Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review
Abstract
:1. Introduction
2. Nisin A
3. Design of Novel Antibacterials by Modification of Nisin Structure
3.1. Bioengeeneering by Mutagenesis
3.2. Variants Containing Non-Canonical Amino Acids
3.3. Hybrid Molecules
4. Chemical Modifications of Nisin
4.1. Click Reaction as a Tool for Nisin Modification
4.2. Late-Stage Functionalization of Nisin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Kong, L.; Gao, H.; Wang, X. A Review of current bacterial resistance to antibiotics in food animals. Front. Microbiol. 2022, 13, 822689. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmial, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, M.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.M.; Trampari, E.; Sisat, P.; SGaya, M.S.; Alav, Y.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 20, 280–295. [Google Scholar] [CrossRef]
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef]
- Theuretzbacher, A.; Shady, N.H.; Abdeljawad, K.H.; Emzalkam, M.B.; Helmy, H.H.; Dly, A.N.; Hussien, J.H.; Sayed, N.G.; Zayed, A.; Abdelmohsen, U.R. Antimicrobial potentials of natural products against multidrug resistance pathogens: A comprehensive review. RSC Adv. 2022, 12, 29078–29102. [Google Scholar] [CrossRef]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, V.; Suresh, A. Next-generation approaches needed to tackle antimicrobial resistance for the development of novel therapies against the deadly pathogens. Front. Pharmacol. 2022, 13, 83092. [Google Scholar] [CrossRef]
- Linciano, P.; Cavalloro, V.; Martino, E.; Kirchmair, J.; Listro, R.; Rossi, D.; Collina, S. Tackling antimicrobial resistance with small molecules targeting LsrK: Challenges and opportunities. J. Med. Chem. 2020, 63, 15243–15257. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Büyükkiraz, M.E.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2021, 132, 1573–1596. [Google Scholar] [CrossRef]
- Joshi, S.; Kar, R.V.; Lahiri, D.; Nag, M. (Eds.) Lantibiotics as Alternative Therapeutics (Advances in Biotechnology and Bioengineering); Academic Press: Cambridge, MA, USA, 2023; ISBN 9780323991414. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Naithani, H.; Nagpal, R.; Behare, P.V. Chapter 23-Bacteriocins and antimicrobial peptides as an alternative to antibiotics. In Advances in Dairy Microbial Products; Singh, J., Vyas, A., Eds.; Woodhead Publishing (An Impritnt of Elsevier): Sawston, UK, 2022; pp. 327–346. [Google Scholar] [CrossRef]
- Wilson-Stanford, S.; Kalii, A.; Håkansson, K.; Kastranas, J.; Orugunty, S.V.; Smith, L. Oxidation of lanthionines renders the lantibiotic nisin inactive. Appl. Environ. Microbiol. 2009, 75, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Montalban-Lopez, M.; van Heel, A.J.; Kuipers, O.P. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiol. Rev. 2017, 41, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Fields, D.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering of the model lantibiotic nisin. Bioengineered 2015, 6, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Du, Y.; Qiu, Z.; Liu, Z.; Qiao, J.; Li, Y.; Caiyin, Q. Nisin variants generated by protein engineering and their properties. Bioengineering 2022, 9, 251. [Google Scholar] [CrossRef]
- Fields, D.; Fernandez de Ullivarri, M.; Ross, R.P.; Hill, C. After a century of nisin research, where are we now and where are we going? FEMS Microbiol. Rev. 2023, 47, fuad023. [Google Scholar] [CrossRef]
- Rogers, L.A.; Whittier, E.O. Limiting factors in lactic fermentation. J. Bacteriol. 1928, 16, 211–229. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Sánchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Invited review: Advances in nisin use for preservation of dairy products. J. Dairy Airy Sci. 2020, 103, 2041–2052. [Google Scholar] [CrossRef]
- Animudu, C.; Hart, A.; Miri, T.; Onyeaka, H. Recent advances in the application of the antimicrobial eptide nisin in the inactivation of spore-forming bacteria in foods. Molecules 2021, 26, 5552. [Google Scholar] [CrossRef]
- Khan, F.; Singh, P.; Joshi, A.S.; Tabassum, N.; Jeong, G.-J.; Bamunuarachchi, N.I. Multiple potential strategies for the application of nisin and derivatives. Crit. Rev. Microbiol. 2022, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Gwak, J.W.; Kamarayan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.J. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 1449–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Małaczewska, J.; Kaczorek-Łukowska, E. Nisin—A lantibiotic with immunomodulatory properties: A review. Peptides 2021, 137, 170479. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.; Morell, J.E. Structure of Nisin. J. Am. Chem. Soc. 1971, 93, 4634–4635. [Google Scholar] [CrossRef] [PubMed]
- Auliffe, O.; Ross, R.P.; Hill, C. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001, 25, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-T.D.; Breukink, E.; Tischenko, E.; Lutters, M.A.; de Kruijff, B.; KAptein, R.; Bonwinn, A.M.J.J.; van Nuland, N.A.J. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963–967. [Google Scholar] [CrossRef] [Green Version]
- T’Hart, P.; Oppendijk, S.F.; Breukink, E.; Martin, N.I. New insights into nisin’s antibacterial mechanism revealed by binding studies with synthetic llipid II analogues. Biochemistry 2016, 55, 232–237. [Google Scholar] [CrossRef]
- Kuwano, K.; Tanaka, N.; Shimizu, T.; Nagatoshi, K.; Nou, S.; Sonomoto, K. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents 2005, 26, 396–402. [Google Scholar] [CrossRef]
- Rouse, S.; Field, R.; Daly, K.M.; O’Connor, P.M.; Cotter, P.D.; Ross, R.P. Bioengineered nisin derivatives with enhanced activity in complex matrices. Microb. Biotech. 2012, 5, 501–508. [Google Scholar] [CrossRef]
- Piper, C.; Hill, C.; Cotter, P.D.; Ross, R.P. Bioengineering of a Nisin A-producing Lactococcu slactisto create isogenic strains producing the natural variants Nisin F., Q and Z. Microb. Biotech. 2010, 4, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhang, Z.Z.; Chen, X.Z.; Yang, W.; Huan, L.D. Site-directed mutagenesis of the hinge region of nisin Z and properties of nisin Z mutants. Appl. Microbiol. Biotechnol. 2004, 64, 806–815. [Google Scholar] [CrossRef]
- Field, D.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol. Microbiol. 2008, 69, 218–230. [Google Scholar] [CrossRef]
- Zhou, L.; van Heel, A.J.; Kuipers, O.P. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity. Front. Microbiol. 2015, 6, 11. [Google Scholar] [CrossRef]
- Zaschke-Kriesche, J.; Reiners, J.; Lagedroste, M.; Smits, S.H.J. Influence of nisin hinge-region variants on lantibiotic immunity and resistance proteins. Bioorg. Med. Chem. 2019, 27, 3947–3953. [Google Scholar] [CrossRef]
- Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS ONE 2012, 7, e46884. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ibarreche, M.; Field, D.; Ross, R.P.; Hill, C. A Bioengineered nisin derivative to control Streptococcus uberis biofilms. Appl. Environ. Microbiol. 2021, 87, e0039121. [Google Scholar] [CrossRef]
- Liang, X.; Sun, Z.; Zhong, J.; Zhang, Q.; Huan, L. Adverse effect of nisin resistance protein on nisin-induced expression system in Lactococcus lactis. Microbiol. Res. 2010, 165, 458–465. [Google Scholar] [CrossRef]
- Desmond, A.; O’Halloran, F.; Cotter, L.; Hill, C.; Field, D. Bioengineered nisin A derivatives display enhanced activity against clinical neonatal pathogens. Antibiotics 2022, 11, 1516. [Google Scholar] [CrossRef]
- Fields, D.; Blake, T.; Mathus, H.; O’Connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering nisin to overcome the nisin resistance protein. Mol. Microbiol. 2018, 111, 717–731. [Google Scholar] [CrossRef]
- Rink, R.; Wierenga, J.; Kuipers, A.; Kluskens, L.D.; Driessen, A.J.M.; Kuipers, O.P.; Moll, G.N. Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl. Environ. Microbiol. 2007, 73, 5809–5816. [Google Scholar] [CrossRef] [Green Version]
- Van Heel, A.J.; Kloostermann, T.G.; Montalban-Lopez, M.; Deng, J.; Plat, A.; Baudu, B.; Hendriks, D.; Moll, G.N.; Kuipers, O.P. Discovery, production and modification of five novel lantibiotics using the promiscuous nisin modification machinery. ACS Synth. Biol. 2016, 5, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.; Field, D.; Grainger, A.; O’Connor, P.M.; Draper, L.; Ross, R.P.; Hill, C. Nisin M: A Bioengineered nisin A variant that retains full induction capacity but has significantly reduced antimicrobial activity. Appl. Environ. Microbiol. 2016, 86, e00984-20. [Google Scholar] [CrossRef]
- Molloy, E.M.; Field, D.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PLoS ONE 2013, 8, e58530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros-Silva, J.; Jekhmane, S.; Lucini Paioni, A.; Gawarecka, K.; Baldus, M.; Świeżewska, E.; Breukink, E.; Weingarth, M. High-resolution NMR studies of antibiotics in cellular membranes. Nat. Commun. 2018, 9, 3963. [Google Scholar] [CrossRef] [Green Version]
- Field, D.; Considine, K.; O’Connor, P.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Bio-Engineered nisin with increased anti-Staphylococcus and selectively reduced anti-Lactococcus activity for treatment of bovine Mastitis. Int. J. Mol. Sci. 2021, 22, 3480. [Google Scholar] [CrossRef]
- Nyhan, L.; Field, D.; Hill, C.; Callanan, M.; Begley, M. Investigation of combinations of rationally selected bioengineered nisin derivatives for their ability to inhibit Listeria in broth and model food systems. Food Microbiol. 2021, 99, 103835. [Google Scholar] [CrossRef]
- Du, Y.; Li, L.; Zheng, Y.; Liu, J.; Gong, J.; Qiu, Z.; Qiao, J.; Huo, Y.-X. Incorporation of non-canonical amino acids into antimicrobial peptides: Advances, challenges, and perspectives. Biotechnology 2022, 18, e0161722. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, X.; Garg, N.; van der Donk, W.A. Production of lantipeptides in Escherichia coli. J. Am. Chem. Soc. 2010, 133, 2338–2341. [Google Scholar] [CrossRef]
- Bindman, N.A.; Bobeica, S.C.; Liu, W.R.; van der Donk, W.A. Facile removal of leader peptides from lanthipeptides by incorporation of a hydroxy acid. J. Am. Chem. Soc. 2015, 137, 6975–6978. [Google Scholar] [CrossRef] [Green Version]
- Zambaldo, C.; Luo, X.; Mehta, A.P.; Schulz, P.G. Recombinant macrocyclic lanthipeptides incorporating non-canonical amino acids. J. Am. Chem. Soc. 2017, 139, 11646–11649. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, N.; Perez, J.G.; Lliu, W.R.; Jewett, M.C.; van der Donk, W.A. Incorporation of nonproteinogenic amino acids in class I and II lantibiotics. ACS Chem. Biol. 2018, 13, 951–957. [Google Scholar] [CrossRef]
- Nickling, J.H.; Baumann, T.; Schmitt, F.-J.; Barthomolae, M.; Kuipers, O.P.; Friedrich, T.; Budisa, N. Antimicrobial peptides produced by selective pressure incorporation of non-canonical amino acids. J. Vis. Exp. 2018, 135, 57551. [Google Scholar] [CrossRef] [Green Version]
- Nickling, J.H.; Baumann, T.; Bartholomae, M.; Buivydas, A.; Kuipers, O.P.; Budisa, N. Prospects of in vivo incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides. Front. Microbiol. 2017, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, C.; Broos, J.; Kuipers, O.P. Lipidated variants of the antimicrobial peptide nisin produced via incorporation of methionine analogs for click chemistry show improved bioactivity. J. Biol. Chem. 2023, 299, 104845. [Google Scholar] [CrossRef]
- Zhao, L.; Shao, J.; Li, Q.; van Heel, A.J.; De Vries, M.P.; Broos, J.; Kuipers, O.P. Incorporation of tryptophan analogues into the lantibiotic nisin. Amino Acids 2016, 48, 1309–1318. [Google Scholar] [CrossRef]
- Yuan, X.-Y.; Xu, W.-T.; Huang, K.-L.; Luo, Y.-B.; Gu, X.-X.; Tian, H.T. Construction of nisin-rbLF-N fusion gene and its expression in Escherichia coli. Food Sci. 2010, 31, 194–197. [Google Scholar]
- Zhou, L.; van Heel, A.J.; Montalban-Lopez, M.; Kuipers, O.P. Potentiating the activity of nisin against Escherichia coli. Front. Cell Dev. Biol. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Montalban-Lopez, M.; Kuipers, O.P. Increasing the antimicrobial activity of nisin-based lantibiotics against Gram-negative pathogens. Appl. Environ. Microbiol. 2018, 84, e00052-18. [Google Scholar] [CrossRef] [Green Version]
- Bartholomae, M.; Baumann, T.; Nickling, J.H.; Peterhoff, D.; Wagner, R.; Budisa, N.; Kuipers, O.P. Expanding the genetic code of Lactococcus lactis and Escherichia coli to incorporate non-canonical amino acids for production of modified lantibiotics. Front. Microbiol. 2018, 9, 657. [Google Scholar] [CrossRef]
- Zhao, Z.; Yin, Z.; Breukink, E.; Mall, G.; Kuipers, O.P. An engineered double lipid II binding motifs-containing lantibiotic displays potent and selective antimicrobial activity against Enterococcus faecium. Antimicrob. Agents Chemother. 2020, 64, e02050. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Kuipers, O.P. Nisin- and ripcin-derived hybrid lanthipeptides display selective antimicrobial activity against Staphylococcus aureus. ACS Synth. Biol. 2021, 10, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Dickman, R.; Mitchell, S.E.; Figueiredo, A.M.; Hansen, D.F.; Tabor, A.B. Molecular recognition of lipid II by lantibiotics: Synthesis and conformational studies of analogues of nisin and mutacin rings A and B. J. Org. Chem. 2019, 84, 11493–11512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etayash, H.; Azmi, S.; Dangeti, R.; Kaur, K. Peptide bacteriocins-structure activity relationships. Curr. Top. Med. Chem. 2016, 16, 220–241. [Google Scholar] [CrossRef] [PubMed]
- Arnusch, C.J.; Bonvin, A.M.J.J.; Verel, A.M.; Jansen, W.T.M.; Liskamp, R.M.; de Kruijff, B.; Pieters, R.J.; Berukink, E. The vancomycin-nisin(1-12) hybrid restores activity against vancomycin resistant Enterococci. Biochemistry 2008, 47, 12661–12663. [Google Scholar] [CrossRef] [PubMed]
- Slootweg, J.C.; Peters, N.; van Ufford, H.C.Q.; Breukink, E.; Liskamp, R.M.; Rijkers, D.T.S. Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment. Bioorg. Med. Chem. 2014, 22, 5345–5353. [Google Scholar] [CrossRef]
- Deng, J.; Viel, J.H.; Kubyshkin, V.; Busdisa, N.; Kuipers, O.P. Conjugation of synthetic polyproline moietes to lipid II binding fragments of nisin yields active and stable antimicrobials. Front Microbiol. 2020, 11, 575334. [Google Scholar] [CrossRef]
- Bolt, H.L.; Kleijn, L.H.J.; Martin, N.I.; Cobb, S.L. Synthesis of antibacterial nisin–peptoid hybrids using click methodology. Molecules 2018, 23, 1566. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.; Truscott, F.; Dickman, R.; Ward, J.; Tabor, A.B. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg. Med. Chem. 2018, 26, 5691–5700. [Google Scholar] [CrossRef]
- Slootweg, J.V.; van der Wal, S.; van Ufford, H.C.Q.; Breukink, E.; Liskamp, R.M.J.; Rijkers, D.T.S. Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC. Bioconjugate Chem. 2013, 24, 2058–2066. [Google Scholar] [CrossRef]
- Deng, J.; Viel, J.H.; Chen, J.; Kuipers, O.P. Synthesis and Characterization of heterodimers and fluorescent nisin species by incorporation of methionine analogues and subsequent click chemistry. ACS Synth. Biol. 2020, 9, 2525–2536. [Google Scholar] [CrossRef]
- Hamley, I.W. Lipopeptides: From self-assembly to bioactivity. Chem. Commun. 2015, 51, 8574–8583. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, T.; Wood, M.T.; t’Hart, P.; Klein, L.H.; Hendricks, A.P.A.; Willems, R.J.L.; Breukink, E.; Martin, N.I. Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J. Am. Chem. Soc. 2015, 137, 9382–9389. [Google Scholar] [CrossRef]
- Dadovà, J.; Galan, S.R.G.; Davis, B.G. Synthesis of modified proteins via functionalization of dehydroalanine. Curr. Opin. Chem. Biol. 2018, 46, 71–81. [Google Scholar] [CrossRef]
- Rollema, H.S.; Metzger, J.W.; Both, P.; Kuipers, O.P.; Siezen, R.J. Structure and biological activity of chemically modified nisin A species. Eur. J. Biochem. 1996, 241, 716–722. [Google Scholar] [CrossRef] [Green Version]
- Rose, N.L.; Sporns, P.; Dodd, H.M.; GAsson, M.J.; Mellon, F.A.; McMullen, L.M. Involvement of dehydroalanine and dehydrobutyrine in the addition of glutathione to nisin. J. Agric. Food Chem. 2003, 51, 3174–3178. [Google Scholar] [CrossRef]
- De Bruijn, A.D.; Roelfes, G. Atalytic Modification of dehydroalanine in peptides and proteins by palladium-mediated cross-coupling. Chem. Eur. J. 2018, 24, 12728–12733. [Google Scholar] [CrossRef]
- Muppalla, S.R.; Sonavale, R.; Chawla, S.P.; Sharma, A. Functional properties of nisin–carbohydrate conjugates formed by radiation induced Maillard reaction. Radiat. Phys. Chem. 2012, 12, 197–1922. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, L.; Wang, Z.; Zhan, X. Enhanced stability of the bactericidal activity of nisin through conjugation with gellan gum. Int. J. Biol. Macromol. 2020, 148, 525–532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musiejuk, M.; Kafarski, P. Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals 2023, 16, 1058. https://doi.org/10.3390/ph16081058
Musiejuk M, Kafarski P. Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals. 2023; 16(8):1058. https://doi.org/10.3390/ph16081058
Chicago/Turabian StyleMusiejuk, Mateusz, and Paweł Kafarski. 2023. "Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review" Pharmaceuticals 16, no. 8: 1058. https://doi.org/10.3390/ph16081058
APA StyleMusiejuk, M., & Kafarski, P. (2023). Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals, 16(8), 1058. https://doi.org/10.3390/ph16081058