory effects in vivo and in vitro. J. Ethnopharmacol. 2016, 191, 87–94. [Google Scholar] [CrossRef]
- Kiriakidou, M.; Ching, C.L. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020, 172, ITC81–ITC96. [Google Scholar] [CrossRef]
- Hahn, B.H.; Grossman, J.; Chen, W.; McMahon, M. The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: Roles of inflammation and dyslipidemia. J. Autoimmun. 2007, 28, 69–75. [Google Scholar] [CrossRef]
- Enocsson, H.; Karlsson, J.; Li, H.-Y.; Wu, Y.; Kushner, I.; Wetterö, J.; Sjöwall, C. The Complex Role of C-Reactive Protein in Systemic Lupus Erythematosus. J. Clin. Med. 2021, 10, 5837. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Neha, K.; Haider, R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Donia, T.; Khamis, A. Management of oxidative stress and inflammation in cardiovascular diseases: Mechanisms and challenges. Environ. Sci. Pollut. Res. 2021, 28, 34121–34153. [Google Scholar] [CrossRef]
- Sandhiya, L.; Zipse, H. Conformation-dependent antioxidant properties of β-carotene. Org. Biomol. Chem. 2021, 20, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Eghbali, E.; Suzuki, K. Creatine Supplementation, Physical Exercise and Oxidative Stress Markers: A Review of the Mechanisms and Effectiveness. Nutrients 2021, 13, 869. [Google Scholar] [CrossRef]
- Daiber, A.; Steven, S.; Euler, G.; Schulz, R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr. Pharm. Des. 2021, 27, 2112–2130. [Google Scholar] [CrossRef]
- Tripathi, P.; Agarwal, S.; Sarangi, A.N. Genetic Variation in SOD1Gene Promoter Ins/Del and Its Influence on Oxidative Stress in Beta Thalassemia Major Patients. Int. J. Hematol. Stem Cell Res. 2020, 14, 110–117. [Google Scholar] [CrossRef]
- Salvador-Morales, C.; Grodzinski, P. Nanotechnology Tools Enabling Biological Discovery. ACS Nano 2022, 16, 5062–5084. [Google Scholar] [CrossRef]
- Teja, P.K.; Mithiya, J.; Kate, A.S.; Bairwa, K.; Chauthe, S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022, 96, 153890. [Google Scholar] [CrossRef]
- Chen, L. Development of Lipid Based Nanoparticles for Melanoma Treatment. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2015. Available online: http://hdl.handle.net/10415/4490 (accessed on 6 March 2023).
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2010, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- Ombredane, A.S.; Araujo, V.H.; Borges, C.O.; Costa, P.L.; Landim, M.G.; Pinheiro, A.C.; Szlachetka, O.; Benedito, L.E.; Espindola, L.S.; Dias, D.J.; et al. Nanoemulsion-based systems as a promising approach for enhancing the antitumoral activity of pequi oil (Caryocar brasilense Cambess.) in breast cancer cells. J. Drug Deliv. Sci. Technol. 2020, 58, 101819. [Google Scholar] [CrossRef]
- Silva, R.d.F.; Barreto, A.S.; Trindade, G.d.G.G.; Lima, C.M.; Araújo, A.A.d.S.; Menezes, I.R.A.; Candido, E.A.F.; Santana, T.N.; Silva-Júnior, W.M.; Quintans, J.S.S.; et al. Enhancement of the functionality of women with knee osteoarthritis by a gel formulation with Caryocar coriaceum Wittm (“Pequi”) nanoencapsulated pulp fixed oil. Biomed. Pharmacother. 2022, 150, 112938. [Google Scholar] [CrossRef]
- Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders—A Review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 39–58. [Google Scholar] [CrossRef]
- Korbecki, J.; Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef]
- Santamarina, A.B.; Pisani, L.P.; Baker, E.J.; Marat, A.D.; Valenzuela, C.A.; Miles, E.A.; Calder, P.C. Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: Effects on monocyte and macrophage responses and the NF-κB pathway. Food Funct. 2021, 12, 7909–7922. [Google Scholar] [CrossRef] [PubMed]
- Oyesola, O.O.; Wojno, E.D.T. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur. J. Immunol. 2021, 51, 2399–2416. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.K.; Albrecht, F.; Rohrer, C.; Koeberle, A.; Werz, O.; Schlörmann, W.; Glei, M.; Lorkowski, S.; Wallert, M. Olive Oil Extracts and Oleic Acid Attenuate the LPS-Induced Inflammatory Response in Murine RAW264.7 Macrophages but Induce the Release of Prostaglandin E2. Nutrients 2021, 13, 4437. [Google Scholar] [CrossRef]
- Tsai, Y.-W.; Lu, C.-H.; Chang, R.C.-A.; Hsu, Y.-P.; Ho, L.-T.; Shih, K.-C. Palmitoleic acid ameliorates palmitic acid-induced proinflammation in J774A.1 macrophages via TLR4-dependent and TNF-α-independent signallings. Prostaglandins Leukot. Essent. Fat. Acids 2021, 169, 102270. [Google Scholar] [CrossRef]
- Traesel, G.K.; de Lima, F.F.; dos Santos, A.C.; Souza, R.I.C.; Cantadori, D.T.; Kretschmer, C.R.; Navarini, V.J.; Oesterreich, S.A. Evaluation of embryotoxic and teratogenic effects of the oil extracted from Caryocar brasiliense Cambess pulp in rats. Food Chem. Toxicol. 2017, 110, 74–82. [Google Scholar] [CrossRef]
- Traesel, G.K.; Menegati, S.E.L.T.; dos Santos, A.C.; Souza, R.I.C.; Boas, G.R.V.; Justi, P.N.; Kassuya, C.A.L.; Argandoña, E.J.S.; Oesterreich, S.A. Oral acute and subchronic toxicity studies of the oil extracted from pequi (Caryocar brasiliense Camb.) pulp in rats. Food Chem. Toxicol. 2016, 97, 224–231. [Google Scholar] [CrossRef]
- Traesel, G.K.; de Araújo, F.H.S.; Castro, L.H.A.; de Lima, F.F.; Menegati, S.E.L.T.; Justi, P.N.; Kassuya, C.A.L.; Cardoso, C.A.L.; Argandoña, E.J.S.; Oesterreich, S.A. Safety Assessment of Oil from Pequi (Caryocar Brasiliense Camb.): Evaluation of the Potential Genotoxic and Clastogenic Effects. J. Med. Food 2017, 20, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.W.S.; Cavallieri, A.L.F.; Ferri, P.H.; Naves, M.M.V. Características físicas, composição químico-nutricional e dos óleos essenciais da polpa de Caryocar brasiliense nativo do estado de Mato Grosso. Rev. Bras. De Frutic. 2013, 35, 1127–1139. Available online: https://www.scielo.br/j/rbf/a/ZZY7cwKghfhhLH8wWxwLQPR/?format=pdf&lang=pt (accessed on 9 April 2023). [CrossRef]
- Torres, L.R.; Santana, F.C.; Shinagawa, F.B.; Mancini-Filho, J. Bioactive compounds and functional potential of pequi (Caryocar spp.), a native Brazilian fruit: A review. Grasas Y Aceites 2018, 69, 257. [Google Scholar] [CrossRef]
- Ribeiro, D.M. Propriedades Físicas, Químicas e Bioquímicas de Pequi (Caryocar brasiliense Camb.) de Diferentes Regiões do Cerrado. 2011. Available online: https://repositorio.unb.br/handle/10482/9962 (accessed on 9 April 2023).
- Oliveira, C.F.; Pinto, E.; Rezende, P. Compostos Bioativos de Extratos de pequi de diferentes regiões do Cerrado. Enciclopédia Biosf. 2017, 14. Available online: http://www.conhecer.org.br/enciclop/2017a/agrar/compostos%20bioativos.pdf (accessed on 10 April 2023).
- Ribeiro, M.C.; Boas, E.V.d.B.V.; Riul, T.R.; Pantoja, L.; Marinho, H.A.; dos Santos, A.S. Influence of the extraction method and storage time on the physicochemical properties and carotenoid levels of pequi (Caryocar brasiliense Camb.) oil. Food Sci. Technol. 2012, 32, 386–392. [Google Scholar] [CrossRef]
- Ferreira, B.S.; De Almeida, C.G.; Faza, L.P.; De Almeida, A.; Diniz, C.G.; da Silva, V.L.; Grazul, R.M.; Le Hyaric, M. Comparative Properties of Amazonian Oils Obtained by Different Extraction Methods. Molecules 2011, 16, 5875–5885. [Google Scholar] [CrossRef]
- Mariano, R.G.d.B.; Couri, S.; Freitas, S.P. Enzymatic technology to improve oil extraction from Caryocar brasiliense camb. (Pequi) Pulp. Rev. Bras. Frutic. 2009, 31, 637–643. [Google Scholar] [CrossRef]
Study | Population | Intervention | Outcomes | ||
---|---|---|---|---|---|
Author, Year/Country | Model | Fruit Species/Extraction Method | Lipid Profile Analysis | Model/Treatment Regimen | Results |
Aguilar et al., 2012/Brazil [12] | In vitro: Primary culture of peritoneal macrophages obtained from female mice, C57BL/6, LDL receptor-deficient (atherosclerosis-susceptible), 6 to 8 weeks-old (n = 5) In vivo: Female mice, C57BL/6, LDL receptor-deficient (atherosclerosis-susceptible), 6 to 8 weeks-old (n = 12) | Oil from Caryocar Brasiliense/ Extraction method: no information | -Oleic acid: 56.98% -Palmitic acid: 34.45% -MUFA:57.89% -SFA: 36.53% -b-carotene: 18.62 mg/100 g oil -b-cryptoxantine: 17.03 mg/100 g oil -Vitamin A: 2261.9 RAE/100 g oil | In vitro: Macrophage respiratory burst: PO 7% orally in the daily diet for 2 weeks → peritoneal resident macrophage plated and stimulated or not with zymosan (1 × 107 particles/50 μL) → chemiluminescence measure of ROS production over a 60-min period. In vivo: Hypercholesterolemia and atherosclerosis: PO 7% orally in the daily diet with 1.25% of cholesterol (atherogenic) for 6 weeks → Blood sample (biochemical analysis); liver (total lipids); heart and aorta (atherosclerotic lesions analysis) Antioxidant activity: PO 7% orally in the daily diet with 1.25% of cholesterol (atherogenic) for 6 weeks → hepatic lipid peroxidation (TBARS assay); plasma anti-oxidized LDL autoantibody levels (ELISA); liver antioxidant enzyme activity (SOD, and CAT). Note: Control groups received 7% soybean oil diet with 1.25% of cholesterol (atherogenic) | In vitro: ↓ ROS production (p < 0.05) In vivo: ↑ total cholesterol, non-HDL cholesterol and triacylglycerols (p < 0.05) ↑ hepatic total lipids (p < 0.05) ↑ in the number of advanced stage lesions in aortic root ↓ in the number of aorta atherosclerotic lesions ↓ hepatic lipid peroxidation (p < 0.05) No differences in antioxidant enzymes activities ↓ Anti-oxidized LDL antibody levels (p < 0.05) |
Coutinho et al., 2020/Brazil [13] | In vivo: Male A/J mice (n not clear) | Oil from Caryocar brasiliense/solvent extraction (hexane) | -Oleic acid: 24.4% (NMR) and 25.9% (GC-MS) | In vivo: Pulmonary inflammation: PO, and PO-nanoemulsion (PO-NE) 20 mg/kg; oleic acid nanoemulsion (OA-NE) 5 mg/kg orally 18 and 4 h before intranasal administration of LPS → AHR analysis (lung elastance with methacholine aerosolization); Inflammatory BALF cells analysis; Lung MPO activity and cytokines levels (MCP-1, TNF-a, IL-6, IL-1b, and KC); CAT activity analysis; lung lipid peroxidation by TBARS. | In vivo: ↓ migration of leukocytes and neutrophils into the lung (PO; p < 0.05) No migration of leukocytes and neutrophils into the lung (PO-NE, and OA-NE similarly; p < 000.1) ↓ MPO activity (PO-NE, and OA-NE similarly; p < 0.001) ↓ TNF-a, IL-1b, IL-6, MCP-1 and KC (PO-NE; p < 0.001) ↓ AHR (PO, PO-NE, and OA-NE similarly; p < 0.001) ↑ CAT activity (PO-NE, and OA-NE similarly; p < 0.05) ↓ lipid peroxidation (PO-NE, and OA-NE similarly; p < 0.05) |
Junior et al., 2020/Brazil [14] | In vivo: Male Swiss mice (n = 6); 50 days | Oil from Caryocar brasiliense (pulp)/cold-pressed in an “expeller” press followed by centrifugation | -Oleic acid: 56.5% -Palmitic acid: 38.11% | In vivo: -Pleurisy: PO orally 300, 700, or 1000 mg/kg 1 h before induction of pleurisy with Cg → pleural exudate was evaluated 4 h later (number of leukocytes and protein content); -Paw edema: PO orally 300, 700, or 1000 mg/kg 1 h before induction of paw edema with Cg → paw volume (evaluated 1, 2, and 4 h after Cg); mechanical hyperalgesia and cold sensitivity (3 and 4 h after Cg); -Pain model: PO orally 1000 mg/kg 1 h before induction of pain with formalin (paw) → Mechanical hyperalgesia, paw volume, and cold sensitivity (30 min after formalin); -Induced nociception: PO orally 1000 mg/kg 1 h before nociception induction with acetic acid and count of abdominal constrictions over 20 min. | In vivo: ↓ leukocyte migration (~36%) to pleural exudate (PO 1000 mg/kg; p < 0.05); No changes in plasma protein extravasation (pleural exudate); ↓ paw edema à PO 700 mg/kg (~ 28% after 1, 2 and 4 h); PO 1000 mg/kg (~ 60%, 42%, and 40% after 1, 2 and 4 h respectively; p < 0.05); ↑ Antihyperalgesic activity: PO 1000 mg/kg similar effect to Dexamethasone 1 mg/kg, p < 0.05; ↑ antinociceptive cold effect: PO 1000 mg/kg (~25% after 3 h; p < 0.05); ↓ nociception and cold sensivity induced by formalin: PO 1000 mg/kg (~95%, p < 0.05); ↓ nociception induced by acetic acid: PO 1000 mg/kg (~90%, p < 0.05); |
Miranda-Vilela et al., 2009/Brazil [8] | Clinical: Healthy volunteers with at least a 4000 m run performance: men (n = 76) and women (49); Age: 15–67 years old | Oil from Caryocar brasiliense (pulp)/solvent extraction (chloroform) | -Oleic acid: 54.28%; -Palmitic acid: 41.78%; -Provitamin A: 6.26–11.5 mg/100 mg pulp -Lycopene: 1.12–2.08 mg/100 mg pulp | Clinical -Two races (same route and time) for each volunteer: (1) race without PO supplementation and (2) race after ingestion of 400 mg of PO capsules daily for 14 consecutive days. -Biochemical analysis (serum lipid profiles and hs-CRP); hemogram; lipid peroxidation by TBARS assay | Clinical: ↓ platelets and plateletocrit—total volunteers (p = 0.00); ↑ monocytes—total volunteers (p < 0.02); ↑ eosinophiles—5–19 years-old (p < 0.48); ↓ cholesterol and LDL, >45 years-old (mainly for men) (p < 0.05); ↑ HDL—total volunteers; ↑ TG and VLDL, 20–24 years-old (p < 0.05); ↓ hs-CRP values, 30–34 years-old (p < 0.05); No differences in TBARS assay Minor adverse effect in 18 volunteers (first 3 to 4 days of treatment only); |
Miranda-Vilela et al., 2011/Brazil [15] | Clinical: Healthy volunteers with at least a 4000 m run performance: men (n = 76) and women (49); Age: 15–67 years old | Oil from Caryocar brasiliense (pulp)/solvent extraction (chloroform) | -Oleic acid: 54.28%; -Palmitic acid: 41.78%; -Provitamin A: 6.26–11.5 mg/100 mg pulp -Lycopene: 1.12–2.08 mg/100 mg pulp | Clinical: -Two races (same route and time) for each volunteer: (1) race without PO supplementation and (2) race after ingestion of 400 mg of PO capsules daily for 14 consecutive days. -Blood samples (collected after each race): Hemogram; genotyping of polymorphisms; TBARS assay; post-prandial lipid profile, and C-reactive protein. | Clinical: Polymorphisms that influenced PO’s responses (p < 0.05): -CAT, GST-M1/T1, CRP-G1059C, and MTHFR-C677T in leukogram; -Hp and MTHFR-C677T in plateletgram; -Hp, ACE, GSTT1, and MTHFR-A1298C in lipid profile; -MTHFR-A1298C in CRP levels; -Hp and MnSOD in TBARS assay; -Differences between ACE genotypes in the leukogram and total cholesterol disappeared after PO, and the same occurred e for Hp and MnSOD in TBARS assay and for MTHFR-A1298C with CRP levels. |
Miranda-Vilela et al., 2016/Brazil [16] | Clinical: Healthy volunteers with at least a 4000 m run performance: men (n = 76) and women (49); Age: 15–67 years old | Oil from Caryocar brasiliense (pulp)/solvent extraction (chloroform) | -Oleic acid: 54.28%; -Palmitic acid: 41.78%; -Provitamin A: 6.26–11.5 mg/100 mg pulp -Lycopene: 1.12–2.08 mg/100 mg pulp | Clinical: -Two races (same route and time) for each volunteer: (1) race without PO supplementation and (2) race after ingestion of 400 mg of PO capsules daily for 14 consecutive days. -Biochemical analysis (serum ALT, AST, CK, CRP, postprandial lipid profile analyses and serum hs-CRP); hemogram; genotyping (IL-6 polymorfism → 174 G/C); lipid peroxidation (TBARS assay) | Clinical: Hardy–Weinberg equilibrium of IL-6–174 G/C (SNP rs1800795) genotype frequency (p < 0.05); ↑ GG lipid peroxidation compare to CC and GC (p = 0.023 and p = 0.041 respectively); ↑ CRP levels on CC genotype (p = 0.021); ↑ PDW on GC compare to GG (p = 0.045); ↓ LDL on CC compare to GG and GC (p = 0.012 and p = 0.03 respectively); ↓ CK and AST on the GC genotype (p = 0.03); No correlation between triglycerides and hs-CRP for CC genotype; ↑ 2.9 times risk of lipid peroxidation in individuals carrying GG (OR with 95% CI) |
Montalvão et al., 2016/Brazil [17] | Clinical: Patients with systemic lupus erythematosus, men and women (n = 29) Age: 20–54 years old | Oil from Caryocar brasiliense/cold-pressed extraction | Not evaluated. | Clinical: Systemic lupus erythematosus: PO orally 400 mg for 60 consecutively days. Anthropometric measurements (BMI, AC, TS, AMC, WC, and HC); Hemogram; Biochemical analysis (urea, alkaline phosphatase, GGT, glucose, AST, ALT, complement C3, complement C4, hs-CRP, uric acid, TC, total protein and fraction (albumin and globulin), EAS, and lipid profile); DNA damage by comet assay; | Clinical: ↓ hs-CRP after PO treatment (p = 0.0161) No significant effect of pequi oil treatament on anthropometric measures, hemogram, lipid profile, EAS, biochemical analysis, and DNA damage. |
Moreno et al., 2021/Brazil [18] | In vivo: Male C57BL/6 mice (n = 15) | Oil from Caryocar brasiliense/ Extraction method: no information | -Palmitic acid: 40.14 g/100 g oil -Oleic acid: 54.76 g/100 g oil -Total carotenoids: 36.16 mg g−1 | In vivo: DSS-ulcerative colite: PO orally 280 mg homogenized in chow for 36 consecutive days → DSS-ulcerative colite was induced at the 28th treatment day → DAI (body weight loss, stools consistency and blood presence); colon histopathological analysis; Immunophenotyping of colon intraepithelial lymphocytes and splenic mononuclear cells; detection of inflammatory markers (IL-6, TNFα, IFNγ, IL-17, IL-10, and CRP); S-IgA determination. | In vivo: No significant changes in DAI ↓ crypts, and goblet cell loss (p < 0.05) ↓ immune cell infiltration (p < 0.05) ↓ colonic (p < 0.005), mesenteric lymph nodes, and spleen CD8+ T-cells (p < 0.05) No alterations on CD4+ T-cells ↑ γδ T cells at mucosa surface (p = 0.008) ↑ S-IgA on colon and feces (p < 0.05) ↓ IL-17 and CRP (p < 0.05) ↑ TNFα and IL-6 (p < 0.05) |
Roll et al., 2018/Brazil [19] | In vivo: Female and male Swiss mice (n = 6); 6 to 7-old-month and 11 to 12-old-month | Oil from Caryocar Brasiliense (pulp)/mechanical pressure and centrifugation | -Oleic acid: 54.28%; -Palmitic acid: 41.78%; -Carotenoids: 27.75 mg/100 mg pulp -Provitamin A: 6.26–11.5 mg/100 mg pulp -Lycopene: 1.12–2.08 mg/100 mg pulp -Macronutrients (g/kg): Mg (0.114); Ca (0.97), and K (0.042); -Micronutrients (mg/kg): Fe (186.8); Mn (2.02); Zn (2.03). | In vitro: -Antioxidant activity: DPPH method (PO + DPPH reagent → 20 min → Absorbance 517 nm) In vivo: -Toxicity: PO orally 30 mg/animal/day for 15 days -Blood sample: hemogram and DNA damage (comet assay); -Bone marrow: genotoxicity (micronucleus assay) | Antioxidant analysis: Antioxidant activity (EC50): 26.26 mg/mL to reduce 50% of DPPH levels; In vivo: No genotoxic or clastogenic effects; ↑ lymphocytes and ↓ neutrophils + monocytes levels in 11–12 month group (female and male); p < 0.05; ↓ eosinophils levels in 6–7 month group (female); p < 0.05; ↓ WBC counts in 6–7 month group (male); p < 0.05; ↓ PDW counts in 11–12 month group (male); p < 0.05. |
Torres et al., 2016/Brazil [6] | In vivo: Male Wistar rats (n = 8) | Oil from Caryocar brasiliense/cold-pressed and handmade (boiling) extraction | Handmade PO (HPO) Palmitic acid: 33.76% Oleic acid: 56.34% Phenolic compounds: 252.00 mg GAE/100 g Carotenoids:118.42 mg/100 g Tocopherols: 154.27 mg/kg Fitosterols: 793.32 mg/kg Cold-pressed PO (CPO) Palmitic acid: 29.48% Oleic acid: 59.99% Phenolic compounds: 113.01 mg GAE/100 g Carotenoids: 89.82 mg/100 g Tocopherols: 155.31 mg/kg Fitosterols: 808.62 mg/kg | In vivo: Hepatic toxicity: HPO 3 and 6 mL/kg; CPO 3 mL/kg by intragastric gavage for 21 consecutively days ® Hepatic toxicity induced by single dose i.p. of 3 mL/kg CCl4 at day 22. Hepatic injury: -Biochemical analysis (ALT, ALP, AST, and lipid profiles); hepatic histopathological analysis; hepatic lipid analysis (total lipids and lipid peroxidation by TBARS) Antioxidant activity: -Hydrophilic and lipophilic liver antioxidant capacity; antioxidant enzymes activities (SOD, CAT, GPX, GR, GSH); Anti-inflammatory activity: -Gene expression of inflammatory markers (qRT-PCR); cytokine concentration (leptin, IL-1b, IL-6, IL-10, MCP-1, TNF-a, PPAR-g, LTB-4, LTB-5, PGE-2) | In vivo: ↓ AST and ALT levels in 30 and 38% respectively (HPO6; p < 0.05) ↓ AST level 67% (CPO3; p < 0.05) ↓ Triglycerides in 36% (CPO3; p < 0.05) ↑ HDL in 14, 34, and 27% (HPO3,6, and CPO3, respectively; p < 0.05) ↓ hepatic lesions (HPO3,6, and CPO3 similarly) ↑ lipid peroxidation in 32% (HPO6, and CPO3; p < 0.05) ↑ hydrophilic liver antioxidant capacity in 15 and 8% (HPO6, and CPO3, respectively; p < 0.05) ↑ GPX and GR activities in 38% and 36% (HPO6, and CPO3, respectively; p < 0.05) ↑ SOD activity in 25% (HPO6; p < 0.05) ↑ Hepatic GSH in 101% (CPO3; p < 0.05) ↓ GST gene expression (HPO3; p < 0.05) ↓ leptin, IL-6, LTB-4 and LTB-5 (HPO6 and CPO3 similarly; p < 0.05) ↓ IL-6/IL-10 ratio (HPO3 and 6 similarly; p < 0.05) ↑ PGE2 levels (HPO6; p < 0.05) ↓ TNFR gene expression (CPO3; p < 0.05) ↓ IL-1, TNF-a, IKK-b, TGFR1 gene expression (HPO6; p < 0.05) ↑ TNF-a/IL-10 gene expression ratio (CPO3; p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.R.P.; Pinheiro, A.C.; Ombredane, A.S.; Martins, N.O.; Luz, G.V.S.; Carneiro, M.L.B.; Joanitti, G.A. Anti-Inflammatory Activity of Pequi Oil (Caryocar brasiliense): A Systematic Review. Pharmaceuticals 2024, 17, 11. https://doi.org/10.3390/ph17010011
Silva VRP, Pinheiro AC, Ombredane AS, Martins NO, Luz GVS, Carneiro MLB, Joanitti GA. Anti-Inflammatory Activity of Pequi Oil (Caryocar brasiliense): A Systematic Review. Pharmaceuticals. 2024; 17(1):11. https://doi.org/10.3390/ph17010011
Chicago/Turabian StyleSilva, Vitória R. P., Andréia C. Pinheiro, Alicia S. Ombredane, Natália Ornelas Martins, Glécia V. S. Luz, Marcella L. B. Carneiro, and Graziella A. Joanitti. 2024. "Anti-Inflammatory Activity of Pequi Oil (Caryocar brasiliense): A Systematic Review" Pharmaceuticals 17, no. 1: 11. https://doi.org/10.3390/ph17010011
APA StyleSilva, V. R. P., Pinheiro, A. C., Ombredane, A. S., Martins, N. O., Luz, G. V. S., Carneiro, M. L. B., & Joanitti, G. A. (2024). Anti-Inflammatory Activity of Pequi Oil (Caryocar brasiliense): A Systematic Review. Pharmaceuticals, 17(1), 11. https://doi.org/10.3390/ph17010011