Trends in the Use of Driving-Impairing Medicines According to the DRUID Category: A Population-Based Registry Study with Reference to Driving in a Region of Spain between 2015 and 2019
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Real-World Study Details
4.2. Variables
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Report on the Global Situation of Road Safety. Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 21 June 2020).
- Pitta, L.S.R.; Quintas, J.L.; Trindade, I.O.A.; Belchior, P.; Gameiro, K.d.S.D.; Gomes, C.M.; Nóbrega, O.T.; Camargos, E.F. Older Drivers Are at Increased Risk of Fatal Crash Involvement: Results of a Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2021, 95, 104414. [Google Scholar] [CrossRef]
- Centers for Disease Control Prevention. National Center for Injury Prevention and Control: Web-Based Injury Statistics Query And Reporting System (WISQARS). Washington, DC, US Department of Health and Human Services. Available online: https://www.cdc.gov/injury/wisqars/index.html (accessed on 20 March 2023).
- Hagiya, H.; Takase, R.; Honda, H.; Nakano, Y.; Otsuka, Y.; Kataoka, H.; Uno, M.; Ueda, K.; Takahashi, M.; Ogawa, H.; et al. Prevalence of Medical Factors Related to Aging among Older Car Drivers: A Multicenter, Cross-Sectional, Descriptive Study. BMC Geriatr. 2022, 22, 792. [Google Scholar] [CrossRef] [PubMed]
- Santamariña-Rubio, E.; Pérez, K.; Olabarria, M.; Novoa, A.M. Gender Differences in Road Traffic Injury Rate Using Time Travelled as a Measure of Exposure. Accid. Anal. Prev. 2014, 65, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Granados, J.; Martín-delosReyes, L.M.; Rivera-Izquierdo, M.; Jiménez-Mejías, E.; Martínez-Ruiz, V.; Lardelli-Claret, P. Sex Differences in the Amount and Patterns of Car-Driving Exposure in Spain, 2014 to 2017: An Application of a Quasi-Induced Exposure Approach. Int. J. Environ. Res. Public Health 2021, 18, 13255. [Google Scholar] [CrossRef] [PubMed]
- Gwyther, H.; Holland, C. The Effect of Age, Gender and Attitudes on Self-Regulation in Driving. Accid. Anal. Prev. 2012, 45, 19–28. [Google Scholar] [CrossRef]
- Ravera, S.; Hummel, S.A.; Stolk, P.; Heerdink, R.E.; de Jong-van den Berg, L.T.W.; de Gier, J.J. The Use of Driving Impairing Medicines: A European Survey. Eur. J. Clin. Pharmacol. 2009, 65, 1139–1147. [Google Scholar] [CrossRef] [Green Version]
- Engeland, A.; Skurtveit, S.; Mørland, J. Risk of Road Traffic Accidents Associated with the Prescription of Drugs: A Registry-Based Cohort Study. Ann. Epidemiol. 2007, 17, 597–602. [Google Scholar] [CrossRef]
- Orriols, L.; Salmi, L.-R.; Philip, P.; Moore, N.; Delorme, B.; Castot, A.; Lagarde, E. The Impact of Medicinal Drugs on Traffic Safety: A Systematic Review of Epidemiological Studies. Pharmacoepidemiol. Drug Saf. 2009, 18, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Gómez, F.; García-Mingo, M.; Álvarez, F.J. Prevalence of Alcohol and Other Psychoactive Substances in Motor Vehicle Drivers in Spain, 2018: Cross-Sectional Dataset Analysis with Studies from 2008 and 2013. Forensic Sci. Int. 2020, 313, 110266. [Google Scholar] [CrossRef]
- Herrera-Gómez, F.; García-Mingo, M.; Colás, M.; González-Luque, J.C.; Álvarez, F.J. Opioids in Oral Fluid of Spanish Drivers. Drug Alcohol Depend. 2018, 187, 35–39. [Google Scholar] [CrossRef]
- Herrera-Gómez, F.; Gutiérrez-Abejón, E.; García-Mingo, M.; Álvarez, F.J. Positivity to Cocaine and/or Benzoylecgonine in Confirmation Analyses for On-Road Tests in Spain. Int. J. Environ. Res. Public Health 2021, 18, 5371. [Google Scholar] [CrossRef]
- Herrera-Gómez, F.; García-Mingo, M.; Colás, M.; González-Luque, J.C.; Alvarez, F.J. Drivers Who Tested Positive for Cannabis in Oral Fluid: A Longitudinal Analysis of Administrative Data for Spain between 2011 and 2016. BMJ Open 2019, 9, e026648. [Google Scholar] [CrossRef]
- Hetland, A.; Carr, D.B. Medications and Impaired Driving: A Review of the Literature. Ann. Pharmacother. 2014, 48, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Ravera, S.; van Rein, N.; de Gier, J.J.; de Jong-van den Berg, L.T.W. A Comparison of Pharmacoepidemiological Study Designs in Medication Use and Traffic Safety Research. Eur. J. Epidemiol. 2012, 27, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Orriols, L.; Delorme, B.; Gadegbeku, B.; Tricotel, A.; Contrand, B.; Laumon, B.; Salmi, L.-R.; Lagarde, E. CESIR research group Prescription Medicines and the Risk of Road Traffic Crashes: A French Registry-Based Study. PLoS Med. 2010, 7, e1000366. [Google Scholar] [CrossRef] [Green Version]
- Barbone, F.; McMahon, A.D.; Davey, P.G.; Morris, A.D.; Reid, I.C.; McDevitt, D.G.; MacDonald, T.M. Association of Road-Traffic Accidents with Benzodiazepine Use. Lancet 1998, 352, 1331–1336. [Google Scholar] [CrossRef]
- Walsh, J.M.; de Gier, J.J.; Christopherson, A.S.; Verstraete, A.G. Drugs and Driving. Traffic Inj. Prev. 2004, 5, 241–253. [Google Scholar] [CrossRef]
- Orriols, L.; Gbaguidi, G.N.; Contrand, B.; Gadegbeku, B.; Lagarde, E. Trends in Benzodiazepine Anxiolytics and Z-Hypnotics Use among French Drivers Involved in Road Traffic Crashes from 2005 to 2015: A Responsibility Case-Control Study. Inj. Epidemiol. 2019, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Rudisill, T.M.; Zhu, M.; Kelley, G.A.; Pilkerton, C.; Rudisill, B.R. Medication Use and the Risk of Motor Vehicle Collisions among Licensed Drivers: A Systematic Review. Accid. Anal. Prev. 2016, 96, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Verster, J.C.; van de Loo, A.J.A.E.; Roth, T. Mirtazapine as Positive Control Drug in Studies Examining the Effects of Antidepressants on Driving Ability. Eur. J. Pharmacol. 2015, 753, 252–256. [Google Scholar] [CrossRef]
- Ramaekers, J.G. Antidepressants and Driver Impairment: Empirical Evidence from a Standard on-the-Road Test. J. Clin. Psychiatry 2003, 64, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, M.B.; Jongen, S.; Knoche, A.; Petzke, F.; Vuurman, E.F.; Vollrath, M.; Ramaekers, J.G. Effect of Chronic Opioid Therapy on Actual Driving Performance in Non-Cancer Pain Patients. Psychopharmacology 2017, 234, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Schulze, H.; Shumacher, M.; Urmeew, R.; Auerbach, K.; Alvarez, F.J.; Bernhoft, I.M.; De Gier, H.; Hagenzieker, M.; Houwing, S.; Knoche, A.; et al. Driving Under the Influence of Drugs, Alcohol and Medicines in Europe Findings from the DRUID Project. Lisbon: European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Available online: http://www.emcdda.europa.eu/system/files/publications/743/TDXA12006ENN_402402.pdf (accessed on 12 May 2022).
- European Union (EU). European Council Directive 83/570/EEC of 26 October 1983 on the Approximation of Provisions Laid Down by Law, Regulation or Administrative Action Relating to Proprietary Medicinal Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31983L0570 (accessed on 20 June 2020).
- Ravera, S.; Monteiro, S.P.; de Gier, J.J.; van der Linden, T.; Gómez-Talegón, T.; Alvarez, F.J. DRUID Project WP4 Partners A European Approach to Categorizing Medicines for Fitness to Drive: Outcomes of the DRUID Project. Br. J. Clin. Pharmacol. 2012, 74, 920–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierro, I.; Gómez-Talegón, T.; Alvarez, F.J. The Spanish Pictogram on Medicines and Driving: The Population’s Comprehension of and Attitudes towards Its Use on Medication Packaging. Accid. Anal. Prev. 2013, 50, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.P. Driving-Impairing Medicines and Traffic Safety: Patients’ Perspectives; Rijksuniversiteit Groningen: Groningen, The Netherlands, 2014. [Google Scholar]
- Ministry of Health. ROYAL DECREE 1345/2007, of October 11, 2007, Which Regulates the Procedure for Authorization, Registration and Conditions of Dispensing of Industrially Manufactured Medicines for Human Use. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2007-19249 (accessed on 20 June 2020).
- de la Santé et des Solidarités, M.; de la Santé, D.G. Arrêté Du 18 Juillet 2005 Pris Pour l’application de l’article R.5121-139 Du Code de La Santé Publique et Relative à l’opposition d’un Pictogramme Sur Le Conditionnement Extérieur de Certain Médicaments et Produits; Ministère de la Santé et des Solidarité: Paris, France, 2005. [Google Scholar]
- Alvarez, F.J.; Mercier-Guyon, C.; Verstraete, A.G. Prescribing and Dispensing Guidelines for Medicinal Drugs Affecting Driving Performance. In Drugs, Driving and Traffic Safety; BirkhäuserVerlag: Basel, Switzerland, 2009; pp. 121–134. [Google Scholar]
- Lamport, D.J.; Lawton, C.L.; Merat, N.; Jamson, H.; Myrissa, K.; Hofman, D.; Chadwick, H.K.; Quadt, F.; Wightman, J.D.; Dye, L. Concord Grape Juice, Cognitive Function, and Driving Performance: A 12-Wk, Placebo-Controlled, Randomized Crossover Trial in Mothers of Preteen Children. Am. J. Clin. Nutr. 2016, 103, 775–783. [Google Scholar] [CrossRef] [Green Version]
- LaSala, G.S.; McKeever, R.G.; Patel, U.; Okaneku, J.; Vearrier, D.; Greenberg, M.I. Effect of Single-Dose Ginkgo Biloba and Panax Ginseng on Driving Performance. Clin. Toxicol. 2015, 53, 108–112. [Google Scholar] [CrossRef]
- Irwin, C.; McCartney, D.; Grant, G.; Delang, N.; Bartrim, K.; Cox, G.R.; Desbrow, B. Effects of Different Sources of Low-Dose Caffeine on Mood/Arousal and Cognitive Performance. Percept. Mot. Ski. 2022, 129, 1672–1690. [Google Scholar] [CrossRef]
- Thomas, K.; Canedo, J.; Perry, P.J.; Doroudgar, S.; Lopes, I.; Chuang, H.M.; Bohnert, K. Effects of Valerian on Subjective Sedation, Field Sobriety Testing and Driving Simulator Performance. Accid. Anal. Prev. 2016, 92, 240–244. [Google Scholar] [CrossRef]
- Nagib, M.M.; Tadros, M.G.; Al-Khalek, H.A.A.; Rahmo, R.M.; Sabri, N.A.; Khalifa, A.E.; Masoud, S.I. Molecular Mechanisms of Neuroprotective Effect of Adjuvant Therapy with Phenytoin in Pentylenetetrazole-Induced Seizures: Impact on Sirt1/NRF2 Signaling Pathways. Neurotoxicology 2018, 68, 47–65. [Google Scholar] [CrossRef]
- Elsayed, A.A.; Menze, E.T.; Tadros, M.G.; Ibrahim, B.M.M.; Sabri, N.A.; Khalifa, A.E. Effects of Genistein on Pentylenetetrazole-Induced Behavioral and Neurochemical Deficits in Ovariectomized Rats. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 27–36. [Google Scholar] [CrossRef]
- Nagib, M.M.; Tadros, M.G.; Rahmo, R.M.; Sabri, N.A.; Khalifa, A.E.; Masoud, S.I. Ameliorative Effects of α-Tocopherol and/or Coenzyme Q10 on Phenytoin-Induced Cognitive Impairment in Rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox. Res. 2019, 35, 451–462. [Google Scholar] [CrossRef]
- Tadros, M.G.; Mohamed, M.R.; Youssef, A.M.; Sabry, G.M.; Sabry, N.A.; Khalifa, A.E. Proapoptotic and Prepulse Inhibition (PPI) Disrupting Effects of Hypericum Perforatum in Rats. J. Ethnopharmacol. 2009, 122, 561–566. [Google Scholar] [CrossRef]
- Tadros, M.G.; Mohamed, M.R.; Youssef, A.M.; Sabry, G.M.; Sabry, N.A.; Khalifa, A.E. Involvement of Serotoninergic 5-HT1A/2A, Alpha-Adrenergic and Dopaminergic D1 Receptors in St. John’s Wort-Induced Prepulse Inhibition Deficit: A Possible Role of Hyperforin. Behav. Brain Res. 2009, 199, 334–339. [Google Scholar] [CrossRef]
- Gutiérrez-Abejón, E.; Herrera-Gómez, F.; Criado-Espegel, P.; Alvarez, F.J. Use of Driving-Impairing Medicines by a Spanish Population: A Population-Based Registry Study. BMJ Open 2017, 7, e017618. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Gómez, F.; Gutiérrez-Abejón, E.; Criado-Espegel, P.; Álvarez, F.J. The Problem of Benzodiazepine Use and Its Extent in the Driver Population: A Population-Based Registry Study. Front. Pharmacol. 2018, 9, 408. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Gómez, F.; Gutiérrez-Abejón, E.; Álvarez, F.J. Antipsychotics in the General Population and the Driver Population: Comparisons from a Population-Based Registry Study. Int. Clin. Psychopharmacol. 2019, 34, 184–188. [Google Scholar] [CrossRef]
- Herrera-Gómez, F.; Gutiérrez-Abejón, E.; Ayestarán, I.; Criado-Espegel, P.; Álvarez, F.J. The Trends in Opioid Use in Castile and Leon, Spain: A Population-Based Registry Analysis of Dispensations in 2015 to 2018. J. Clin. Med. 2019, 8, 2148. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Abejón, E.; Herrera-Gómez, F.; Criado-Espegel, P.; Álvarez, F.J. Trends in Antidepressants Use in Spain between 2015 and 2018: Analyses from a Population-Based Registry Study with Reference to Driving. Pharmaceuticals 2020, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Abejón, E.; Criado-Espegel, P.; Herrera-Gómez, F.; Álvarez, F.J. Population-Based Registry Analysis of Antidiabetics Dispensations: Trend Use in Spain between 2015 and 2018 with Reference to Driving. Pharmaceuticals 2020, 13, 165. [Google Scholar] [CrossRef]
- Gutiérrez-Abejón, E.; Herrera-Gómez, F.; Álvarez, F.J. Trends in the Use of Antihistamines with Reference to Drivers between 2015 and 2019: A Population-Based Registry Analysis. Fundam. Clin. Pharmacol. 2021, 35, 1168–1178. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, M.Á.; Sempere-Verdú, E.; Vicens-Caldentey, C.; González-Rubio, F.; Miguel-García, F.; Palop-Larrea, V.; Orueta-Sánchez, R.; Esteban-Jiménez, Ó.; Sempere-Manuel, M.; Arroyo-Aniés, M.P.; et al. Evolution of Polypharmacy in a Spanish Population (2005–2015): A Database Study. Pharmacoepidemiol. Drug Saf. 2020, 29, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Green, I.; Stow, D.; Matthews, F.E.; Hanratty, B. Changes over Time in the Health and Functioning of Older People Moving into Care Homes: Analysis of Data from the English Longitudinal Study of Ageing. Age Ageing 2017, 46, 693–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topinková, E.; Baeyens, J.P.; Michel, J.-P.; Lang, P.-O. Evidence-Based Strategies for the Optimization of Pharmacotherapy in Older People. Drugs Aging 2012, 29, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Falkenstein, M.; Karthaus, M.; Brüne-Cohrs, U. Age-Related Diseases and Driving Safety. Geriatrics 2020, 5, 80. [Google Scholar] [CrossRef]
- Anstey, K.J.; Wood, J.; Lord, S.; Walker, J.G. Cognitive, Sensory and Physical Factors Enabling Driving Safety in Older Adults. Clin. Psychol. Rev 2005, 25, 45–65. [Google Scholar] [CrossRef]
- Cicchino, J.B.; McCartt, A.T. Trends in Older Driver Crash Involvement Rates and Survivability in the United States: An Update. Accid. Anal. Prev. 2014, 72, 44–54. [Google Scholar] [CrossRef]
- Ministry of the Interior. Royal Decree 818/2009, of May 8, 2009, Approving the General Regulations for Drivers. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2009-9481 (accessed on 22 March 2023).
- Wilhelmi, B.G.; Cohen, S.P. A Framework for “Driving under the Influence of Drugs” Policy for the Opioid Using Driver. Pain Physician 2012, 15, ES215-230. [Google Scholar] [CrossRef]
- Monárrez-Espino, J.; Laflamme, L.; Elling, B.; Möller, J. Number of Medications and Road Traffic Crashes in Senior Swedish Drivers: A Population-Based Matched Case-Control Study. Inj. Prev. 2014, 20, 81–87. [Google Scholar] [CrossRef]
- Bernhoft, I. Results from Epidemiological Research—Prevalence, Risk and Characteristics of Impaired Drivers; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Hill, L.L.; Lauzon, V.L.; Winbrock, E.L.; Li, G.; Chihuri, S.; Lee, K.C. Depression, Antidepressants and Driving Safety. Inj. Epidemiol. 2017, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Wickens, C.M.; Mann, R.E.; Stoduto, G.; Ialomiteanu, A.; Smart, R.G.; Rehm, J. The Impact of Probable Anxiety and Mood Disorder on Self-Reported Collisions: A Population Study. J. Affect. Disord. 2013, 145, 253–255. [Google Scholar] [CrossRef]
- Orriols, L.; Queinec, R.; Philip, P.; Gadegbeku, B.; Delorme, B.; Moore, N.; Suissa, S.; Lagarde, E. CESIR Research Group Risk of Injurious Road Traffic Crash after Prescription of Antidepressants. J. Clin. Psychiatry 2012, 73, 1088–1094. [Google Scholar] [CrossRef]
- Brunnauer, A.; Buschert, V.; Fric, M.; Distler, G.; Sander, K.; Segmiller, F.; Zwanzger, P.; Laux, G. Driving Performance and Psychomotor Function in Depressed Patients Treated with Agomelatine or Venlafaxine. Pharmacopsychiatry 2015, 48, 65–71. [Google Scholar] [CrossRef]
- Ravera, S.; Ramaekers, J.G.; de Jong-van den Berg, L.T.W.; de Gier, J.J. Are Selective Serotonin Reuptake Inhibitors Safe for Drivers? What Is the Evidence? Clin. Ther. 2012, 34, 1070–1083. [Google Scholar] [CrossRef]
- Brunnauer, A.; Laux, G. Driving Under the Influence of Antidepressants: A Systematic Review and Update of the Evidence of Experimental and Controlled Clinical Studies. Pharmacopsychiatry 2017, 50, 173–181. [Google Scholar] [CrossRef]
- Simó Miñana, J. Utilización de Medicamentos en España y en Europa. Atención Primaria 2012, 44, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Agencia Española del Medicamento y Productos Sanitarios. Informe De Utilización De Medicamentos U/AN/V1/03092015: Utilización de Medicamentos Antidiabéticos En España Durante El Periodo 2000–2014; Agencia Española del Medicamento y Productos Sanitarios: Madrid, Spain, 2015. [Google Scholar]
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Houlden, R.L.; Berard, L.; Lakoff, J.M.; Woo, V.; Yale, J.-F. Diabetes and Driving. Can. J. Diabetes 2018, 42 (Suppl. S1), S150–S153. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.J.; Singh, H.; Lorber, D.; Hermayer, K. Diabetes and Driving Safety: Science, Ethics, Legality and Practice. Am. J. Med. Sci. 2013, 345, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Laberge-Nadeau, C.; Dionne, G.; Ekoé, J.M.; Hamet, P.; Desjardins, D.; Messier, S.; Maag, U. Impact of Diabetes on Crash Risks of Truck-Permit Holders and Commercial Drivers. Diabetes Care 2000, 23, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Inkster, B.; Frier, B.M. Diabetes and Driving. Diabetes Obes. Metab. 2013, 15, 775–783. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, J.; Zeng, X.; Wu, C.; Zhao, G.; Lv, C.; Sun, X. Type 2 Diabetes Can Undermine Driving Performance of Middle-Aged Male Drivers through Its Deterioration of Perceptual and Cognitive Functions. Accid. Anal. Prev. 2020, 134, 105334. [Google Scholar] [CrossRef]
- UK Hypoglycaemia Study Group. Risk of Hypoglycaemia in Types 1 and 2 Diabetes: Effects of Treatment Modalities and Their Duration. Diabetologia 2007, 50, 1140–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signorovitch, J.E.; Macaulay, D.; Diener, M.; Yan, Y.; Wu, E.Q.; Gruenberger, J.-B.; Frier, B.M. Hypoglycaemia and Accident Risk in People with Type 2 Diabetes Mellitus Treated with Non-Insulin Antidiabetes Drugs. Diabetes Obes. Metab. 2013, 15, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stork, A.D.M.; van Haeften, T.W.; Veneman, T.F. Diabetes and Driving: Desired Data, Research Methods and Their Pitfalls, Current Knowledge, and Future Research. Diabetes Care 2006, 29, 1942–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilpatrick, E.S.; Rigby, A.S.; Warren, R.E.; Atkin, S.L. Implications of New European Union Driving Regulations on Patients with Type 1 Diabetes Who Participated in the Diabetes Control and Complications Trial. Diabet. Med. 2013, 30, 616–619. [Google Scholar] [CrossRef]
- American Diabetes Association; Lorber, D.; Anderson, J.; Arent, S.; Daniel, J.; Frier, B.M.; Greene, M.A.; Griffin, J.W.; Gross, G.; Hathaway, K.; et al. Diabetes and Driving. Diabetes Care 2012, 35 (Suppl. S1), S81–S86. [Google Scholar] [CrossRef] [Green Version]
- Legrand, S.-A.; Boets, S.; Meesmann, U.; Verstraete, A.G. Medicines and Driving: Evaluation of Training and Software Support for Patient Counselling by Pharmacists. Int. J. Clin. Pharm. 2012, 34, 633–643. [Google Scholar] [CrossRef]
- Ravera, S.; van Rein, N.; de Gier, J.J.; de Jong-van den Berg, L.T.W. Road Traffic Accidents and Psychotropic Medication Use in The Netherlands: A Case-Control Study. Br. J. Clin. Pharmacol. 2011, 72, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Jomaa, I.; Odisho, M.; Cheung, J.M.Y.; Wong, K.; Ellis, J.G.; Smyth, T.; Saini, B. Pharmacists’ Perceptions and Communication of Risk for Alertness Impairing Medications. Res. Soc. Adm. Pharm. 2018, 14, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Ramaekers, J.G.; Berghaus, G.; van Laar, M.; Drummer, O.H. Dose Related Risk of Motor Vehicle Crashes after Cannabis Use. Drug Alcohol Depend. 2004, 73, 109–119. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sørensen, H.T.; von Elm, E.; Langan, S.M.; RECORD Working Committee. The REporting of Studies Conducted Using Observational Routinely-Collected Health Data (RECORD) Statement. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology ATC/DDD Index. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 12 August 2020).
- Ramaekers, J.G. Drugs and Driving Research in Medicinal Drug Development. Trends Pharmacol. Sci. 2017, 38, 319–321. [Google Scholar] [CrossRef]
- Alonso, F.; Esteban, C.; Montoro, L.; Tortosa, F. Psychotropic Drugs and Driving: Prevalence and Types. Ann. Gen. Psychiatry 2014, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Emich, B.; van Dijk, L.; Monteiro, S.P.; de Gier, J.J. A Study Comparing the Effectiveness of Three Warning Labels on the Package of Driving-Impairing Medicines. Int. J. Clin. Pharm. 2014, 36, 1152–1159. [Google Scholar] [CrossRef]
Population Using DIM % (95CI) | Drivers Using DIM % (95CI) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Yearly Use | Daily Use | Type of use | Yearly Use | Daily Use | Type of use | |||||
Acute | Subacute | Chronic | Acute | Subacute | Chronic | |||||
TOTAL DIM | ||||||||||
Total | 36.46 (36.4–36.53) | 8.04 (8–8.07) | 6.44 (6.41–6.47) | 6.72 (6.69–6.75) | 23.3 (23.25–23.35) | 27.91 (27.83–27.98) | 5.34 (5.3–5.37) | 5.49 (5.46–5.53) | 6.26 (6.22–6.3) | 16.15 (16.09–16.21) |
Male | 30.44 (30.35–30.52) | 6.52 (6.47–6.56) | 6.27 (6.22–6.31) | 5.73 (5.69–5.78) | 18.44 (18.37–18.51) | 29.02 (28.93–29.12) | 6.18 (6.13–6.24) | 5.65 (5.6–5.69) | 5.96 (5.91–6.01) | 17.42 (17.34–17.5) |
Female | 42.28 (42.19–42.37) | 9.5 (9.45–9.56) | 6.62 (6.57–6.66) | 7.67 (7.63–7.72) | 27.99 (27.91–28.07) | 26.25 (26.13–26.36) | 4.08 (4.03–4.13) | 5.26 (5.21–5.32) | 6.71 (6.65–6.77) | 14.27 (14.18–14.36) |
Χ² = 37,645.22; p = 0.001 | Χ² = 19,471.66; p = 0.001 | Χ² = 2716.22; p = 0.001 | Χ² = 3222.11; p = 0.001 | Χ² = 35,025.11; p = 0.001 | Χ² = 282,817.29; p = 0.001 | Χ² = 57,813.63; p = 0.001 | Χ² = 42,935.41; p = 0.001 | Χ² = 54,323.97; p = 0.001 | Χ² = 185,912.23; p = 0.001 | |
DRUID I | ||||||||||
Total | 17.11 (17.06–17.15) | 4.54 (4.51–4.56) | 3.68 (3.66–3.71) | 2.91 (2.89–2.94) | 10.5 (10.46–10.54) | 12.43 (12.38–12.48) | 3 (2.98–3.03) | 3.14 (3.11–3.17) | 2.25 (2.22–2.27) | 7.04 (7–7.08) |
Male | 14.3 (14.24–14.36) | 3.83 (3.8–3.87) | 3.39 (3.35–3.42) | 2.3 (2.27–2.32) | 8.61 (8.56–8.66) | 13.57 (13.5–13.64) | 3.6 (3.56–3.64) | 3.33 (3.29–3.36) | 2.3 (2.27–2.33) | 7.94 (7.89–8) |
Female | 19.82 (19.75–19.89) | 5.22 (5.18–5.26) | 3.97 (3.93–4) | 3.51 (3.48–3.55) | 12.33 (12.27–12.39) | 10.73 (10.65–10.81) | 2.12 (2.08–2.16) | 2.86 (2.82–2.9) | 2.17 (2.14–2.21) | 5.7 (5.64–5.76) |
Χ² = 30,920.70; p = 0.001 | Χ² = 13,031.53; p = 0.001 | Χ² = 3233.17; p = 0.001 | Χ² = 2505.51; p = 0.001 | Χ² = 29,618.92; p = 0.001 | Χ² = 142,137.07; p = 0.001 | Χ² = 38,239.22; p = 0.001 | Χ² = 21,685.44; p = 0.001 | Χ² = 25,466.54; p = 0.001 | Χ² = 96,994.06; p = 0.001 | |
DRUID II | ||||||||||
Total | 20.3 (20.25–20.35) | 2.72 (2.7–2.74) | 7.16 (7.13–7.19) | 4.12 (4.09–4.14) | 9.02 (8.98–9.06) | 15.2 (15.15–15.26) | 1.79 (1.77–1.81) | 5.7 (5.67–5.74) | 3.37 (3.34–3.4) | 6.13 (6.09–6.17) |
Male | 16.55 (16.48–16.62) | 2.17 (2.14–2.2) | 6.21 (6.16–6.25) | 3.3 (3.27–3.34) | 7.03 (6.99–7.08) | 15.43 (15.35–15.5) | 2.04 (2.01–2.07) | 5.63 (5.58–5.67) | 3.24 (3.21–3.28) | 6.56 (6.51–6.61) |
Female | 23.92 (23.84–24) | 3.24 (3.21–3.27) | 8.08 (8.03–8.13) | 4.9 (4.86–4.94) | 10.94 (10.88–10.99) | 14.87 (14.78–14.96) | 1.42 (1.39–1.45) | 5.82 (5.76–5.88) | 3.57 (3.52–3.62) | 5.49 (5.43–5.55) |
Χ² = 18,324.73; p = 0.001 | Χ² = 6775.92; p = 0.001 | Χ² = 4413.65.54; p = 0.001 | Χ² = 2732.69; p = 0.001 | Χ² = 13,583.15; P = 0.001 | Χ² = 153,603.72; p = 0.001 | Χ² = 15,132.36; p = 0.001 | Χ² = 51,506.85; p = 0.001 | Χ² = 36,306.531; p = 0.001 | Χ² = 64,190.65; p = 0.001 | |
DRUID III | ||||||||||
Total | 19.08 (19.03–19.13) | 2.62 (2.59–2.64) | 0.99 (0.98–1) | 4.58 (4.55–4.6) | 13.51 (13.47–13.56) | 13.62 (13.56–13.67) | 1.69 (1.67–1.71) | 0.81 (0.79–0.82) | 4.14 (4.11–4.18) | 8.67 (8.62–8.71) |
Male | 13.27 (13.21–13.33) | 1.83 (1.81–1.86) | 0.76 (0.74–0.77) | 3.46 (3.43–3.5) | 9.05 (9–9.1) | 13.27 (13.2–13.34) | 1.84 (1.81–1.87) | 0.75 (0.73–0.77) | 3.73 (3.69–3.77) | 8.79 (8.73–8.85) |
Female | 24.69 (24.61–24.76) | 3.37 (3.34–3.4) | 1.22 (1.2–1.23) | 5.65 (5.61–5.69) | 17.82 (17.75–17.89) | 14.13 (14.04–14.22) | 1.48 (1.45–1.51) | 0.9 (0.87–0.92) | 4.76 (4.7–4.81) | 8.48 (8.41–8.55) |
Χ² = 13,929.87; p = 0.001 | Χ² = 7836.51; p = 0.001 | Χ² = 708.04; p = 0.001 | Χ² = 648.79; p = 0.001 | Χ² = 12,536.37; p = 0.001 | Χ² = 139,899.19; p = 0.001 | Χ² = 12,872.79; p = 0.001 | Χ² = 8304.99; p = 0.001 | Χ² = 34,128.12; p = 0.001 | Χ² = 94,925.86; p = 0.001 |
Population Using DIM % (95CI) | Drivers Using DIM % (95CI) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2015 | 2016 | 2017 | 2018 | 2019 | |
DRUID category | ||||||||||
I | ||||||||||
Total | 15.55 (15.5–15.59) | 17.14 (17.09–17.19) | 16.73 (16.69–16.78) | 17.85 (17.81–17.9) | 18.26 (18.21–18.31) | 11.02 (10.97–11.07) | 12.41 (12.36–12.47) | 12.24 (12.18–12.29) | 13.03 (12.97–13.08) | 13.45 (13.39–13.5) |
Male | 12.69 (12.63–12.76) | 14.23 (14.17–14.29) | 13.97 (13.9–14.03) | 15.09 (15.02–15.15) | 15.52 (15.45–15.58) | 12.01 (11.95–12.08) | 13.5 (13.43–13.58) | 13.4 (13.33–13.47) | 14.34 (14.27–14.42) | 14.6 (14.53–14.67) |
Female | 18.31 (18.24–18.38) | 19.95 (19.88–20.02) | 19.41 (19.34–19.48) | 20.53 (20.46–20.6) | 20.89 (20.82–20.97) | 9.51 (9.44–9.59) | 10.77 (10.69–10.85) | 10.51 (10.43–10.59) | 11.1 (11.02–11.18) | 11.76 (11.67–11.84) |
Χ² = 6242.63; p = 0.001 | Χ² = 6220.82; p = 0.001 | Χ² = 6371.31; p = 0.001 | Χ² = 6240.85; p = 0.001 | Χ² = 6243.2; p = 0.001 | Χ² = 26,691.39; p = 0.001 | Χ² = 28,349.01; p = 0.001 | Χ² = 27,655.09; p = 0.001 | Χ² = 29,166.77; p = 0.001 | Χ² = 30,466.79; p = 0.001 | |
II | ||||||||||
Total | 19.4 (19.35–19.45) | 21.07 (21.02–21.12) | 18.68 (18.63–18.73) | 20.43 (20.38–20.49) | 21.91 (21.86–21.97) | 14.02 (13.96–14.07) | 15.52 (15.46–15.58) | 14.23 (14.17–14.28) | 15.72 (15.66–15.78) | 16.54 (16.48–16.6) |
Male | 15.84 (15.77–15.9) | 17.34 (17.27–17.41) | 14.98 (14.91–15.04) | 16.66 (16.59–16.73) | 17.94 (17.87–18.01) | 14.53 (14.46–14.6) | 15.82 (15.75–15.9) | 14.26 (14.18–14.33) | 15.89 (15.82–15.97) | 16.64 (16.56–16.72) |
Female | 22.84 (22.77–22.92) | 24.68 (24.6–24.75) | 22.27 (22.19–22.34) | 24.08 (24.01–24.16) | 25.74 (25.66–25.81) | 13.24 (13.15–13.32) | 15.06 (14.97–15.15) | 14.18 (14.09–14.27) | 15.47 (15.37–15.56) | 16.38 (16.29–16.48) |
Χ² = 4212.31; p = 0.001 | Χ² = 3734.73; p = 0.001 | Χ² = 3259.54; p = 0.001 | Χ² = 3234.94; p = 0.001 | Χ² = 4093.43; p = 0.001 | Χ² = 29,478.34; p = 0.001 | Χ² = 32,470.1; p = 0.001 | Χ² = 28,803.92; p = 0.001 | Χ² = 30,527.18; p = 0.001 | Χ² = 32,463.86; p = 0.001 | |
III | ||||||||||
Total | 17 (16.95–17.04) | 19.17 (19.12–19.22) | 18.85 (18.8–18.9) | 20.05 (20–20.1) | 20.33 (20.28–20.38) | 11.61 (11.56–11.66) | 13.65 (13.6–13.71) | 13.57 (13.52–13.63) | 14.51 (14.46–14.57) | 14.74 (14.68–14.79) |
Male | 11.52 (11.46–11.58) | 13.27 (13.21–13.34) | 13.02 (12.96–13.08) | 14.14 (14.08–14.21) | 14.39 (14.33–14.46) | 11.49 (11.42–11.56) | 13.24 (13.17–13.31) | 13.15 (13.07–13.22) | 14.18 (14.11–14.25) | 14.3 (14.23–14.38) |
Female | 22.29 (22.22–22.37) | 24.87 (24.79–24.94) | 24.48 (24.4–24.56) | 25.76 (25.68–25.84) | 26.04 (25.96–26.12) | 11.8 (11.72–11.88) | 14.28 (14.19–14.36) | 14.21 (14.12–14.3) | 15 (14.91–15.1) | 15.38 (15.28–15.47) |
Χ² = 3115.65; p = 0.001 | Χ² = 2544.38; p = 0.001 | Χ² = 2879.54; p = 0.001 | Χ² = 2704.39; p = 0.001 | Χ² = 2772.62; p = 0.001 | Χ² = 24,930.35; p = 0.001 | Χ² = 28,892.67; p = 0.001 | Χ² = 27,808.57; p = 0.001 | Χ² = 29,052.18; p = 0.001 | Χ² = 29,466.38; p = 0.001 |
Frequency of Use | DRUID Category | Population Using DIM (Mean ± SD) | Drivers Using DIM(Mean ± SD) | ||||||
---|---|---|---|---|---|---|---|---|---|
Males | Females | TOTAL | t, p | Males | Females | TOTAL | t, p | ||
Acute | DRUID I | 1.02 ± 0.13 | 1.02 ± 0.15 | 1.02 ± 0.14 | t = −3.21; p = 0.078 | 1.02 ± 0.13 | 1.02 ± 0.14 | 1.02 ± 0.13 | t = −5.27; p = 0.093 |
DRUID II | 1.03 ± 0.17 | 1.04 ± 0.19 | 1.03 ± 0.18 | t = −23.70; p = 0.001 | 1.03 ± 0.17 | 1.03 ± 0.19 | 1.03 ± 0.18 | t = −79.87; p = 0.043 | |
DRUID III | 1 ± 0.06 | 1 ± 0.05 | 1 ± 0.05 | t = 1.28; p = 0.199 | 1 ± 0.05 | 1 ± 0.04 | 1 ± 0.05 | t = 3.51; p = 0.134 | |
TOTAL | 1.03 ± 0.19 | 1.04 ± 0.21 | 1.03 ± 0.2 | t = −21.9; p = 0.001 | 1.03 ± 0.19 | 1.04 ± 0.2 | 1.03 ± 0.19 | t = −11.9; p = 0.001 | |
Sub-acute | DRUID I | 1.12 ± 0.34 | 1.12 ± 0.35 | 1.12 ± 0.35 | t = −2.34; p = 0.123 | 1.12 ± 0.35 | 1.14 ± 0.36 | 1.13 ± 0.35 | t = −7.89; p = 0.001 |
DRUID II | 1.25 ± 0.49 | 1.32 ± 0.55 | 1.29 ± 0.53 | t = −42.65; p = 0.001 | 1.25 ± 0.49 | 1.32 ± 0.55 | 1.28 ± 0.51 | t = −31.06; p = 0.001 | |
DRUID III | 1.08 ± 0.29 | 1.11 ± 0.32 | 1.1 ± 0.31 | t = −25.87; p = 0.001 | 1.08 ± 0.28 | 1.1 ± 0.31 | 1.09 ± 0.3 | t = −17.77; p = 0.001 | |
Chronic | TOTAL | 1.37 ± 0.61 | 1.44 ± 0.66 | 1.41 ± 0.64 | t = −44.32; p = 0.001 | 1.38 ± 0.61 | 1.43 ± 0.65 | 1.4 ± 0.63 | t = −28.8; p = 0.001 |
DRUID I | 1.64 ± 0.92 | 1.58 ± 0.9 | 1.6 ± 0.91 | t = 31.810; p = 0.001 | 1.65 ± 0.93 | 1.46 ± 0.79 | 1.59 ± 0.89 | t = 75.72; p = 0.001 | |
DRUID II | 1.9 ± 1.26 | 1.98 ± 1.25 | 1.95 ± 1.25 | t = −29.71; p = 0.001 | 1.95 ± 1.31 | 2.06 ± 1.37 | 1.99 ± 1.33 | t = −27.55; p = 0.001 | |
DRUID III | 1.56 ± 0.87 | 1.68 ± 0.94 | 1.64 ± 0.92 | t = −74.74; p = 0.001 | 1.58 ± 0.88 | 1.7 ± 0.97 | 1.63 ± 0.92 | t = −53.21; p = 0.001 | |
TOTAL | 2.66 ± 1.84 | 3 ± 1.99 | 2.87 ± 1.94 | t = −44.32; p = 0.001 | 2.69 ± 1.87 | 2.92 ± 2.01 | 2.77 ± 1.92 | t = −65.66; p = 0.001 | |
Yearly | DRUID I | 1.41 ± 0.78 | 1.39 ± 0.77 | 1.4 ± 0.77 | t = 15.09; p = 0.001 | 1.4 ± 0.78 | 1.28 ± 0.64 | 1.36 ± 0.74 | t = 84.04; p = 0.001 |
DRUID II | 1.44 ± 0.95 | 1.52 ± 0.99 | 1.49 ± 0.97 | t = −62.85; p = 0.001 | 1.46 ± 0.98 | 1.48 ± 0.99 | 1.47 ± 0.99 | t = −9.29; p = 0.001 | |
DRUID III | 1.4 ± 0.77 | 1.51 ± 0.85 | 1.47 ± 0.83 | t = −94.53; p = 0.001 | 1.4 ± 0.77 | 1.46 ± 0.83 | 1.43 ± 0.8 | t = −31.72; p = 0.001 | |
TOTAL | 2.06 ± 1.61 | 2.404 ± 1.83 | 2.27 ± 1.76 | t = −204.39; p = 0.001 | 2.07 ± 1.64 | 2.15 ± 1.73 | 2.10 ± 1.67 | t = −32.08; p = 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Abejón, E.; Criado-Espegel, P.; Pedrosa-Naudín, M.A.; Fernández-Lázaro, D.; Herrera-Gómez, F.; Álvarez, F.J. Trends in the Use of Driving-Impairing Medicines According to the DRUID Category: A Population-Based Registry Study with Reference to Driving in a Region of Spain between 2015 and 2019. Pharmaceuticals 2023, 16, 508. https://doi.org/10.3390/ph16040508
Gutiérrez-Abejón E, Criado-Espegel P, Pedrosa-Naudín MA, Fernández-Lázaro D, Herrera-Gómez F, Álvarez FJ. Trends in the Use of Driving-Impairing Medicines According to the DRUID Category: A Population-Based Registry Study with Reference to Driving in a Region of Spain between 2015 and 2019. Pharmaceuticals. 2023; 16(4):508. https://doi.org/10.3390/ph16040508
Chicago/Turabian StyleGutiérrez-Abejón, Eduardo, Paloma Criado-Espegel, M. Aránzazu Pedrosa-Naudín, Diego Fernández-Lázaro, Francisco Herrera-Gómez, and F. Javier Álvarez. 2023. "Trends in the Use of Driving-Impairing Medicines According to the DRUID Category: A Population-Based Registry Study with Reference to Driving in a Region of Spain between 2015 and 2019" Pharmaceuticals 16, no. 4: 508. https://doi.org/10.3390/ph16040508
APA StyleGutiérrez-Abejón, E., Criado-Espegel, P., Pedrosa-Naudín, M. A., Fernández-Lázaro, D., Herrera-Gómez, F., & Álvarez, F. J. (2023). Trends in the Use of Driving-Impairing Medicines According to the DRUID Category: A Population-Based Registry Study with Reference to Driving in a Region of Spain between 2015 and 2019. Pharmaceuticals, 16(4), 508. https://doi.org/10.3390/ph16040508