Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Solubility Studies
2.2. Optimisation
2.3. Synthesis of Cross-Linked βCD Nanosponges
2.4. Evaluation of Drug-Loaded Nanosponges
2.4.1. Fourier Transforms Infrared-Attenuated Total Reflectance Spectroscopy (FTIR-ATR) Analysis
2.4.2. Determination of Particle Size and Zeta Potential
2.4.3. Drug-Loading and Drug-Encapsulation Efficiency
2.4.4. Differential Scanning Calorimetry (DSC)
2.4.5. X-ray Powder Diffraction (XRPD)
2.4.6. In Vitro Release Studies
2.4.7. Morphological Evaluation
3. Materials and Methods
3.1. Materials
3.2. Phase Solubility Studies
3.3. Optimisation
3.4. Synthesis of Cross-Linked βCD NSs
3.5. Loading of the Drug into NSs
3.6. Evaluation of Drug-Loaded Nanosponges
3.6.1. FTIR-ATR
3.6.2. Determination of Particle Size and Zeta Potential
3.6.3. Determination of Drug Loading and Encapsulation Efficiency
3.6.4. DSC
3.6.5. XRPD
3.6.6. In Vitro Drug Release Studies
3.6.7. Morphological Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.M.; Patel, S.P.; Patel, C.N. Formulation and evaluation of fast dissolving tablet containing domperidone ternary solid dispersion. Int. J. Pharm. Investig. 2014, 4, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, S.; Anandam, S.; Kannan, K.; Rajappan, M. Nanosponges: A novel class of drug delivery system--review. J. Pharm. Pharm. Sci. 2012, 15, 103–111. [Google Scholar]
- Ahmed, R.Z.; Patil, G.; Zaheer, Z. Nanosponges—A completely new nano-horizon: Pharmaceutical applications and recent advances. Drug Dev. Ind. Pharm. 2013, 39, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Lembo, D.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: Challenges and perspectives. Nanomedicine 2018, 13, 477–480. [Google Scholar] [CrossRef]
- Pandey, P.; Purohit, D.; Dureja, H. Nanosponges—A promising novel drug delivery system. Rec. Pat. Nanotechnol. 2018, 12, 180–191. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Nanosponges for drug delivery and cancer therapy: Recent advances. Nanomaterials 2022, 12, 2440. [Google Scholar] [CrossRef]
- Tiwari, K.; Bhattacharya, S. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. J. Mater. Sci: Mater. Med. 2022, 33, E28. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Fatima, F.; Anwer, M.K.; Ansari, M.J.; Das, S.S.; Alshahrani, S.M. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. J. Polym. Eng. 2020, 40, 823–832. [Google Scholar] [CrossRef]
- Atchaya, J.; Girigoswami, A.; Girigoswami, K. Versatile applications of nanosponges in biomedical field: A glimpse on SARS-CoV-2 management. BioNanoScience 2022, 12, 1018–1031. [Google Scholar]
- Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Rubin Pedrazzo, A.; Cecone, C.; Cavalli, R.; Trotta, F. History of cyclodextrin nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Kulkarni, Y.A.; Gaud, R.S.; Deshmukh, K.; Cavalli, R.; Trotta, F.; Caldera, F. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J. Pharm. Sci. 2015, 104, 1856–1863. [Google Scholar] [CrossRef]
- Singh, D.; Soni, G.C.; Prajapati, S.K. Recent advances in nanosponges as drug delivery system: A review. Eur. J. Pharm. Med. Res. 2016, 3, 364–371. [Google Scholar]
- Singireddy, A.; Rani Pedireddi, S.; Nimmagadda, S.; Subramanian, S. Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater. Today Proc. 2016, 3, 3951–3959. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, U.K.; Van der Eycken, E.V. Microwave-assisted organic synthesis: Overview of recent applications. In Green Techniques for Organic Synthesis and Medicinal Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 441–468. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119288152.ch17 (accessed on 20 December 2022).
- Nadagouda, M.N.; Speth, T.F.; Varma, R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 2011, 44, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Jhung, S.H.; Lee, J.H.; Chang, J.S. Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull. Kor. Chem. Soc. 2005, 26, 880–881. [Google Scholar]
- Leonelli, C.; Lojkowski, W. Main development directions in the application of microwave irradiation to the synthesis of nanopowders. Chem. Today 2007, 25, 34–38. [Google Scholar]
- Dahal, N.; García, S.; Zhou, J.; Humphrey, S.M. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 2012, 6, 9433–9446. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Hierarchy analysis of different cross-linkers used for the preparation of cross-linked cyclodextrin as drug nanocarriers. Chem. Engl. Commun. 2018, 205, 759–771. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Tian, X.F.; Du, G.L.; Pan, Q.; Wang, Y.; Zhang, X.L. Microwave-assisted synthesis of isopropyl β-(3, 4-dihydroxyphenyl)-α-hydroxypropanoate. J. Chem. 2013, 2013, E505460. [Google Scholar] [CrossRef] [Green Version]
- Singireddy, A.; Pedireddi, S.R.; Subramanian, S. Optimization of reaction parameters for synthesis of Cyclodextrin nanosponges in controlled nanoscopic size dimensions. J. Polym. Res. 2019, 26, E93. [Google Scholar] [CrossRef]
- Castiglione, F.; Crupi, V.; Majolino, D.; Mele, A.; Rossi, B.; Trotta, F.; Venuti, V. Effect of cross-linking properties on the vibrational dynamics of cyclodextrins-based polymers: An experimental–numerical study. J. Phys. Chem. B 2012, 116, 7952–7958. [Google Scholar] [CrossRef]
- Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R.; Tumbiolo, S.; Bertinetti, L.; Coluccia, S. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 201–211. [Google Scholar] [CrossRef]
- Swaminathan, S.; Trotta, F. Cyclodextrin nanosponges. In Nanosponges; Trotta, F., Mele, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 27–57. Available online: http://doi.wiley.com/10.1002/9783527341009.ch2 (accessed on 5 January 2023).
- Swaminathan, S. Studies on Novel Dosage Forms. Masters Thesis, University of Mumbai, Maharashtra, India, 2006. [Google Scholar]
- Deshpande, A.; Patel, P. Preparation and evaluation of cyclodextrin based atorvastatin nanosponges. Am. J. PharmTech Res. 2014, 4, 2249–3387. [Google Scholar]
- Lembo, D.; Swaminathan, S.; Donalisio, M.; Civra, A.; Pastero, L.; Aquilano, D.; Vavia, P.; Trotta, F.; Cavalli, R. Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm. 2013, 443, 262–272. [Google Scholar] [CrossRef]
- Khan, S.A.; Azam, W.; Ashames, A.; Fahelelbom, K.M.; Ullah, K.; Mannan, A.; Murtaza, G. β-cyclodextrin-based (IA-co-AMPS) semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-vitro and in-vivo evaluation. J. Drug Deliv. Sci. Technol. 2020, 60, E101970. [Google Scholar] [CrossRef]
- Trotta, F.; Zanetti, M.; Camino, G. Thermal degradation of cyclodextrins. Polym. Degrad. Stab. 2000, 69, 373–379. [Google Scholar] [CrossRef]
- Taleb, S.A.; Motasim, Y.; GabAllah, M.; Asfour, M.H. Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19. J. Drug Deliv. Sci. Technol. 2022, 77, E103921. [Google Scholar] [CrossRef]
- Caldera, F.; Tannous, M.; Cavalli, R.; Zanetti, M.; Trotta, F. Evolution of cyclodextrin nanosponges. Int. J. Pharm. 2017, 531, 470–479. [Google Scholar] [CrossRef]
- Kumari, A.; Jain, A.; Hurkat, P.; Verma, A.; Jain, S.K. Microsponges: A pioneering tool for biomedical applications. Crit. Rev. Ther. Drug Carr. Sys. 2016, 33, 77–105. [Google Scholar] [CrossRef]
- Shoaib, Q.-u.-a.; Abbas, N.; Irfan, M.; Hussain, A.; Arshad, M.S.; Hussain, S.Z.; Latif, S.; Bukhari, N.I. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop. J. Pharm. Res. 2018, 17, 1465–1474. [Google Scholar] [CrossRef]
- Martin, R.; Sánchez, I.; Cao, R.; Rieumont, J. Solubility and kinetic release studies of naproxen and ibuprofen in soluble epichlorohydrin-β-cyclodextrin polymer. Supramol. Chem. 2006, 18, 627–631. [Google Scholar] [CrossRef]
- Singh, V.; Xu, J.; Wu, L.; Liu, B.; Guo, T.; Guo, Z.; York, P.; Gref, R.; Zhang, J. Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Adv. 2017, 7, 23759–23764. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Connors, K.A. Phase solubility techniques. Adv. Anal. Chem. Inst. 1965, 4, 117–212. [Google Scholar]
- Anandam, S.; Selvamuthukumar, S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous Mater. 2014, 6, 1015–1023. [Google Scholar] [CrossRef]
- Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2020, 60, E104604. [Google Scholar] [CrossRef]
- Zainuddin, R.; Zaheer, Z.; Sangshetti, J.N.; Momin, M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev. Ind. Pharm. 2017, 43, 2076–2084. [Google Scholar] [CrossRef]
- Omar, S.M.; Ibrahim, F.; Ismail, A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J. 2020, 3, 349–361. [Google Scholar] [CrossRef]
- Zidan, M.F.; Ibrahim, H.M.; Afouna, M.I.; Ibrahim, E.A. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev. Ind. Pharm. 2018, 44, 1243–1253. [Google Scholar] [CrossRef]
- Yaşayan, G.; Şatıroğlu Sert, B.; Tatar, E.; Küçükgüzel, İ. Fabrication and characterisation studies of cyclodextrin-based nanosponges for sulfamethoxazole delivery. J. Incl. Phenom. Macrocyc. Chem. 2020, 97, 175–186. [Google Scholar] [CrossRef]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011, 12, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torne, S.J.; Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010, 6, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Osmani, R.A.; Thirumaleshwar, S.; Bhosale, R.R.; Kulkarni, P.K. Nanosponges: The spanking accession in drug delivery-an updated comprehensive review. Der. Pharm. Lett. 2014, 5, 7–21. [Google Scholar]
Run | Factors | Responses | |||
---|---|---|---|---|---|
A: Microwave Power Level (Watt) | B: Reaction Time (min) | C: Stirring Speed (rpm) | Yield (%) | Particle Size (nm) | |
1 | 560 | 60 | 1500 | 77.7 | 203.14 |
2 | 560 | 40 | 1000 | 74.4 | 232.87 |
3 | 350 | 80 | 1000 | 57.5 | 482.31 |
4 | 455 | 60 | 1000 | 66.2 | 331.30 |
5 | 455 | 80 | 1500 | 68.2 | 294.29 |
6 | 455 | 60 | 1000 | 64.9 | 321.28 |
7 | 455 | 60 | 1000 | 65.3 | 322.17 |
8 | 350 | 60 | 1500 | 55.6 | 502.83 |
9 | 455 | 40 | 500 | 61.7 | 386.69 |
10 | 455 | 60 | 1000 | 65.8 | 317.56 |
11 | 560 | 60 | 500 | 75.2 | 211.93 |
12 | 350 | 40 | 1000 | 52.7 | 563.46 |
13 | 455 | 40 | 1500 | 62.2 | 360.16 |
14 | 455 | 60 | 1000 | 65.2 | 324.45 |
15 | 455 | 80 | 500 | 67.4 | 309.42 |
16 | 560 | 80 | 1000 | 79.6 | 192.72 |
17 | 350 | 60 | 500 | 54.1 | 531.37 |
Response | Code | Equation |
---|---|---|
Yield (%) | Y1 | 65.51 + 10.8623 * A + 2.715 * B + 0.6623 * C + 0.1 * AB + 0.277 * AC + 0.04 * BC + 0.6777 * A2 + −0.1475 * B2 + −0.5225 * C2 |
Particle size (nm) | Y2 | 328.763 − 155.168 * A − 31.0537 * B − 8.6277 * C + 9.1 * AB + 3.1824 * AC + 3.5977 * BC + 33.2518 * A2 + 6.5765 * B2 + 2.049 * C2 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1178.95 | 9 | 130.99 | 68.29 | <0.0001 * | Significant |
A-Microwave power level | 1083.45 | 1 | 1083.45 | 564.82 | <0.0001 * | |
B-Reaction time | 85.15 | 1 | 85.15 | 44.39 | 0.0003 * | |
C-Stirring speed | 4.2 | 1 | 4.2 | 2.19 | 0.0018 * | |
AB | 0.4225 | 1 | 0.4225 | 0.2203 | 0.0065 * | |
AC | 0.81 | 1 | 0.81 | 0.4223 | 0.0053 * | |
BC | 1.44 | 1 | 1.44 | 0.7507 | 0.0041 * | |
A2 | 1.11 | 1 | 1.11 | 0.5765 | 0.0047 * | |
B2 | 0.4112 | 1 | 0.4112 | 0.2144 | 0.6574 | |
C2 | 2.14 | 1 | 2.14 | 1.11 | 0.3262 | |
Residual | 13.43 | 7 | 1.92 | |||
Lack of Fit | 4.89 | 3 | 1.63 | 0.7631 | 0.5709 | Not significant |
Pure Error | 8.54 | 4 | 2.13 | |||
Cor Total | 1192.38 | 16 | ||||
R2 | 0.9887 | |||||
Adjusted R2 | 0.9743 | |||||
Predicted R2 | 0.9232 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2.17 × 105 | 9 | 24063.23 | 471.01 | <0.0001 * | Significant |
A-Microwave power level | 2.04 × 105 | 1 | 2.04E+05 | 3984.25 | <0.0001 * | |
B-Reaction time | 8988.05 | 1 | 8988.05 | 175.93 | <0.0001 * | |
C-Stirring speed | 705 | 1 | 705 | 13.8 | 0.0075 * | |
AB | 379.28 | 1 | 379.28 | 7.42 | 0.0296 * | |
AC | 21.53 | 1 | 21.53 | 0.4214 | 0.5369 | |
BC | 80.1 | 1 | 80.1 | 1.57 | 0.2507 | |
A2 | 2227.8 | 1 | 2227.8 | 43.61 | 0.0003 * | |
B2 | 14.22 | 1 | 14.22 | 0.2783 | 0.6141 | |
C2 | 736.45 | 1 | 736.45 | 14.42 | 0.0067 * | |
Residual | 357.62 | 7 | 51.09 | |||
Lack of Fit | 183.59 | 3 | 61.2 | 1.41 | 0.3637 | Not significant |
Pure Error | 174.03 | 4 | 43.51 | |||
Cor Total | 2.17 × 105 | 16 | ||||
R2 | 0.9984 | |||||
Adjusted R2 | 0.9962 | |||||
Predicted R2 | 0.9852 |
Name of the Independent Variable | Code | Unit | Levels | ||
---|---|---|---|---|---|
Low | Medium | High | |||
MW power | A | Watt | 350 | 455 | 560 |
Reaction time | B | Min | 40 | 60 | 80 |
Stirring speed | C | rpm | 500 | 1000 | 1500 |
Name of the Dependent Variable | Unit | Goal |
---|---|---|
Yield | % | Maximise |
Particle size | nm | Minimise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vij, M.; Dand, N.; Kumar, L.; Wadhwa, P.; Wani, S.U.D.; Mahdi, W.A.; Alshehri, S.; Alam, P.; Shakeel, F. Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug. Pharmaceuticals 2023, 16, 567. https://doi.org/10.3390/ph16040567
Vij M, Dand N, Kumar L, Wadhwa P, Wani SUD, Mahdi WA, Alshehri S, Alam P, Shakeel F. Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug. Pharmaceuticals. 2023; 16(4):567. https://doi.org/10.3390/ph16040567
Chicago/Turabian StyleVij, Mohit, Neha Dand, Lalit Kumar, Pankaj Wadhwa, Shahid Ud Din Wani, Wael A. Mahdi, Sultan Alshehri, Prawez Alam, and Faiyaz Shakeel. 2023. "Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug" Pharmaceuticals 16, no. 4: 567. https://doi.org/10.3390/ph16040567
APA StyleVij, M., Dand, N., Kumar, L., Wadhwa, P., Wani, S. U. D., Mahdi, W. A., Alshehri, S., Alam, P., & Shakeel, F. (2023). Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug. Pharmaceuticals, 16(4), 567. https://doi.org/10.3390/ph16040567