Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network
Abstract
:1. Introduction
2. Overview of Hematopoiesis and Megakaryopoiesis
3. Overview of Interleukins
4. The Role of Interleukins in Thrombopoiesis
5. Effects of Interleukins on Megakaryopoiesis and Platelet Function
6. Mechanisms of Interleukin Effects on Megakaryocyte Lineage Cells
6.1. The IL-1 Family and Its Role in Megakaryopoiesis and Platelet Function
6.2. The IL-2 Family and Its Role in Megakaryopoiesis and Platelet Function
6.3. The IL-3 Family and Its Role in Megakaryopoiesis and Platelet Function
6.4. The IL-6 Family and Its Role in Megakaryopoiesis
6.5. The IL-17 Family and Its Role in Megakaryopoiesis and Platelet Function
6.6. Other Interleukins in Megakaryopoiesis and Platelet Function
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebaugh, F.G.; Bird, R.M. The Normal Megakaryocyte Concentration in Aspirated Human Bone Marrow. Blood 1951, 6, 75–80. [Google Scholar] [CrossRef]
- Grozovsky, R.; Giannini, S.; Falet, H.; Hoffmeister, K.M. Regulating billions of blood platelets: Glycans and beyond. Blood 2015, 126, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Italiano, J.E., Jr. Unraveling mechanisms that control platelet production. Semin. Thromb. Hemost. 2013, 39, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Casari, C.; Bergmeier, W. Acquired platelet disorders. Thromb. Res. 2016, 141 (Suppl. 2), S73–S75. [Google Scholar] [CrossRef] [PubMed]
- Palma-Barqueros, V.; Revilla, N.; Sanchez, A.; Zamora Canovas, A.; Rodriguez-Alen, A.; Marin-Quilez, A.; Gonzalez-Porras, J.R.; Vicente, V.; Lozano, M.L.; Bastida, J.M.; et al. Inherited Platelet Disorders: An Updated Overview. Int. J. Mol. Sci. 2021, 22, 4521. [Google Scholar] [CrossRef]
- Balduini, C.L. Treatment of inherited thrombocytopenias. Haematologica 2022, 107, 1278–1292. [Google Scholar] [CrossRef]
- Lv, Y.; Shi, H.; Liu, H.; Zhou, L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front. Immunol. 2022, 13, 953716. [Google Scholar] [CrossRef]
- Noetzli, L.J.; French, S.L.; Machlus, K.R. New Insights into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1288–1300. [Google Scholar] [CrossRef]
- Cui, A.; Huang, T.; Li, S.; Ma, A.; Pérez, J.L.; Sander, C.; Keskin, D.B.; Wu, C.J.; Fraenkel, E.; Hacohen, N. Dictionary of immune responses to cytokines at single-cell resolution. Nature 2024, 625, 377–384. [Google Scholar] [CrossRef]
- Sims, J.E.; Smith, D.E. The IL-1 family: Regulators of immunity. Nat. Rev. Immunol. 2010, 10, 89–102. [Google Scholar] [CrossRef]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; Lavalle, C.; McKeown, T.; Marshall, A.H.; et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Doulatov, S.; Notta, F.; Laurenti, E.; Dick, J.E. Hematopoiesis: A human perspective. Cell Stem Cell 2012, 10, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Akashi, K.; Traver, D.; Miyamoto, T.; Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000, 404, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Morita, Y.; Ooehara, J.; Hamanaka, S.; Onodera, M.; Rudolph, K.L.; Ema, H.; Nakauchi, H. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013, 154, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Nishikii, H.; Kurita, N.; Chiba, S. The Road Map for Megakaryopoietic Lineage from Hematopoietic Stem/Progenitor Cells. Stem Cells Transl. Med. 2017, 6, 1661–1665. [Google Scholar] [CrossRef] [PubMed]
- Machlus, K.R.; Italiano, J.E., Jr. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 2013, 201, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fraticelli, A.E.; Wolock, S.L.; Weinreb, C.S.; Panero, R.; Patel, S.H.; Jankovic, M.; Sun, J.L.; Calogero, R.A.; Klein, A.M.; Camargo, F.D. Clonal analysis of lineage fate in native haematopoiesis. Nature 2018, 553, 212–216. [Google Scholar] [CrossRef]
- Muller-Sieburg, C.E.; Sieburg, H.B.; Bernitz, J.M.; Cattarossi, G. Stem cell heterogeneity: Implications for aging and regenerative medicine. Blood 2012, 119, 3900–3907. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, S.; Xia, J.; Liu, F. Hematopoietic Hierarchy—An Updated Roadmap. Trends Cell Biol. 2018, 28, 976–986. [Google Scholar] [CrossRef]
- Haas, S.; Trumpp, A.; Milsom, M.D. Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell 2018, 22, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Pinho, S.; Frenette, P.S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 2019, 20, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; He, M.; Zhang, W.S.; Liu, W.; Xu, H.; Yang, M.; Zhang, H.X.; Liang, H.W.; Li, W.J.; Wu, Z.Z.; et al. Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche. Nat. Commun. 2023, 14, 2207. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Liu, M.; Zhu, C.; Liu, S.; Ai, L.; Ma, D.; Zhu, P.; Wang, L.; Liu, F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res. 2023, 33, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Psaila, B.; Mead, A.J. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood 2019, 133, 1427–1435. [Google Scholar] [CrossRef]
- Woolthuis, C.M.; Park, C.Y. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood 2016, 127, 1242–1248. [Google Scholar] [CrossRef]
- Couldwell, G.; Machlus, K.R. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb. Res. 2019, 179, 114–120. [Google Scholar] [CrossRef]
- Commins, S.P.; Borish, L.; Steinke, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 2010, 125, S53–S72. [Google Scholar] [CrossRef]
- Mantovani, A.; Dinarello, C.A.; Molgora, M.; Garlanda, C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019, 50, 778–795. [Google Scholar] [CrossRef]
- Dinarello, C.A. IL-1: Discoveries, controversies and future directions. Eur. J. Immunol. 2010, 40, 599–606. [Google Scholar] [CrossRef]
- Catalan-Dibene, J.; McIntyre, L.L.; Zlotnik, A. Interleukin 30 to Interleukin 40. J. Interferon Cytokine Res. 2018, 38, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Briukhovetska, D.; Dorr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.X.; Leonard, W.J. The Common Cytokine Receptor gamma Chain Family of Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028449. [Google Scholar] [CrossRef] [PubMed]
- Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front. Immunol. 2020, 11, 565470. [Google Scholar] [CrossRef] [PubMed]
- Liberale, L.; Ministrini, S.; Carbone, F.; Camici, G.G.; Montecucco, F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic. Res. Cardiol. 2021, 116, 23. [Google Scholar] [CrossRef] [PubMed]
- Carrington, P.A.; Hill, R.J.; Stenberg, P.E.; Levin, J.; Corash, L.; Schreurs, J.; Baker, G.; Levin, F.C. Multiple in vivo effects of interleukin-3 and interleukin-6 on murine megakaryocytopoiesis. Blood 1991, 77, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.J.; Warren, M.K.; Stenberg, P.; Levin, J.; Corash, L.; Drummond, R.; Baker, G.; Levin, F.; Mok, Y. Stimulation of megakaryocytopoiesis in mice by human recombinant interleukin-6. Blood 1991, 77, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Neben, T.Y.; Loebelenz, J.; Hayes, L.; McCarthy, K.; Stoudemire, J.; Schaub, R.; Goldman, S.J. Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases peripheral platelets in normal and splenectomized mice. Blood 1993, 81, 901–908. [Google Scholar] [CrossRef]
- Maouia, A.; Rebetz, J.; Kapur, R.; Semple, J.W. The Immune Nature of Platelets Revisited. Transfus. Med. Rev. 2020, 34, 209–220. [Google Scholar] [CrossRef]
- Koupenova, M.; Livada, A.C.; Morrell, C.N. Platelet and Megakaryocyte Roles in Innate and Adaptive Immunity. Circ. Res. 2022, 130, 288–308. [Google Scholar] [CrossRef]
- Bluteau, D.; Lordier, L.; Di Stefano, A.; Chang, Y.; Raslova, H.; Debili, N.; Vainchenker, W. Regulation of megakaryocyte maturation and platelet formation. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 227–234. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, I.S.; Kaushansky, K. Thrombopoietin from beginning to end. Br. J. Haematol. 2014, 165, 259–268. [Google Scholar] [CrossRef] [PubMed]
- McNiece, I.K.; Briddell, R.A. Stem cell factor. J. Leukoc. Biol. 1995, 58, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.A.; Achuthan, A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 2013, 34, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Niswander, L.M.; Fegan, K.H.; Kingsley, P.D.; McGrath, K.E.; Palis, J. SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 2014, 124, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Machlus, K.R.; Johnson, K.E.; Kulenthirarajan, R.; Forward, J.A.; Tippy, M.D.; Soussou, T.S.; El-Husayni, S.H.; Wu, S.K.; Wang, S.; Watnick, R.S.; et al. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood 2016, 127, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, L.; Henschler, R.; Lecchi, L.; Rebulla, P.; Mertelsmann, R.; Sirchia, G. Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41+ and CD61+ megakaryocytic cells. Haematologica 2000, 85, 25–30. [Google Scholar]
- Debili, N.; Massé, J.M.; Katz, A.; Guichard, J.; Breton-Gorius, J.; Vainchenker, W. Effects of the recombinant hematopoietic growth factors interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory factor on the megakaryocytic differentiation of CD34+ cells. Blood 1993, 82, 84–95. [Google Scholar] [CrossRef]
- Nishimura, S.; Nagasaki, M.; Kunishima, S.; Sawaguchi, A.; Sakata, A.; Sakaguchi, H.; Ohmori, T.; Manabe, I.; Italiano, J.E., Jr.; Ryu, T.; et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J. Cell Biol. 2015, 209, 453–466. [Google Scholar] [CrossRef]
- Ghanima, W.; Cooper, N.; Rodeghiero, F.; Godeau, B.; Bussel, J.B. Thrombopoietin receptor agonists: Ten years later. Haematologica 2019, 104, 1112–1123. [Google Scholar] [CrossRef]
- Gainsford, T.; Roberts, A.W.; Kimura, S.; Metcalf, D.; Dranoff, G.; Mulligan, R.C.; Begley, C.G.; Robb, L.; Alexander, W.S. Cytokine production and function in c-mpl-deficient mice: No physiologic role for interleukin-3 in residual megakaryocyte and platelet production. Blood 1998, 91, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Gainsford, T.; Nandurkar, H.; Metcalf, D.; Robb, L.; Begley, C.G.; Alexander, W.S. The residual megakaryocyte and platelet production in c-mpl-deficient mice is not dependent on the actions of interleukin-6, interleukin-11, or leukemia inhibitory factor. Blood 2000, 95, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Tunjungputri, R.N.; Li, Y.; de Groot, P.G.; Dinarello, C.A.; Smeekens, S.P.; Jaeger, M.; Doppenberg-Oosting, M.; Cruijsen, M.; Lemmers, H.; Toenhake-Dijkstra, H.; et al. The Inter-Relationship of Platelets with Interleukin-1beta-Mediated Inflammation in Humans. Thromb. Haemost. 2018, 118, 2112–2125. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.M.; Lin, E.; Mick, E.; Koupenova, M.; Weinberg, E.O.; Kramer, C.D.; Genco, C.A.; Tanriverdi, K.; Larson, M.G.; Benjamin, E.J.; et al. Interleukin 1 receptor 1 and interleukin 1beta regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, J.; Li, J.; Kim, G.; Stewart, A.; Huang, Y.; Wu, C. Intestinal IL-33 promotes platelet activity for neutrophil recruitment during acute inflammation. Blood 2022, 139, 1878–1891. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hong, J.; Zhong, H.; Zhao, Y.; Li, J.; Shen, W.; Luo, X.; Shi, H.; Hu, L.; Liu, J.; et al. IL-37 Attenuates Platelet Activation and Thrombosis Through IL-1R8 Pathway. Circ. Res. 2023, 132, e134–e150. [Google Scholar] [CrossRef]
- Oleksowicz, L.; Zuckerman, D.; Mrowiec, Z.; Puszkin, E.; Dutcher, J.P. Effects of interleukin-2 administration on platelet function in cancer patients. Am. J. Hematol. 1994, 45, 224–231. [Google Scholar] [CrossRef]
- Zhang, J.; Ruan, Y.; Shen, Y.; Tao, Q.; Wang, H.; Tao, L.; Pan, Y.; Fang, H.; Wang, Y.; Zhai, Z. Low dose IL-2 increase regulatory T cells and elevate platelets in a patient with immune thrombocytopenia. Cytometry B Clin. Cytom. 2018, 94, 400–404. [Google Scholar] [CrossRef]
- Gao, A.; Gong, Y.; Zhu, C.; Yang, W.; Li, Q.; Zhao, M.; Ma, S.; Li, J.; Hao, S.; Cheng, H.; et al. Bone marrow endothelial cell-derived interleukin-4 contributes to thrombocytopenia in acute myeloid leukemia. Haematologica 2019, 104, 1950–1961. [Google Scholar] [CrossRef]
- Catani, L.; Amabile, M.; Luatti, S.; Valdre, L.; Vianelli, N.; Martinelli, G.; Tura, S. Interleukin-4 downregulates nuclear factor-erythroid 2 (NF-E2) expression in primary megakaryocytes and in megakaryoblastic cell lines. Stem Cells 2001, 19, 339–347. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, M.; Zhu, F.; Zhang, S.; Ding, P.; Wang, M. IL-9 Promotes the Development of Deep Venous Thrombosis by Facilitating Platelet Function. Thromb. Haemost. 2018, 118, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Wang, Y.; Tao, C.; Wang, Z.; Yang, J.; Chen, Z.; Zou, Z.; Li, M.; Liu, A.; Jia, C.; et al. Osteoblasts support megakaryopoiesis through production of interleukin-9. Blood 2017, 129, 3196–3209. [Google Scholar] [CrossRef] [PubMed]
- Benbarche, S.; Strassel, C.; Angenieux, C.; Mallo, L.; Freund, M.; Gachet, C.; Lanza, F.; de la Salle, H. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis. Haematologica 2017, 102, 637–646. [Google Scholar] [CrossRef]
- Lindemann, A.; Ganser, A.; Herrmann, F.; Frisch, J.; Seipelt, G.; Schulz, G.; Hoelzer, D.; Mertelsmann, R. Biologic effects of recombinant human interleukin-3 in vivo. J. Clin. Oncol. 1991, 9, 2120–2127. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xie, J.; Wang, X.; Zou, B.; Yu, Y.; Jing, T.; Zhang, S.; Zhang, Q. Micro-concentration Lipopolysaccharide as a Novel Stimulator of Megakaryocytopoiesis that Synergizes with IL-6 for Platelet Production. Sci. Rep. 2015, 5, 13748. [Google Scholar] [CrossRef]
- Burstein, S.A. Effects of interleukin 6 on megakaryocytes and on canine platelet function. Stem Cells 1994, 12, 386–393. [Google Scholar] [CrossRef]
- Turner, K.J.; Neben, S.; Weich, N.; Schaub, R.G.; Goldman, S.J. The role of recombinant interleukin 11 in megakaryocytopoiesis. Stem Cells 1996, 14 (Suppl. 1), 53–61. [Google Scholar] [CrossRef]
- Tan, W.H.; Liu, B.N.; Barsoum, A.; Huang, W.T.; Kolls, J.K.; Schwarzenberger, P. Requirement of TPO/c-mpl for IL-17A-induced granulopoiesis and megakaryopoiesis. J. Leukocyte Biol. 2013, 94, 1303–1308. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, J.; Yu, M.; Fan, H.; Guo, Z.Q.; Yang, R.; Guo, H.P.; Liao, Y.H.; Wang, M. IL-17A facilitates platelet function through the ERK2 signaling pathway in patients with acute coronary syndrome. PLoS ONE 2012, 7, e40641. [Google Scholar] [CrossRef]
- Gatsiou, A.; Sopova, K.; Tselepis, A.; Stellos, K. Interleukin-17A Triggers the Release of Platelet-Derived Factors Driving Vascular Endothelial Cells toward a Pro-Angiogenic State. Cells 2021, 10, 1855. [Google Scholar] [CrossRef]
- Jiang, J.; Qin, J.; Li, J.; Lin, X.; Zhang, B.; Fan, Z.; He, L.; Zeng, Q.; Yue, W.; Zheng, M.; et al. Ricolinostat promotes the generation of megakaryocyte progenitors from human hematopoietic stem and progenitor cells. Stem Cell Res. Ther. 2022, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Regnault, V.; de Maistre, E.; Carteaux, J.P.; Gruel, Y.; Nguyen, P.; Tardy, B.; Lecompte, T. Platelet activation induced by human antibodies to interleukin-8. Blood 2003, 101, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Cai, W.; Zhou, Y.; Zhang, X.; Xiong, L.; Li, R.; Yu, X.; Li, W. IL-13 upregulates GPIIb expression in megakaryocytic cell lines via STAT6. Anat. Rec. (Hoboken) 2010, 293, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Spangler, J.B.; Moraga, I.; Mendoza, J.L.; Garcia, K.C. Insights into cytokine-receptor interactions from cytokine engineering. Annu. Rev. Immunol. 2015, 33, 139–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, T.; Liu, S.; Mo, Q.; Jiang, N.; Chen, Q.; Yang, J.; Han, Y.W.; Chen, J.P.; Huang, F.H.; et al. Discovery of a novel megakaryopoiesis enhancer, ingenol, promoting thrombopoiesis through PI3K-Akt signaling independent of thrombopoietin. Pharmacol. Res. 2022, 177, 106096. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Sun, Y.; Yang, S.; Wu, Y.; Wang, L.; Zou, W.; Jiang, N.; Chen, J.; Han, Y.; Huang, C.; et al. Novel chemical-structure TPOR agonist, TMEA, promotes megakaryocytes differentiation and thrombopoiesis via mTOR and ERK signalings. Phytomedicine 2023, 110, 154637. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, N.; Masoumi, Z.; James, S.C.; Tucker, J.A.; Winkelmann, H.; Grey, W.; Picton, L.K.; Moss, L.; Wilson, S.C.; Caveney, N.A.; et al. Structure of the thrombopoietin-MPL receptor complex is a blueprint for biasing hematopoiesis. Cell 2023, 186, 4189–4203.e4122. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Hu, X.; Fu, W. Bone marrow NLRP3 inflammasome-IL-1β signal regulates post-myocardial infarction megakaryocyte development and platelet production. Biochem. Biophys. Res. Commun. 2021, 585, 96–102. [Google Scholar] [CrossRef]
- Solier, S.; Fontenay, M.; Vainchenker, W.; Droin, N.; Solary, E. Non-apoptotic functions of caspases in myeloid cell differentiation. Cell Death Differ. 2017, 24, 1337–1347. [Google Scholar] [CrossRef]
- Nieswandt, B.; Stritt, S. Megakaryocyte rupture for acute platelet needs. J. Cell Biol. 2015, 209, 327–328. [Google Scholar] [CrossRef]
- Luis, T.C.; Barkas, N.; Carrelha, J.; Giustacchini, A.; Mazzi, S.; Norfo, R.; Wu, B.; Aliouat, A.; Guerrero, J.A.; Rodriguez-Meira, A.; et al. Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner. Nat. Commun. 2023, 14, 6062. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Amo-Aparicio, J.; Neff, C.P.; Tengesdal, I.W.; Azam, T.; Palmer, B.E.; Lopez-Vales, R.; Bufler, P.; Dinarello, C.A. Role for nuclear interleukin-37 in the suppression of innate immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 4456–4461. [Google Scholar] [CrossRef] [PubMed]
- Spolski, R.; Li, P.; Leonard, W.J. Biology and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Angchaisuksiri, P.; Grigus, S.R.; Carlson, P.L.; Krystal, G.W.; Dessypris, E.N. Secretion of a unique peptide from interleukin-2-stimulated natural killer cells that induces endomitosis in immature human megakaryocytes. Blood 2002, 99, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, Y.; Kuzuyama, Y.; Tanaka, S.; Yokota, S.; Maekawa, T.; Clark, S.C.; Abe, T. Human interleukin-4 inhibits proliferation of megakaryocyte progenitor cells in culture. Blood 1993, 81, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; He, Y.; Xiao, M.; Zhang, W.; Xia, W.; Hu, H.; Mao, L.; Liu, A.; Chen, Z.; Bai, X.; et al. Interleukin 9 prevents immune thrombocytopenia in mice via JAK/STAT5 signaling. Exp. Cell Res. 2020, 388, 111801. [Google Scholar] [CrossRef]
- Dougan, M.; Dranoff, G.; Dougan, S.K. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019, 50, 796–811. [Google Scholar] [CrossRef]
- Hercus, T.R.; Kan, W.L.T.; Broughton, S.E.; Tvorogov, D.; Ramshaw, H.S.; Sandow, J.J.; Nero, T.L.; Dhagat, U.; Thompson, E.J.; Shing, K.; et al. Role of the beta Common (betac) Family of Cytokines in Health and Disease. Cold Spring Harb. Perspect. Biol. 2018, 10, a028514. [Google Scholar] [CrossRef]
- Rothenberg, M.E.; Hogan, S.P. The eosinophil. Annu. Rev. Immunol. 2006, 24, 147–174. [Google Scholar] [CrossRef]
- Metcalf, D.; Begley, C.G.; Johnson, G.R.; Nicola, N.A.; Lopez, A.F.; Williamson, D.J. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 1986, 68, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Aglietta, M.; Pasquino, P.; Sanavio, F.; Stacchini, A.; Severino, A.; Fubini, L.; Morelli, S.; Volta, C.; Monteverde, A.; Piacibello, W.; et al. Granulocyte-macrophage colony stimulating factor and interleukin 3: Target cells and kinetics of response in vivo. Stem Cells 1993, 11 (Suppl. 2), 83–87. [Google Scholar] [CrossRef] [PubMed]
- Mazur, E.M.; Cohen, J.L.; Bogart, L.; Mufson, R.A.; Gesner, T.G.; Yang, Y.C.; Clark, S.C. Recombinant gibbon interleukin-3 stimulates megakaryocyte colony growth in vitro from human peripheral blood progenitor cells. J. Cell Physiol. 1988, 136, 439–446. [Google Scholar] [CrossRef]
- Spivak, J.L.; Smith, R.R.; Ihle, J.N. Interleukin 3 promotes the in vitro proliferation of murine pluripotent hematopoietic stem cells. J. Clin. Investig. 1985, 76, 1613–1621. [Google Scholar] [CrossRef]
- Ottmann, O.G.; Ganser, A.; Seipelt, G.; Eder, M.; Schulz, G.; Hoelzer, D. Effects of recombinant human interleukin-3 on human hematopoietic progenitor and precursor cells in vivo. Blood 1990, 76, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Hercus, T.R.; Dhagat, U.; Kan, W.L.; Broughton, S.E.; Nero, T.L.; Perugini, M.; Sandow, J.J.; D’Andrea, R.J.; Ekert, P.G.; Hughes, T.; et al. Signalling by the betac family of cytokines. Cytokine Growth Factor. Rev. 2013, 24, 189–201. [Google Scholar] [CrossRef]
- Weber, G.F.; Chousterman, B.G.; He, S.; Fenn, A.M.; Nairz, M.; Anzai, A.; Brenner, T.; Uhle, F.; Iwamoto, Y.; Robbins, C.S.; et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 2015, 347, 1260–1265. [Google Scholar] [CrossRef]
- Valet, C.; Magnen, M.; Qiu, L.; Cleary, S.J.; Wang, K.M.; Ranucci, S.; Grockowiak, E.; Boudra, R.; Conrad, C.; Seo, Y.; et al. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J. Clin. Investig. 2022, 132, e153920. [Google Scholar] [CrossRef]
- Hofstra, L.S.; Kristensen, G.B.; Willemse, P.H.; Vindevoghel, A.; Meden, H.; Lahousen, M.; Oberling, F.; Sorbe, B.; Crump, M.; Sklenar, I.; et al. Randomized trial of recombinant human interleukin-3 versus placebo in prevention of bone marrow depression during first-line chemotherapy for ovarian carcinoma. J. Clin. Oncol. 1998, 16, 3335–3344. [Google Scholar] [CrossRef]
- D’Hondt, V.; Weynants, P.; Humblet, Y.; Guillaume, T.; Canon, J.L.; Beauduin, M.; Duprez, P.; Longueville, J.; Mull, R.; Chatelain, C.; et al. Dose-dependent interleukin-3 stimulation of thrombopoiesis and neutropoiesis in patients with small-cell lung carcinoma before and following chemotherapy: A placebo-controlled randomized phase Ib study. J. Clin. Oncol. 1993, 11, 2063–2071. [Google Scholar] [CrossRef]
- Ganser, A.; Lindemann, A.; Seipelt, G.; Ottmann, O.G.; Herrmann, F.; Eder, M.; Frisch, J.; Schulz, G.; Mertelsmann, R.; Hoelzer, D. Effects of recombinant human interleukin-3 in patients with normal hematopoiesis and in patients with bone marrow failure. Blood 1990, 76, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 2020, 217, e20190347. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 trans-signalling: Past, present and future prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Debili, N.; Le Couedic, J.P.; Klein, B.; Breton-Gorius, J.; Doly, J.; Vainchenker, W. Interleukin-6 and its receptor are expressed by human megakaryocytes: In vitro effects on proliferation and endoreplication. Blood 1991, 77, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Koike, K.; Kubo, T.; Kikuchi, T.; Amano, Y.; Takagi, M.; Okumura, N.; Nakahata, T. Interleukin-6 supports human megakaryocytic proliferation and differentiation in vitro. Blood 1991, 78, 1969–1974. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Kimura, H.; Shikama, Y.; Uchida, T.; Kariyone, S.; Hirano, T.; Kishimoto, T.; Takatsuki, F.; Akiyama, Y. Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 1989, 74, 1241–1244. [Google Scholar] [CrossRef]
- Burstein, S.A.; Downs, T.; Friese, P.; Lynam, S.; Anderson, S.; Henthorn, J.; Epstein, R.B.; Savage, K. Thrombocytopoiesis in normal and sublethally irradiated dogs: Response to human interleukin-6. Blood 1992, 80, 420–428. [Google Scholar] [CrossRef]
- Zeidler, C.; Kanz, L.; Hurkuck, F.; Rittmann, K.L.; Wildfang, I.; Kadoya, T.; Mikayama, T.; Souza, L.; Welte, K. In vivo effects of interleukin-6 on thrombopoiesis in healthy and irradiated primates. Blood 1992, 80, 2740–2745. [Google Scholar] [CrossRef]
- Gordon, M.S.; Nemunaitis, J.; Hoffman, R.; Paquette, R.L.; Rosenfeld, C.; Manfreda, S.; Isaacs, R.; Nimer, S.D. A phase I trial of recombinant human interleukin-6 in patients with myelodysplastic syndromes and thrombocytopenia. Blood 1995, 85, 3066–3076. [Google Scholar] [CrossRef]
- D’Hondt, V.; Humblet, Y.; Guillaume, T.; Baatout, S.; Chatelain, C.; Berliere, M.; Longueville, J.; Feyens, A.M.; de Greve, J.; Van Oosterom, A.; et al. Thrombopoietic effects and toxicity of interleukin-6 in patients with ovarian cancer before and after chemotherapy: A multicentric placebo-controlled, randomized phase Ib study. Blood 1995, 85, 2347–2353. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019, 50, 812–831. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Chen, T.; Yang, M.; Zhu, X.; Wang, C.; Cao, X.; Cai, Z. Small Rab GTPase Rab7b promotes megakaryocytic differentiation by enhancing IL-6 production and STAT3-GATA-1 association. J. Mol. Med. 2011, 89, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Schwertschlag, U.S.; Trepicchio, W.L.; Dykstra, K.H.; Keith, J.C.; Turner, K.J.; Dorner, A.J. Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia 1999, 13, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Teramura, M.; Kobayashi, S.; Hoshino, S.; Oshimi, K.; Mizoguchi, H. Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood 1992, 79, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Hangoc, G.; Yin, T.; Cooper, S.; Schendel, P.; Yang, Y.C.; Broxmeyer, H.E. In vivo effects of recombinant interleukin-11 on myelopoiesis in mice. Blood 1993, 81, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Lokau, J.; Kespohl, B.; Kirschke, S.; Garbers, C. The role of proteolysis in interleukin-11 signaling. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119135. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, R.D.; Putoczki, T.L.; Griffin, M.D.W. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front. Immunol. 2020, 11, 1424. [Google Scholar] [CrossRef]
- Wilde, M.I.; Faulds, D. Oprelvekin: A review of its pharmacology and therapeutic potential in chemotherapy-induced thrombocytopenia. BioDrugs 1998, 10, 159–171. [Google Scholar] [CrossRef]
- Robert, M.; Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun. Rev. 2017, 16, 984–991. [Google Scholar] [CrossRef]
- Hot, A.; Lenief, V.; Miossec, P. Combination of IL-17 and TNF alpha induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Ann. Rheum. Dis. 2012, 71, 768–776. [Google Scholar] [CrossRef]
- Maione, F.; Cicala, C.; Liverani, E.; Mascolo, N.; Perretti, M.; D’Acquisto, F. IL-17A increases ADP-induced platelet aggregation. Biochem. Bioph Res. Commun. 2011, 408, 658–662. [Google Scholar] [CrossRef]
- Ding, P.W.; Zhang, S.S.; Yu, M.; Feng, Y.Q.; Long, Q.; Yang, H.M.; Li, J.D.; Wang, M. IL-17A promotes the formation of deep vein thrombosis in a mouse model. Int. Immunopharmacol. 2018, 57, 132–138. [Google Scholar] [CrossRef]
- Han, Z.J.; Li, Y.B.; Yang, L.X.; Cheng, H.J.; Liu, X.; Chen, H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. Molecules 2022, 27, 137. [Google Scholar] [CrossRef]
- Waugh, D.J.J.; Wilson, C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef]
- Emadi, S.; Clay, D.; Desterke, C.; Guerton, B.; Maquarre, E.; Charpentier, A.; Jasmin, C.; Le Bousse-Kerdilès, M.C. IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis. Blood 2005, 105, 464–473. [Google Scholar] [CrossRef]
- Junttila, I.S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front. Immunol. 2018, 9, 888. [Google Scholar] [CrossRef]
- Xi, X.; Schlegel, N.; Caen, J.P.; Minty, A.; Fournier, S.; Caput, D.; Ferrara, P.; Han, Z.C. Differential effects of recombinant human interleukin-13 on the in vitro growth of human haemopoietic progenitor cells. Br. J. Haematol. 1995, 90, 921–927. [Google Scholar] [CrossRef]
- Melo-Cardenas, J.; Bezavada, L.; Crawford, J.C.; Gurbuxani, S.; Cotton, A.; Kang, G.; Gossett, J.; Marinaccio, C.; Weinberg, R.; Hoffman, R.; et al. IL-13/IL-4 signaling contributes to fibrotic progression of the myeloproliferative neoplasms. Blood 2022, 140, 2805–2817. [Google Scholar] [CrossRef]
- Stahl, C.P.; Zucker-Franklin, D.; Evatt, B.L.; Winton, E.F. Effects of human interleukin-6 on megakaryocyte development and thrombocytopoiesis in primates. Blood 1991, 78, 1467–1475. [Google Scholar] [CrossRef]
- Geissler, K.; Valent, P.; Bettelheim, P.; Sillaber, C.; Wagner, B.; Kyrle, P.; Hinterberger, W.; Lechner, K.; Liehl, E.; Mayer, P. In vivo synergism of recombinant human interleukin-3 and recombinant human interleukin-6 on thrombopoiesis in primates. Blood 1992, 79, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, N.; Pappu, R.; Arron, J.R.; Chan, A.C. 30 Years of Biotherapeutics Development-What Have We Learned? Annu. Rev. Immunol. 2020, 38, 249–287. [Google Scholar] [CrossRef] [PubMed]
- Saxton, R.A.; Glassman, C.R.; Garcia, K.C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 2023, 22, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Holder, P.G.; Lim, S.A.; Huang, C.S.; Sharma, P.; Dagdas, Y.S.; Bulutoglu, B.; Sockolosky, J.T. Engineering interferons and interleukins for cancer immunotherapy. Adv. Drug Deliv. Rev. 2022, 182, 114112. [Google Scholar] [CrossRef]
- Aung, T.; Grubbe, W.S.; Nusbaum, R.J.; Mendoza, J.L. Recent and future perspectives on engineering interferons and other cytokines as therapeutics. Trends Biochem. Sci. 2023, 48, 259–273. [Google Scholar] [CrossRef]
Interleukins | Cell Sources | Effect on Megakaryopoiesis | Effect on Platelet Function | Refs. |
---|---|---|---|---|
IL-1 Family | ||||
IL-1α | Macrophages Monocytes Microglia MKs, etc. | Inducing MK rupture for rapid platelet production; inducing MK differentiation and maturation; inhibiting PPF formation. | / | [49] |
IL-1β | Consistent with IL-1α | Promoting MK differentiation and maturation; inducing thrombopoiesis. | Enhancement of MK and platelet function. | [53,54] |
IL-33 | Epithelial cells Necrotic cells Fibroblasts, etc. | / | Indirect promotion of platelet activation via 5-HT. | [55] |
IL-37 | Monocytes Tonsil plasma cells Breast carcinoma cells, etc. | / | Inhibition of platelet activation and thrombosis in vivo. | [56] |
IL-2 Family | ||||
IL-2 | CD4+ and CD8+ T cells DCs NK and NKT cells, etc. | Indirect increasing platelet counts in ITP patients; reducing platelet count in cancer patients. | Enhancement of platelet viability. | [57,58] |
IL-4 | TH2 cells, Basophils, Eosinophils, Mast cells, etc. | Inhibiting MK differentiation at all stages. | / | [59,60] |
IL-9 | TH2, TH9, TH17 cells Treg cells Mast cells, etc. | Promoting MK maturation and platelet production. | Promotion of platelet function and thrombosis | [61,62] |
IL-21 | T cells NKT cells, etc. | Promoting the proliferation of MKP and MK differentiation; increasing platelet clearance. | / | [63] |
IL-3 Family | ||||
IL-3 | T cells Macrophages NK cells Mast cells, etc. | Promoting MKP proliferation and MK differentiation | / | [64] |
IL-6 Family | ||||
IL-6 | Monocytes/macrophages Endothelial cells Granulocytes Osteoblasts, etc. | Promoting MK maturation and thrombopoiesis; enhancing the growth-promoting effect of TPO on MKs | Enhancement of canine platelet sensitivity to thrombin and platelet-activating factors | [65,66] |
IL-11 | Bone marrow cells Epithelial cells Endothelial cells Osteoblasts, etc. | Increasing bone marrow and splenic progenitor cell counts; promoting MK maturation to increase platelet counts | / | [67] |
IL-17 Family | ||||
IL-17A | TH17 cells CD8+ T cells NK cells, etc. | Amplifying bone marrow-derived CFU-MK; regulating and synergizing the TPO/c-Mpl pathway for platelet function and factor release | / | [68,69,70] |
Others | ||||
IL-8 | Monocytes Macrophages Neutrophils Lymphocytes Endothelial cells, etc. | Negative regulating MK lineage differentiation of HSPCs and proliferation of MKP | Negative regulation of platelet activation in patients with heparin-induced thrombocytopenia | [71,72] |
IL-13 | NKT cells Mast cells Basophils Eosinophils, etc. | Stimulating MK colony formation; promoting MK differentiation in HEL cells and Dami cells | / | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Wang, L.; Zhang, Q.; Zhou, L.; Liao, R.; Wu, A.; Wang, X.; Luo, J.; Huang, F.; Zou, W.; et al. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals 2024, 17, 109. https://doi.org/10.3390/ph17010109
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, et al. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals. 2024; 17(1):109. https://doi.org/10.3390/ph17010109
Chicago/Turabian StyleHuang, Miao, Long Wang, Qianhui Zhang, Ling Zhou, Rui Liao, Anguo Wu, Xinle Wang, Jiesi Luo, Feihong Huang, Wenjun Zou, and et al. 2024. "Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network" Pharmaceuticals 17, no. 1: 109. https://doi.org/10.3390/ph17010109
APA StyleHuang, M., Wang, L., Zhang, Q., Zhou, L., Liao, R., Wu, A., Wang, X., Luo, J., Huang, F., Zou, W., & Wu, J. (2024). Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals, 17(1), 109. https://doi.org/10.3390/ph17010109