Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Lipids
3.2. Phenols
3.3. Terpenes
3.4. Antibiotics
3.5. Alkaloids
3.6. Gut Microbiome Metabolites: The Second Lives of Some Natural Products
4. Discussion
5. Conclusions
6. Patents
- Robert T Streeper and Elzbieta Izbicka “Azelaic acid esters in the control of insulin resistance”. US Patent No. 10251857. Application granted 4 September 2019.
- Robert T Streeper and Elzbieta Izbicka “Azelaic acid esters in the control of insulin resistance”. US Patent No. 11026912. Application granted 6 August 2021.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. S2), S135–S148. [Google Scholar] [CrossRef] [Green Version]
- Kouzi, S.A.; Yang, S.; Nuzum, D.S.; Dirks-Naylor, A.J. Natural supplements for improving insulin sensitivity and glucose uptake in skeletal muscle. Front. Biosci. 2015, 7, 94–106. [Google Scholar] [CrossRef]
- Bugianesi, E.; Moscatiello, S.; Ciaravella, M.F.; Marchesini, G. Insulin resistance in nonalcoholic fatty liver disease. Curr. Pharm. Des. 2010, 16, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Affinati, A.H.; Wallia, A.; Gianchandani, R.Y. Severe hyperglycemia and insulin resistance in patients with SARS-CoV-2 infection: A report of two cases. Clin. Diabetes Endocrinol. 2021, 7, 8. [Google Scholar] [CrossRef]
- Acquah, S.; Boampong, J.N.; Eghan Jnr, B.A.; Eriksson, M. Evidence of insulin resistance in adult uncomplicated malaria: Result of a two-year prospective study. Malar. Res. Treat. 2014, 2014, 136148. [Google Scholar] [CrossRef] [Green Version]
- Van Cromphaut, S.J.; Vanhorebeek, I.; Van den Berghe, G. Glucose metabolism and insulin resistance in sepsis. Curr. Pharm. Des. 2008, 14, 1887–1899. [Google Scholar] [CrossRef] [PubMed]
- Niang, F.; Sarfo, F.S.; Frimpong, M.; Guenin-Mace, L.; Wansbrough-Jones, M.; Stinear, T.; Phillips, R.O.; Demangel, C. Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease. Sci. Rep. 2015, 5, 17693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, R.O.; Sarfo, F.S.; Landier, J.; Oldenburg, R.; Frimpong, M.; Wansbrough-Jones, M.; Abass, K.; Thompson, W.; Forson, M.; Fontanet, A.; et al. Combined inflammatory and metabolic defects reflected by reduced serum protein levels in patients with Buruli ulcer disease. PLoS Negl. Trop. Dis. 2014, 8, e2786. [Google Scholar] [CrossRef]
- Hansson, E.; Skioldebrand, E. Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. J. Inflamm. 2015, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Grecco, H.E.; Schmick, M.; Bastiaens, P.I. Signaling from the living plasma membrane. Cell 2011, 144, 897–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izbicka, E.; Streeper, R.T.; Louden, C. Adaptive Membrane Fluidity Modulation: A Feedback Regulated Homeostatic System and Target for Pharmacological Intervention. In Vivo 2021, 35, 3073–3095. [Google Scholar] [CrossRef] [PubMed]
- Izbicka, E.; Streeper, R.T. Adaptive Membrane Fluidity Modulation: A Feedback Regulated Homeostatic System Hiding in Plain Sight. In Vivo 2021, 35, 2991–3000. [Google Scholar] [CrossRef] [PubMed]
- Streeper, R.T.; Izbicka, E. Diethyl Azelate for the Treatment of Brown Recluse Spider Bite, a Neglected Orphan Indication. In Vivo 2022, 36, 86–93. [Google Scholar] [CrossRef]
- All natural. Nat. Chem. Biol. 2007, 3, 351. [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; the International Natural Product Sciences Taskforce. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Newman, D.J. Natural products and drug discovery. Natl. Sci. Rev. 2022, 9, nwac206. [Google Scholar] [CrossRef]
- Ginsberg, B.H.; Brown, T.J.; Simon, I.; Spector, A.A. Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes 1981, 30, 773–780. [Google Scholar] [CrossRef]
- Patel, J.M.; Edwards, D.A.; Block, E.R.; Raizada, M.K. Effect of nitrogen dioxide on surface membrane fluidity and insulin receptor binding of pulmonary endothelial cells. Biochem. Pharmacol. 1988, 37, 1497–1507. [Google Scholar] [CrossRef]
- Habegger, K.M.; Hoffman, N.J.; Ridenour, C.M.; Brozinick, J.T.; Elmendorf, J.S. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology 2012, 153, 2130–2141. [Google Scholar] [CrossRef]
- Das, U.N. Syntaxin interacts with arachidonic acid to prevent diabetes mellitus. Lipids Health Dis. 2022, 21, 73. [Google Scholar] [CrossRef] [PubMed]
- Meriin, A.B.; Zaarur, N.; Bogan, J.S.; Kandror, K.V. Inhibitors of RNA and protein synthesis cause Glut4 translocation and increase glucose uptake in adipocytes. Sci. Rep. 2022, 12, 15640. [Google Scholar] [CrossRef] [PubMed]
- Kimchi, O.; Veatch, S.L.; Machta, B.B. Ion channels can be allosterically regulated by membrane domains near a de-mixing critical point. J. Gen. Physiol. 2018, 150, 1769–1777. [Google Scholar] [CrossRef]
- Zhao, M.M.; Lu, J.; Li, S.; Wang, H.; Cao, X.; Li, Q.; Shi, T.T.; Matsunaga, K.; Chen, C.; Huang, H.; et al. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat. Commun. 2021, 12, 5616. [Google Scholar] [CrossRef] [PubMed]
- Thach, T.T.; Wu, C.; Hwang, K.Y.; Lee, S.J. Azelaic Acid Induces Mitochondrial Biogenesis in Skeletal Muscle by Activation of Olfactory Receptor 544. Front. Physiol. 2020, 11, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Jeong, M.Y.; Kim, J.Y.; Lee, G.; Kim, J.S.; Cheong, Y.E.; Kang, H.; Cho, C.H.; Kim, J.; Park, M.K.; et al. Activation of ectopic olfactory receptor 544 induces GLP-1 secretion and regulates gut inflammation. Gut Microbes 2021, 13, 1987782. [Google Scholar] [CrossRef] [PubMed]
- Riddy, D.M.; Delerive, P.; Summers, R.J.; Sexton, P.M.; Langmead, C.J. G Protein-Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacol. Rev. 2018, 70, 39–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azelaic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=azelaic%20acid (accessed on 5 June 2023).
- Diethyl azelate. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=diethyl%20azelate (accessed on 5 June 2023).
- Izbicka, E.; Streeper, R. Azelaic Acid Esters as Pluripotent Immunomodulatory Molecules: Nutritional Supplements or Drugs? Nutraceuticals 2021, 1, 42–53. [Google Scholar] [CrossRef]
- Matsubara, T.; Tanaka, N.; Krausz, K.W.; Manna, S.K.; Kang, D.W.; Anderson, E.R.; Luecke, H.; Patterson, A.D.; Shah, Y.M.; Gonzalez, F.J. Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis. Cell Metab. 2012, 16, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Hwang, S.H.; Jia, Y.; Choi, J.; Kim, Y.J.; Choi, D.; Pathiraja, D.; Choi, I.G.; Koo, S.H.; Lee, S.J. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats. J. Clin. Investig. 2017, 127, 4118–4123. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.W.; Tschaplinski, T.J.; Wang, L.; Glazebrook, J.; Greenberg, J.T. Priming in systemic plant immunity. Science 2009, 324, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Mastrofrancesco, A.; Ottaviani, M.; Aspite, N.; Cardinali, G.; Izzo, E.; Graupe, K.; Zouboulis, C.C.; Camera, E.; Picardo, M. Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARgamma activation. Exp. Dermatol. 2010, 19, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Muthulakshmi, S.; Saravanan, R. Protective effects of azelaic acid against high-fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice. Mol. Cell Biochem. 2013, 377, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Streeper, R.T.; Louden, C.; Izbicka, E. Oral Azelaic Acid Ester Decreases Markers of Insulin Resistance in Overweight Human Male Subjects. In Vivo 2020, 34, 1173–1186. [Google Scholar] [CrossRef]
- Sebacic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=sebacic%20acid (accessed on 5 June 2023).
- Iaconelli, A.; Gastaldelli, A.; Chiellini, C.; Gniuli, D.; Favuzzi, A.; Binnert, C.; Mace, K.; Mingrone, G. Effect of oral sebacic Acid on postprandial glycemia, insulinemia, and glucose rate of appearance in type 2 diabetes. Diabetes Care 2010, 33, 2327–2332. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.K.; Turner, N. Mitochondrial dysfunction and insulin resistance: An update. Endocr. Connect. 2015, 4, R1–R15. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.P.; Foletta, V.C.; Snow, R.J.; Wadley, G.D. Skeletal muscle mitochondria: A major player in exercise, health and disease. Biochim. Biophys. Acta 2014, 1840, 1276–1284. [Google Scholar] [CrossRef]
- Kang, N.; Bahk, Y.Y.; Lee, N.; Jae, Y.; Cho, Y.H.; Ku, C.R.; Byun, Y.; Lee, E.J.; Kim, M.S.; Koo, J. Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in alpha-cells of mouse pancreatic islets. Biochem. Biophys. Res. Commun. 2015, 460, 616–621. [Google Scholar] [CrossRef]
- Thach, T.T.; Hong, Y.J.; Lee, S.; Lee, S.J. Molecular determinants of the olfactory receptor Olfr544 activation by azelaic acid. Biochem. Biophys. Res. Commun. 2017, 485, 241–248. [Google Scholar] [CrossRef]
- Muthulakshmi, S.; Chakrabarti, A.K.; Mukherjee, S. Gene expression profile of high-fat diet-fed C57BL/6J mice: In search of potential role of azelaic acid. J. Physiol. Biochem. 2015, 71, 29–42. [Google Scholar] [CrossRef]
- Nachawi, N.; Rao, P.P.; Makin, V. The role of GLP-1 receptor agonists in managing type 2 diabetes. Cleve. Clin. J. Med. 2022, 89, 457–464. [Google Scholar] [CrossRef]
- Lim, G.E.; Huang, G.J.; Flora, N.; LeRoith, D.; Rhodes, C.J.; Brubaker, P.L. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 2009, 150, 580–591. [Google Scholar] [CrossRef]
- Phosphatidylcholine. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=phosphatidylcholine&sort=cid&page=1 (accessed on 5 June 2023).
- Phosphatidylethanolamine. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=%22Phosphatidylethanolamine%20%5BWHO-DD%5D%22 (accessed on 5 June 2023).
- Zhao, J.; Zhu, Y.; Hyun, N.; Zeng, D.; Uppal, K.; Tran, V.T.; Yu, T.; Jones, D.; He, J.; Lee, E.T.; et al. Novel metabolic markers for the risk of diabetes development in American Indians. Diabetes Care 2015, 38, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newsom, S.A.; Brozinick, J.T.; Kiseljak-Vassiliades, K.; Strauss, A.N.; Bacon, S.D.; Kerege, A.A.; Bui, H.H.; Sanders, P.; Siddall, P.; Wei, T.; et al. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans. J. Appl. Physiol. 2016, 120, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Chang, W.; Hatch, G.; Wang, Y.; Yu, F.; Wang, M. The relationship between phospholipids and insulin resistance: From clinical to experimental evidence. J. Cell. Mol. Med. 2019, 23, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Alpha linolenic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=%22alpha%20Linolenic%20Acid%22 (accessed on 5 June 2023).
- Linoleic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=linoleic%20acid (accessed on 5 June 2023).
- Calder, P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 2009, 91, 791–795. [Google Scholar] [CrossRef]
- Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients 2018, 10, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heskey, C.E.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.; Rajaram, S. Adipose tissue alpha-linolenic acid is inversely associated with insulin resistance in adults. Am. J. Clin. Nutr. 2016, 103, 1105–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taouis, M.; Dagou, C.; Ster, C.; Durand, G.; Pinault, M.; Delarue, J. N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E664–E671. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Brown, J.M.; Provo, J.N.; Hopkins, R.; McIntosh, M.K. Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J. Biol. Chem. 2005, 280, 38445–38456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholesterol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5997 (accessed on 5 June 2023).
- Yeagle, P.L. Cholesterol and the cell membrane. Biochim. Biophys. Acta 1985, 822, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.M.; Williamson, D.J.; Magenau, A.; Gaus, K. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 2012, 3, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pihlajamaki, J.; Gylling, H.; Miettinen, T.A.; Laakso, M. Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J. Lipid Res. 2004, 45, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoenig, M.R.; Sellke, F.W. Insulin resistance is associated with increased cholesterol synthesis, decreased cholesterol absorption and enhanced lipid response to statin therapy. Atherosclerosis 2010, 211, 260–265. [Google Scholar] [CrossRef]
- Gylling, H.; Hallikainen, M.; Pihlajamaki, J.; Simonen, P.; Kuusisto, J.; Laakso, M.; Miettinen, T.A. Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity: Lessons from the METSIM Study. J. Lipid Res. 2010, 51, 2422–2427. [Google Scholar] [CrossRef] [Green Version]
- Haeusler, R.A.; Astiarraga, B.; Camastra, S.; Accili, D.; Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes 2013, 62, 4184–4191. [Google Scholar] [CrossRef] [Green Version]
- Staels, B.; Kuipers, F. Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs 2007, 67, 1383–1392. [Google Scholar] [CrossRef]
- Tomkin, G.H.; Owens, D. Obesity diabetes and the role of bile acids in metabolism. J. Transl. Int. Med. 2016, 4, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Lovastatin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/53232 (accessed on 5 June 2023).
- Bobek, P.; Galbavy, S.; Ozdin, L. Effect of oyster mushroom (Pleurotus ostreatus) on pathological changes in dimethylhydrazine-induced rat colon cancer. Oncol. Rep. 1998, 5, 727–730. [Google Scholar] [CrossRef]
- Lalli, C.A.; Pauli, J.R.; Prada, P.O.; Cintra, D.E.; Ropelle, E.R.; Velloso, L.A.; Saad, M.J. Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet. Metabolism 2008, 57, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Sulaiman, A.A.; Alhaddad, H.; Alhadidi, Q. Natural polyphenols: Influence on membrane transporters. J. Intercult. Ethnopharmacol. 2016, 5, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Salicylic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/338 (accessed on 5 June 2023).
- Rena, G.; Sakamoto, K. Salicylic acid: Old and new implications for the treatment of type 2 diabetes? Diabetol. Int. 2014, 5, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Seipelt, H.; Muller, C.; Shi, Y.; Artmann, M. Effects of salicylic acid derivatives on red blood cell membranes. Pharmacol. Toxicol. 1999, 85, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Caffeic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/689043 (accessed on 5 June 2023).
- Muhammad Abdul Kadar, N.N.; Ahmad, F.; Teoh, S.L.; Yahaya, M.F. Caffeic Acid on Metabolic Syndrome: A Review. Molecules 2021, 26, 5490. [Google Scholar] [CrossRef]
- Williamson, G.; Sheedy, K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020, 12, 3135. [Google Scholar] [CrossRef]
- Russo, B.; Picconi, F.; Malandrucco, I.; Frontoni, S. Flavonoids and Insulin-Resistance: From Molecular Evidences to Clinical Trials. Int. J. Mol. Sci. 2019, 20, 61. [Google Scholar] [CrossRef] [Green Version]
- Trans-chalcone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/637760 (accessed on 5 June 2023).
- Quercetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280343 (accessed on 5 June 2023).
- Eid, H.M.; Haddad, P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017, 24, 355–364. [Google Scholar] [CrossRef]
- Kreczmer, B.; Dyba, B.; Barbasz, A.; Rudolphi-Szydlo, E. Advantageous/Unfavorable Effect of Quercetin on the Membranes of SK-N-SH Neuroblastoma Cells. Molecules 2021, 26, 4945. [Google Scholar] [CrossRef]
- Epigallocatechin gallate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/65064 (accessed on 5 June 2023).
- Zhang, Z.F.; Li, Q.; Liang, J.; Dai, X.Q.; Ding, Y.; Wang, J.B.; Li, Y. Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phytomedicine 2010, 17, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhao, Y.; Suo, S.; Liu, Y.; Zhao, B. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radic. Biol. Med. 2012, 52, 1648–1657. [Google Scholar] [CrossRef]
- Collins, Q.F.; Liu, H.Y.; Pi, J.; Liu, Z.; Quon, M.J.; Cao, W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J. Biol. Chem. 2007, 282, 30143–30149. [Google Scholar] [CrossRef] [Green Version]
- Luteolin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280445 (accessed on 5 June 2023).
- Zhang, T.; Qui, Y.; Luo, Q.; Zhao, L.; Yan, X.; Ding, Q.; Jiang, H.; Yang, H. The mechanism by which luteolin disrupts the cytoplasmic membrane of methicilin resistant Staphylococcus aureus. J. Phys. Chem. B 2018, 122, 1427–1438. [Google Scholar] [CrossRef]
- Ding, L.; Jin, D.; Chen, X. Luteolin enhances insulin sensitivity via activation of PPARgamma transcriptional activity in adipocytes. J. Nutr. Biochem. 2010, 21, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, Y.J.; Zhang, X.; Wang, X.; Bao, B.; Qu, W.; Liu, J. Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKalpha1 signalling in adipose tissue macrophages. Diabetologia 2016, 59, 2219–2228. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. J. Agric. Food Chem. 2021, 69, 1441–1454. [Google Scholar] [CrossRef]
- Resveratrol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/445154 (accessed on 5 June 2023).
- Milardi, G.L.; Stringaro, A.; Colone, M.; Bonincontro, A.; Risuleo, G. The cell membrane is the main target of resveratrol as shown by interdisciplinary biomolecular/cellular and biophysical approaches. J. Membr. Biol. 2014, 247, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Oshaghi, E.; Goodarzi, M.T.; Higgins, V.; Adeli, K. Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action. Crit. Rev. Clin. Lab. Sci. 2017, 54, 267–293. [Google Scholar] [CrossRef]
- Curcumin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/969516 (accessed on 5 June 2023).
- Hung, W.C.; Chen, F.Y.; Lee, C.C.; Sun, Y.; Lee, M.T.; Huang, H.W. Membrane-thinning effect of curcumin. Biophys. J. 2008, 94, 4331–4338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, N.B.; Martins, D.B.; Fazani, V.E.; Vieira, M.R.; Dos Santos Cabrera, M.P. Cholesterol modulates curcumin partitioning and membrane effects. Biochim. Biophys. Acta Biomembr. 2018, 1860, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Ingolfsson, H.I.; Koeppe, R.E., 2nd; Andersen, O.S. Curcumin is a modulator of bilayer material properties. Biochemistry 2007, 46, 10384–10391. [Google Scholar] [CrossRef] [PubMed]
- Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr. 2019, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Myricetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5281672 (accessed on 5 June 2023).
- Kimura, A.M.; Tsuji, M.; Yasumoto, T.; Mori, Y.; Oguchi, T.; Tsuji, Y.; Umino, M.; Umino, A.; Nishikawa, T.; Nakamura, S.; et al. Myricetin prevents high molecular weight Abeta1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radic. Biol. Med. 2021, 171, 232–244. [Google Scholar] [CrossRef]
- Liu, I.M.; Tzeng, T.F.; Liou, S.S.; Lan, T.W. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci. 2007, 81, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Fisetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5281614 (accessed on 5 June 2023).
- Yong, Y.; Shin, S.; Jung, Y.; Jung, H.; Ahn, S.; Chong, Y.; Lim, Y. Flavonoids activating adenosine monophosphate-activating protein kinase. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 13–19. [Google Scholar] [CrossRef]
- Ge, C.; Xu, M.; Qin, Y.; Gu, T.; Lou, D.; Li, Q.; Hu, L.; Nie, X.; Wang, M.; Tan, J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct. 2019, 10, 2970–2985. [Google Scholar] [CrossRef]
- Genistein. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280961 (accessed on 5 June 2023).
- Arunkumar, E.; Karthik, D.; Anuradha, C.V. Genistein sensitizes hepatic insulin signaling and modulates lipid regulatory genes through p70 ribosomal S6 kinase-1 inhibition in high-fat-high-fructose diet-fed mice. Pharm. Biol. 2013, 51, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, X.J.; Zhao, W.W.; Zhao, W.J.; Jiang, C.H.; Huang, F.; Kou, J.P.; Liu, B.L.; Liu, K. Opposite effects of genistein on the regulation of insulin-mediated glucose homeostasis in adipose tissue. Br. J. Pharmacol. 2013, 170, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Ricci, E.; Cipriani, S.; Chiaffarino, F.; Malvezzi, M.; Parazzini, F. Effects of soy isoflavones and genistein on glucose metabolism in perimenopausal and postmenopausal non-Asian women: A meta-analysis of randomized controlled trials. Menopause 2010, 17, 1080–1086. [Google Scholar] [CrossRef]
- Liu, Z.M.; Chen, Y.M.; Ho, S.C. Effects of soy intake on glycemic control: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2011, 93, 1092–1101. [Google Scholar] [CrossRef] [Green Version]
- Kaempferol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280863 (accessed on 5 June 2023).
- Ulrih, N.; Maricic, M.; Ota, A.; Sentjurc, M.; Abram, V. Kaempferol and quercetin interactions with model lipid membranes. Food Res. Int. 2015, 71, 146–154. [Google Scholar] [CrossRef]
- Luo, C.; Yang, H.; Tang, C.; Yao, G.; Kong, L.; He, H.; Zhou, Y. Kaempferol alleviates insulin resistance via hepatic IKK/NF-kappaB signal in type 2 diabetic rats. Int. Immunopharmacol. 2015, 28, 744–750. [Google Scholar] [CrossRef]
- Holst, X. On Spirit of Turpentine in the Yellow Fever. Med. Phys. J. 1806, 15, 16. [Google Scholar]
- Eucalyptol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2758 (accessed on 5 June 2023).
- L-menthol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/16666 (accessed on 5 June 2023).
- Anjos, J.L.; Neto Dde, S.; Alonso, A. Effects of 1,8-cineole on the dynamics of lipids and proteins of stratum corneum. Int. J. Pharm. 2007, 345, 81–87. [Google Scholar] [CrossRef]
- dos Anjos, J.L.; de Sousa Neto, D.; Alonso, A. Effects of ethanol/l-menthol on the dynamics and partitioning of spin-labeled lipids in the stratum corneum. Eur. J. Pharm. Biopharm. 2007, 67, 406–412. [Google Scholar] [CrossRef]
- Mendanha, S.A.; Alonso, A. Effects of terpenes on fluidity and lipid extraction in phospholipid membranes. Biophys. Chem. 2015, 198, 45–54. [Google Scholar] [CrossRef]
- Khare, P.; Mangal, P.; Baboota, R.K.; Jagtap, S.; Kumar, V.; Singh, D.P.; Boparai, R.K.; Sharma, S.S.; Khardori, R.; Bhadada, S.K.; et al. Involvement of Glucagon in Preventive Effect of Menthol Against High Fat Diet Induced Obesity in Mice. Front. Pharmacol. 2018, 9, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limonene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/22311 (accessed on 5 June 2023).
- Alpha-Terpineol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/17100 (accessed on 5 June 2023).
- Camargos, H.S.; Moreira, R.A.; Mendanha, S.A.; Fernandes, K.S.; Dorta, M.L.; Alonso, A. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. PLoS ONE 2014, 9, e104429. [Google Scholar] [CrossRef]
- Al Kury, L.T.; Abdoh, A.; Ikbariah, K.; Sadek, B.; Mahgoub, M. In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. Molecules 2021, 27, 182. [Google Scholar] [CrossRef] [PubMed]
- Ursolic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/64945 (accessed on 5 June 2023).
- Pachymic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5484385 (accessed on 5 June 2023).
- Nazaruk, J.; Borzym-Kluczyk, M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 2015, 14, 675–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.C.; Chang, W.L.; Huang, S.F.; Lin, C.Y.; Lin, H.C.; Chang, T.C. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur. J. Pharmacol. 2010, 648, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Saponin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/198016 (accessed on 5 June 2023).
- Keller, A.C.; Ma, J.; Kavalier, A.; He, K.; Brillantes, A.M.; Kennelly, E.J. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011, 19, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Germoush, M.O.; Elgebaly, H.A.; Hassan, S.; Kamel, E.M.; Bin-Jumah, M.; Mahmoud, A.M. Consumption of Terpenoids-Rich Padina pavonia Extract Attenuates Hyperglycemia, Insulin Resistance and Oxidative Stress, and Upregulates PPARgamma in a Rat Model of Type 2 Diabetes. Antioxidants 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacanli, M.; Anlar, H.G.; Aydin, S.; Cal, T.; Ari, N.; Undeger Bucurgat, U.; Basaran, A.A.; Basaran, N. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2017, 110, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Beg, Z.H. Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem. 2013, 138, 1116–1124. [Google Scholar] [CrossRef]
- Cedrene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/521207 (accessed on 5 June 2023).
- Tong, T.; Wang, Y.; Kang, S.G.; Huang, K. Ectopic Odorant Receptor Responding to Flavor Compounds: Versatile Roles in Health and Disease. Pharmaceutics 2021, 13, 1314. [Google Scholar] [CrossRef]
- Kang, W.; Zhang, K.; Tong, T.; Park, T. Improved Glucose Intolerance through a Distinct Mouse Olfactory Receptor 23-Induced Signaling Pathway Mediating Glucose Uptake in Myotubes and Adipocytes. Mol. Nutr. Food Res. 2020, 64, e1901329. [Google Scholar] [CrossRef]
- Alpha-carotene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6419725 (accessed on 5 June 2023).
- Seel, W.; Baust, D.; Sons, D.; Albers, M.; Etzbach, L.; Fuss, J.; Lipski, A. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci. Rep. 2020, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Mayne, S.T. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 1996, 10, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Harari, A.; Coster, A.C.F.; Jenkins, A.; Xu, A.; Greenfield, J.R.; Harats, D.; Shaish, A.; Samocha-Bonet, D. Obesity and Insulin Resistance Are Inversely Associated with Serum and Adipose Tissue Carotenoid Concentrations in Adults. J. Nutr. 2020, 150, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Streptomycin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/19649 (accessed on 5 June 2023).
- Ampicillin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6249 (accessed on 5 June 2023).
- Vancomycin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/14969 (accessed on 5 June 2023).
- Fenneman, A.C.; Weidner, M.; Chen, L.A.; Nieuwdorp, M.; Blaser, J. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2022, 20, 81–100. [Google Scholar] [CrossRef]
- Candon, S.; Perez-Arroyo, A.; Marquet, C.; Valette, F.; Foray, A.P.; Pelletier, B.; Milani, C.; Ventura, M.; Bach, J.F.; Chatenoud, L. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS ONE 2015, 10, e0125448. [Google Scholar] [CrossRef]
- Sirolimus. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5284616 (accessed on 5 June 2023).
- Reifsnyder, P.C.; Flurkey, K.; Doty, R.; Calcutt, N.A.; Koza, R.A.; Harrison, D.E. Rapamycin/metformin co-treatment normalizes insulin sensitivity and reduces complications of metabolic syndrome in type 2 diabetic mice. Aging Cell 2022, 21, e13666. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Fan, K.; Pan, G. Tetracycline natural products: Discovery, biosynthesis and engineering. Chin. J. Nat. Med. 2022, 20, 773–794. [Google Scholar] [CrossRef] [PubMed]
- Gabler, W.L. Fluxes and accumulation of tetracyclines by human blood cells. Res. Commun. Chem. Pathol. Pharmacol. 1991, 72, 39–51. [Google Scholar] [PubMed]
- Doxycycline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/54671203 (accessed on 5 June 2023).
- Chen, Y.; Chen, Y.; Wang, N.; Gu, S.; Wang, M.; Fu, Y.; Wei, C.; Xu, W. Doxycycline in Extremely Low Dose Improves Glycemic Control and Islet Morphology in Mice Fed a High-Fat Diet. Diabetes Metab. Syndr. Obes. 2021, 14, 637–646. [Google Scholar] [CrossRef]
- Tan, C.H.; Shelley, C.; Harman, K.E. Doxycycline-induced hypoglycaemia. Clin. Exp. Dermatol. 2016, 41, 43–44. [Google Scholar] [CrossRef]
- Actinomycin D. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2019 (accessed on 5 June 2023).
- Sobell, H.M. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 1985, 82, 5328–5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polet, H. Role of the cell membrane in the uptake of 3H-actinomycin D by mammalian cells in vitro. J. Pharmacol. Exp. Ther. 1975, 192, 270–279. [Google Scholar]
- Zeng, H.; Feng, P.X.; Wan, C.X. Antifungal effects of actinomycin D on Verticillium dahliae via a membrane-splitting mechanism. Nat. Prod. Res. 2019, 33, 1751–1755. [Google Scholar] [CrossRef]
- Grey, N.J.; Goldring, S.; Kipnis, D.M. The effect of fasting, diet, and actinomycin D on insulin secretion in the rat. J. Clin. Investig. 1970, 49, 881–889. [Google Scholar] [CrossRef]
- Christodoulou, M.I.; Tchoumtchoua, J.; Skaltsounis, A.L.; Scorilas, A.; Halabalaki, M. Natural Alkaloids Intervening the Insulin Pathway: New Hopes for Anti-Diabetic Agents? Curr. Med. Chem. 2019, 26, 5982–6015. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Gupta, A.; Albratty, M.; Najmi, A.; Meraya, A.M.; Alhazmi, H.A.; Anwer, M.K.; Bhatia, S.; Bungau, S.G. Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules 2022, 27, 5851. [Google Scholar] [CrossRef] [PubMed]
- Emetine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10219 (accessed on 5 June 2023).
- Yang, S.; Xu, M.; Lee, E.M.; Gorshkov, K.; Shiryaev, S.A.; He, S.; Sun, W.; Cheng, Y.S.; Hu, X.; Tharappel, A.M.; et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valipour, M.; Irannejad, H.; Emami, S. Application of emetine in SARS-CoV-2 treatment: Regulation of p38 MAPK signaling pathway for preventing emetine-induced cardiac complications. Cell Cycle 2022, 21, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Catharanthine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5458190 (accessed on 5 June 2023).
- Berberine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2353 (accessed on 5 June 2023).
- Neag, M.A.; Mocan, A.; Echeverria, J.; Pop, R.M.; Bocsan, C.I.; Crisan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin-Neto, J.A.; Maciel, B.C.; Secches, A.L.; Gallo Junior, L. Cardiovascular effects of berberine in patients with severe congestive heart failure. Clin. Cardiol. 1988, 11, 253–260. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, X.; Li, X. Effect of berberine on membrane fluidity and membrane protein fluorescence of rabbit red-blood cells. J. Fourth Mil. Med. Univ. 2009, 30, 1627–1629. [Google Scholar]
- Xu, X.; Yi, H.; Wu, J.; Kuang, T.; Zhang, J.; Li, Q.; Du, H.; Xu, T.; Jiang, G.; Fan, G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed. Pharmacother. 2021, 133, 110984. [Google Scholar] [CrossRef]
- Yang, J.K.; Lu, J.; Yuan, S.S.; Asan; Cao, X.; Qiu, H.Y.; Shi, T.T.; Yang, F.Y.; Li, Q.; Liu, C.P.; et al. From Hyper- to Hypoinsulinemia and Diabetes: Effect of KCNH6 on Insulin Secretion. Cell Rep. 2018, 25, 3800–3810.e3806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galegine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10983 (accessed on 5 June 2023).
- Mooney, M.H.; Fogarty, S.; Stevenson, C.; Gallagher, A.M.; Palit, P.; Hawley, S.A.; Hardie, D.G.; Coxon, G.D.; Waigh, R.D.; Tate, R.J.; et al. Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br. J. Pharmacol. 2008, 153, 1669–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metformin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4091 (accessed on 5 June 2023).
- Wang, H.; Zhu, C.; Ying, Y.; Luo, L.; Huang, D.; Luo, Z. Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget 2018, 9, 10135–10146. [Google Scholar] [CrossRef] [Green Version]
- Scarpello, J.H.; Howlett, H.C. Metformin therapy and clinical uses. Diabetes Vasc. Dis. Res. 2008, 5, 157–167. [Google Scholar] [CrossRef]
- Lord, J.M.; Flight, I.H.; Norman, R.J. Metformin in polycystic ovary syndrome: Systematic review and meta-analysis. BMJ 2003, 327, 951–953. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.; Retzik-Stahr, C.; Singh, V.; Plomondon, R.; Anderson, V.; Rasouli, N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018820980225. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Model List of Essential Medicines—22nd List. 2021. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02h (accessed on 5 June 2023).
- LaMoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Giusti, L.; Tesi, M.; Ciregia, F.; Marselli, L.; Zallocco, L.; Suleiman, M.; De Luca, C.; Del Guerra, S.; Zuccarini, M.; Trerotola, M.; et al. The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 2022, 11, 2465. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Inagaki, N. Metformin: Clinical topics and new mechanisms of action. Diabetol. Int. 2017, 8, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Hur, K.Y.; Lee, M.S. New mechanisms of metformin action: Focusing on mitochondria and the gut. J. Diabetes Investig. 2015, 6, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Denet, S.; Candiloros, H.; Barrois, R.; Wiernsperger, N.; Donner, M.; Drouin, P. Action of metformin on erythrocyte membrane fluidity in vitro and in vivo. Eur. J. Pharmacol. 1997, 337, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, S.; Greten, H. Evidence that metformin ameliorates cellular insulin-resistance by potentiating insulin-induced translocation of glucose transporters to the plasma membrane. Diabète Metab. 1991, 17, 150–158. [Google Scholar] [PubMed]
- Wiernsperger, N.F. Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes. Diabetes Metab. 1999, 25, 110–127. [Google Scholar]
- Quigley, E.M. Gut bacteria in health and disease. Gastroenterol. Hepatol. 2013, 9, 560–569. [Google Scholar]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Caricilli, A.M.; Saad, M.J. The role of gut microbiota on insulin resistance. Nutrients 2013, 5, 829–851. [Google Scholar] [CrossRef] [Green Version]
- Diamant, M.; Blaak, E.E.; de Vos, W.M. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes. Rev. 2011, 12, 272–281. [Google Scholar] [CrossRef]
- Acetic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/176 (accessed on 5 June 2023).
- Propionic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1032 (accessed on 5 June 2023).
- Butyric acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/264 (accessed on 5 June 2023).
- Bastos, R.M.C.; Rangel, E.B. Gut microbiota-derived metabolites are novel targets for improving insulin resistance. World J. Diabetes 2022, 13, 65–69. [Google Scholar] [CrossRef]
- Ganapathy, V.; Thangaraju, M.; Prasad, P.D.; Martin, P.M.; Singh, N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr. Opin. Pharmacol. 2013, 13, 869–874. [Google Scholar] [CrossRef]
- Rechkemmer, G.; von Engelhardt, W. Concentration- and pH-dependence of short-chain fatty acid absorption in the proximal and distal colon of guinea pig (Cavia porcellus). Comp. Biochem. Physiol. A Comp. Physiol. 1988, 91, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Charney, A.N.; Micic, L.; Egnor, R.W. Nonionic diffusion of short-chain fatty acids across rat colon. Am. J. Physiol. 1998, 274, G518–G524. [Google Scholar] [CrossRef] [PubMed]
- Ritzhaupt, A.; Wood, I.S.; Ellis, A.; Hosie, K.B.; Shirazi-Beechey, S.P. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: Its potential to transport L-lactate as well as butyrate. J. Physiol. 1998, 513 Pt 3, 719–732. [Google Scholar] [CrossRef]
- Gill, R.K.; Saksena, S.; Alrefai, W.A.; Sarwar, Z.; Goldstein, J.L.; Carroll, R.E.; Ramaswamy, K.; Dudeja, P.K. Expression and membrane localization of MCT isoforms along the length of the human intestine. Am. J. Physiol. Cell Physiol. 2005, 289, C846–C852. [Google Scholar] [CrossRef] [Green Version]
- Manns, J.G.; Boda, J.M.; Willes, R.F. Probable role of propionate and butyrate in control of insulin secretion in sheep. Am. J. Physiol. 1967, 212, 756–764. [Google Scholar] [CrossRef]
- Chen, Z.; Radjabzadeh, D.; Chen, L.; Kurilshikov, A.; Kavousi, M.; Ahmadizar, F.; Ikram, M.A.; Uitterlinden, A.G.; Zhernakova, A.; Fu, J.; et al. Association of Insulin Resistance and Type 2 Diabetes with Gut Microbial Diversity: A Microbiome-Wide Analysis from Population Studies. JAMA Netw. Open 2021, 4, e2118811. [Google Scholar] [CrossRef]
- Taurocholic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6675 (accessed on 5 June 2023).
- Glycocholic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10140 (accessed on 5 June 2023).
- Taurochenodeoxycholic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/387316 (accessed on 5 June 2023).
- Glycochenodeoxycholic acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/12544 (accessed on 5 June 2023).
- Zou, J.; Chassaing, B.; Singh, V.; Pellizzon, M.; Ricci, M.; Fythe, M.D.; Kumar, M.V.; Gewirtz, A.T. Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell Host Microbe 2018, 23, 41–53.e44. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Martucci, M.; Ostan, R.; Biondi, F.; Bellavista, E.; Fabbri, C.; Bertarelli, C.; Salvioli, S.; Capri, M.; Franceschi, C.; Santoro, A. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr. Rev. 2017, 75, 442–455. [Google Scholar] [CrossRef] [Green Version]
- Kwist, K.; Bridges, W.C.; Burg, K.J. The effect of cell passage number on osteogenic and adipogenic characteristics of D1 cells. Cytotechnology 2016, 68, 1661–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, J. In vitro–In vivo correlation: From theory to applications. J. Pharm. Pharm. Sci. 2006, 9, 169–189. [Google Scholar]
- Choi, M.S.; Choi, J.Y.; Kwon, E.Y. Fisetin Alleviates Hepatic and Adipocyte Fibrosis and Insulin Resistance in Diet-Induced Obese Mice. J. Med. Food 2020, 23, 1019–1032. [Google Scholar] [CrossRef]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021, 37, 147–162. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups That Benefited Most in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. Diabetes Care 2019, 42, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Klaschka, U. Naturally toxic: Natural substances used in personal care products. Environ. Sci. Eur. 2015, 27, 1. [Google Scholar] [CrossRef]
- 2,3,7,8-Tetrachlorodibenzo-P-dioxin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/15625 (accessed on 5 June 2023).
- Matsumura, F.; Brewster, D.W.; Madhukar, B.V.; Bombick, D.W. Alteration of rat hepatic plasma membrane functions by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Arch. Environ. Contam. Toxicol. 1984, 13, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ha, T.Y.; Jung, C.H.; Nirmala, F.S.; Park, S.Y.; Huh, Y.H.; Ahn, J. Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice. J. Cachexia Sarcopenia Muscle 2021, 12, 1925–1939. [Google Scholar] [CrossRef]
- Welshons, W.V.; Nagel, S.C.; vom Saal, F.S. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 2006, 147, S56–S69. [Google Scholar] [CrossRef] [Green Version]
- Bisphenol A. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6623 (accessed on 5 June 2023).
- Yang, J.; Wang, H.; Du, H.; Xu, L.; Liu, S.; Yi, J.; Chen, Y.; Jiang, Q.; He, G. Serum Bisphenol A, glucose homeostasis, and gestational diabetes mellitus in Chinese pregnant women: A prospective study. Environ. Sci. Pollut. Res. Int. 2021, 28, 12546–12554. [Google Scholar] [CrossRef] [PubMed]
Class | Example | Effects Relevant to IR Mitigation | Comments | Reference |
---|---|---|---|---|
Lipids | azelaic acid diethyl azelate sebacic acid phosphatidylcholine phosphatidylethanolamine a-linolenic acid linoleic acid cholesterol lovastatin | regulation of genes in insulin signal transduction plasma membrane fluidizer, immunomodulator GLUT4 upregulation mitochondrial energy metabolism mitochondrial energy metabolism mitochondrial energy metabolism mitochondrial energy metabolism unknown direct association reduction in systemic cholesterol level | metabolite of diethyl azelate canonical MAIM, membrane fluidizer in vitro effect canonical MAIM canonical MAIM tissue-dependent effects promotion of IR in human adipocytes canonical MAIM, membrane rigidifier statin; secondary metabolite | [12,13,28,30,31,32] [12,13,29,30,31,32,33,34,35,36] [37,38] [47,49,50,51] [47,48,49,51] [50,51,52] [53,54,56,57,58] [59,67] [68,69,70] |
Phenols | salicylic acid caffeic acid trans-chalcone quercetin epigallocatechin gallate luteolin resveratrol curcumin myricetin fisetin genistein kaempferol | mitochondrial uncoupling AMPK stimulation indirect via lowering blood glucose and insulin AMPK stimulation AMPK stimulation AMPK stimulation indirect via lowering blood glucose and insulin improvement in b-cell function insulin receptor and GLUT4 expression control AMPK stimulation elevated GLUT4 translocation regulation of insulin signaling | aspirin-like membrane effect antiobesogenic effect via gut effective in healthy rats unclear antidiabetic potential U-shaped dose effect in vitro potentially effective in humans potentially effective in humans potentially effective in humans in vivo data anti-inflammatory in vivo human data in vivo data | [13,20,72,73,74] [75,76] [78,79] [80,81,82] [83,84,85,86] [87,88,89,90,91] [92,93,94] [95,96,97,98,99] [100,101,102] [103,104,105] [106,107,108,109,110] [111,112,113] |
Terpenes | 1,8-cineole L-menthol D-limonene α-terpineol ursolic acid pachymic acid saponin α-cedrene β-carotene | unknown direct association glucagon-like effects in liver protection against DNA damage glycation inhibition of a-amylase GLUT4 translocation GLUT4 translocation GLUT4 translocation GLUT4 translocation regulation of lipogenesis | preclinical data preclinical data preclinical data in vitro data preclinical data preclinical data in vitro data preclinical data preclinical and human data | [115,119,123] [116,119,120] [121,132,133] [122,123] [125,127] [126,128] [129,130] [134,136] [137,138,139,140] |
Antibiotics | streptomycin ampicillin vancomycin rapamycin doxycycline actinomycin D | alteration of gut microbiota alteration of gut microbiota alteration of gut microbiota increased hyperglycemia induced hypoglycemia GLUT4 translocation | worsened IR worsened IR worsened IR improved IR with metformin in vivo dose-dependent in vivo in vitro data | [142,145,146] [143,145,146] [144,145,146] [147,148] [151,152,153] [154,155,156,157,158] |
Alkaloids | emetine catharanthine berberine galegine metformin | GLUT4 translocation in type 1 diabetes model suppression of hyperlipidemia glucose-dependent insulin secretagogue increased weight loss, decreased blood glucose suppressed hepatic glucose production | preclinical data in vivo data preclinical and human data less potent than metformin synthetic analog of galegine | [160,161,162,163] [160,164] [165,166,167,168,169,170] [171,172] [173,174,175,176,177,178,179,180,181,182,183,184,185,186] |
Gut microbiome metabolites | acetic acid propionic acid butyric acid taurocholic acid glycocholic acid taurochenodeoxycholic acid glycochenodeoxycholic acid | better pancreatic secretion of insulin, glucagon better pancreatic secretion of insulin, glucagon better pancreatic secretion of insulin, glucagon cholesterol catabolite cholesterol catabolite cholesterol catabolite cholesterol catabolite | marker of microbiome diversity marker of microbiome diversity marker of microbiome diversity potentially detrimental potentially detrimental potentially detrimental potentially detrimental | [191,194,195,196,197,198,199] [192,194,195,196,197,198,199] [193,194,195,196,197,198,199] [202,206] [203,206] [204,206] [205,206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izbicka, E.; Streeper, R.T. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals 2023, 16, 913. https://doi.org/10.3390/ph16070913
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals. 2023; 16(7):913. https://doi.org/10.3390/ph16070913
Chicago/Turabian StyleIzbicka, Elzbieta, and Robert T. Streeper. 2023. "Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators" Pharmaceuticals 16, no. 7: 913. https://doi.org/10.3390/ph16070913
APA StyleIzbicka, E., & Streeper, R. T. (2023). Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals, 16(7), 913. https://doi.org/10.3390/ph16070913