Capnellenes from Capnella imbricata: Deciphering Their Anti-Inflammatory-Associated Chemical Features
Abstract
:1. Introduction
2. Results
2.1. Structure Determination of Compounds 1−3
2.2. Anti-Inflammatory Activity of the Isolated Capnellenes
2.3. ChemGPS-NP-Based Analysis of the Anti-Inflammatory Capnellenes
3. Discussion
4. Materials and Methods
4.1. General Procedures
4.2. Animal Material
4.3. Extraction and Isolation
4.4. In Silico Calculations
4.5. In Vitro Anti-Inflammatory Test
4.6. ChemGPS-NP Analysis
4.7. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.-J.; Wang, Y.-H.; Chen, S.-R.; Peng, B.-R.; Yang, S.-N.; Hu, C.-C.; Fang, L.-S.; Hwang, T.-L.; Sung, P.-J. Novel secoeunicellins produced by an octocoral Cladiella sp. Tetrahedron Lett. 2019, 60, 151300. [Google Scholar] [CrossRef]
- Chang, C.-H.; Wen, Z.-H.; Wang, S.-K.; Duh, C.-Y. Capnellenes from the Formosan soft coral Capnella imbricata. J. Nat. Prod. 2008, 71, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.T.; Fan, Y.-C.; Lin, G.-Z.; Wang, Y.-L.; Hwang, T.-L.; Lai, K.-H.; Chung, H.-M. A new capnellene skeleton from the octocoral Capnella imbricata (Quoy & Gaimard, 1833). J. Mol. Struct. 2023, 1271, 133995. [Google Scholar]
- Mayer, A.; Rodríguez, A.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573. [Google Scholar] [PubMed] [Green Version]
- Grote, D.; Hänel, F.; Dahse, H.-M.; Seifert, K. Capnellenes from the soft coral Dendronephthya rubeola. Chem. Biodivers. 2008, 5, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-C.; Wu, B.-J.; Chiu, C.-C.; Chen, C.-L.; Zhou, J.-Q.; Liang, S.-R.; Duh, C.-Y.; Sung, P.-J.; Wen, Z.-H.; Wu, C.-Y. Coral-derived natural marine compound gb9 impairs vascular development in zebrafish. Int. J. Mol. Sci. 2017, 18, 1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, Y.-H.; Chen, W.-F.; Sung, C.-S.; Duh, C.-Y.; Huang, S.-Y.; Lin, C.-S.; Tai, M.-H.; Tzeng, S.-F.; Wen, Z.-H. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br. J. Pharmacol. 2009, 158, 713–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, L.A.; Jaspars, M.; Adamson, K.; Woods, S.; Wallace, H.M. The capnellenes revisited: New structures and new biological activity. Tetrahedron 1998, 54, 12953–12958. [Google Scholar] [CrossRef]
- Sheikh, Y.M.; Singy, G.; Kaisin, M.; Eggert, H.; Djerassi, C.; Tursch, B.; Daloze, D.; Braekman, J.C. Terpenoids-LXXI. Chemical studies of marine invertebrates-XIV. Four representatives of a novel sesquiterpene class-the capnellane skeleton. Tetrahedron 1976, 32, 1171–1178. [Google Scholar] [CrossRef]
- Lai, K.H.; Peng, B.R.; Su, C.H.; El-Shazly, M.; Sun, Y.L.; Shih, M.C.; Huang, Y.T.; Yen, P.T.; Wang, L.S.; Su, J.H. Anti-proliferative potential of secondary metabolites from the marine sponge Theonella sp.: Moving from correlation toward causation. Metabolites 2021, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Chen, L.Y.; Chen, P.J.; El-Shazly, M.; Peng, B.R.; Chen, Y.C.; Su, C.H.; Su, J.H.; Sung, P.J.; Yen, P.T.; et al. Probing Anti-leukemic metabolites from marine-derived Streptomyces sp. LY1209. Metabolites 2022, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Alajlani, M.M. The chemical property position of bedaquiline construed by a chemical global positioning system-natural product. Molecules 2022, 27, 753. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, K.A.; Korinek, M.; Tsai, Y.-H.; Hu, H.-C.; Wang, Y.-H.; Backlund, A.; Hwang, T.-L.; Chen, B.-H.; Wang, S.-W.; Wu, C.-C.; et al. Decoding multiple biofunctions of maca on its anti-allergic, anti-inflammatory, anti-thrombotic, and pro-angiogenic activities. J. Agric. Food Chem. 2021, 69, 11856–11866. [Google Scholar] [CrossRef] [PubMed]
- Henz Ryen, A.; Backlund, A. Charting angiosperm chemistry: Evolutionary perspective on specialized metabolites reflected in chemical property space. J. Nat. Prod. 2019, 82, 798–812. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Heidmarsson, S.; Olafsdottir, E.S.; Buonfiglio, R.; Kogej, T.; Omarsdottir, S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. Phytomedicine 2016, 23, 441–459. [Google Scholar] [CrossRef] [PubMed]
- De Ford, C.; Calderón, C.; Sehgal, P.; Fedosova, N.U.; Murillo, R.; Olesen, C.; Nissen, P.; Møller, J.V.; Merfort, I. Discovery of tricyclic clerodane diterpenes as sarco/endoplasmic reticulum Ca2+-ATPase inhibitors and structure–activity relationships. J. Nat. Prod. 2015, 78, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Karhu, E.; Isojarvi, J.; Vuorela, P.; Hanski, L.; Fallarero, A. Identification of privileged antichlamydial natural products by a ligand-based strategy. J. Nat. Prod. 2017, 80, 2602–2608. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-H.; Lai, K.-H.; Su, Y.-D.; Chang, Y.-C.; Peng, B.-R.; Backlund, A.; Wen, Z.-H.; Sung, P.-J. Briaviolides K–N, new briarane-type diterpenoids from cultured octocoral Briareum violaceum. Mar. Drugs 2018, 16, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C/H | δH (J in Hz) a | δC b, Type c |
---|---|---|
1 | 42.1, C | |
2 | 1.47 m | 40.6, CH2 |
3 | 1.64 m | 41.3, CH2 |
4 | 49.8, C | |
5α/β | 2.04 d (13.5); 1.79 d (13.5) | 55.4 CH2 |
6 | 88.0, C | |
7α/β | 2.26 dd (13.0, 7.5); 1.83 dd (13.0, 10.0) | 48.3, CH2 |
8 | 4.80 br s | 75.1, CH |
9 | 159.7, C | |
10 | 2.68 dd (7.0, 2.0) | 58.3, CH |
11 | 1.62 m | 69.1, CH |
12a/b | 4.99 t (2.0); 5.17 t (2.0) | 107.8, CH2 |
13 | 1.21 s | 32.1, CH3 |
14 | 1.04 s | 30.0, CH3 |
15 | 1.10 s | 26.6, CH3 |
Cald. Value a | Exp. Value | |
---|---|---|
Exp. 1 b | 49 | |
Cald. 1-4S,6S,8S,10S,11S | 50 | |
Cald. 1-4R,6R,8R,10R,11R | −50 | |
Exp. 2 c | 2.99 | |
Cald. 2-4S,6S,8S,10R,11S | 42 | |
Cald. 2-4R,6R,8R,10S,11R | −42 | |
Exp. 3 d | 23 | |
Cald. 3-2R,4S,6S,8S,10R,11R | 50 | |
Cald. 3-2S,4R,6R,8R,10S,11S | −50 |
C/H | δH (J in Hz) a | δC b, Type c |
---|---|---|
1 | 44.2, C | |
2a/b | 1.34 m; 2.05 m | 41.0, CH2 |
3α/β | 1.71 dd (8.0, 2.5); 1.64 dd (8.0, 2.0) | 42.4, CH2 |
4 | 47.7, C | |
5α/β | 1.83 d (13.5); 1.97 d (13.5) | 52.1 CH2 |
6 | 72.7, C | |
7α/β | 2.33 dd (16.5, 8.0); 1.91 dd (15.0, 8.0) | 43.6, CH2 |
8 | 4.79 br s | 87.4, CH |
9 | 160.2, C | |
10 | 89.7, C | |
11 | 1.88 s | 67.0, CH |
12a/b | 5.38 d (2.0); 5.42 d (2.0) | 112.5, CH2 |
13 | 1.31 s | 33.4, CH3 |
14 | 1.03 s | 31.8, CH3 |
15 | 1.38 s | 25.0, CH3 |
C/H | 3 | Δ9(12)-Capnellene-2ξ,8β,10α-Triol | |
---|---|---|---|
δH (J in Hz) a | δC b, Type c | δH (J in Hz) d | |
1 | 46.9, C | ||
2 | 4.03 dd (5.4, 5.4) | 82.2, CH | 3.70 m |
3α/β | 2.09 dd (13.8, 5.4); 1.55 dd (13.8, 5.4) | 50.0, CH2 | |
4 | 47.6, C | ||
5a/b | 1.48 m; 2.04 dd (13.8, 8.4) | 46.8 CH2 | |
6 | 2.34 m | 51.1, CH | |
7α/β | 2.32 m; 1.50 m | 38.1, CH2 | |
8 | 4.74 m | 73.7, CH | 4.70 m |
9 | 162.2, C | ||
10 | 90.5, C | ||
11 | 2.17 s | 64.7, CH | |
12a/b | 5.34 d (1.8); 5.39 d (1.8) | 110.3, CH2 | 5.37 m |
13 | 1.27 s | 34.4, CH3 | 1.28 s |
14 | 1.11 s | 24.2, CH3 | 1.45 s |
15 | 1.27 s | 23.0, CH3 | 1.16 s |
Compounds (10 μM) | iNOS | COX-2 | β-actin |
---|---|---|---|
Expression (% of LPS) c | |||
vehicle | 1.99 ± 0.94 | 1.30 ± 0.25 | 98.37 ± 1.75 |
LPS | 100.00 ± 0.14 | 100.00 ± 0.23 | 103.82 ± 2.47 |
1 | 98.92 ± 4.23 | 87.02 ± 3.12 | 98.61 ± 3.17 |
2 | 72.27 ± 1.55 | 98.29 ± 1.52 | 94.51 ± 3.52 |
3 | 99.10 ± 4.89 | 101.13 ± 2.35 | 98.14 ± 2.49 |
4 | 100.75 ± 3.41 | 95.74 ± 1.50 | 97.84 ± 2.71 |
5 | 52.39 ± 1.49 | 92.36 ± 2.19 | 94.01 ± 3.88 |
6 | 98.29 ± 1.57 | 99.66 ± 2.50 | 98.56 ± 3.75 |
7 | 88.24 ± 2.50 | 89.51 ± 1.59 | 99.65 ± 2.88 |
8 b | 1.20 ± 0.10 | 24.80 ± 7.50 | - |
9 b | 34.80 ± 10.20 | - | - |
Dex a | 61.92 ± 5.15 | 28.31 ± 0.86 | 100.05 ± 2.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.-H.; Fan, Y.-C.; Peng, B.-R.; Wen, Z.-H.; Chung, H.-M. Capnellenes from Capnella imbricata: Deciphering Their Anti-Inflammatory-Associated Chemical Features. Pharmaceuticals 2023, 16, 916. https://doi.org/10.3390/ph16070916
Lai K-H, Fan Y-C, Peng B-R, Wen Z-H, Chung H-M. Capnellenes from Capnella imbricata: Deciphering Their Anti-Inflammatory-Associated Chemical Features. Pharmaceuticals. 2023; 16(7):916. https://doi.org/10.3390/ph16070916
Chicago/Turabian StyleLai, Kuei-Hung, Yu-Chen Fan, Bo-Rong Peng, Zhi-Hong Wen, and Hsu-Ming Chung. 2023. "Capnellenes from Capnella imbricata: Deciphering Their Anti-Inflammatory-Associated Chemical Features" Pharmaceuticals 16, no. 7: 916. https://doi.org/10.3390/ph16070916
APA StyleLai, K. -H., Fan, Y. -C., Peng, B. -R., Wen, Z. -H., & Chung, H. -M. (2023). Capnellenes from Capnella imbricata: Deciphering Their Anti-Inflammatory-Associated Chemical Features. Pharmaceuticals, 16(7), 916. https://doi.org/10.3390/ph16070916