Clearing and Masking Agents in Pretargeting Strategies
Abstract
:1. Introduction
1.1. Pretargeting in Nuclear Imaging and Radionuclide Therapy
1.2. Bioorthogonal Strategies
1.3. Clearing Versus Masking—What Are the Basics behind These Strategies?
2. Clearing Strategies
2.1. Carbohydrate-Based Clearing Agents
2.1.1. Efficiency of Clearing
2.1.2. Preclinical and Clinical Translation
2.2. Serum Albumin-Based Clearing Agents
2.2.1. Efficiency of Clearing
2.2.2. Preclinical and Clinical Translation
2.3. Other
2.3.1. Monoclonal Antibody-Based Clearing Agents
2.3.2. Avidin-Based Clearing Agents
2.3.3. Apotransferrin-Based Clearing Agents
3. Masking Strategies
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poletto, G.; Cecchin, D.; Bartoletti, P.; Venturini, F.; Realdon, N.; Evangelista, L. Radionuclide Delivery Strategies in Tumor Treatment: A Systematic Review. Curr. Issues Mol. Biol. 2022, 44, 3267–3282. [Google Scholar] [CrossRef]
- Handula, M.; Chen, K.-T.; Seimbille, Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021, 26, 4640. [Google Scholar] [CrossRef]
- Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem. Rev. 2022, 122, 340–384. [Google Scholar] [CrossRef]
- Rondon, A.; Degoul, F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug. Chem. 2020, 31, 159–173. [Google Scholar] [CrossRef]
- Qiu, L.; Mao, W.; Yin, H.; Tan, H.; Cheng, D.; Shi, H. Pretargeted Nuclear Imaging and Radioimmunotherapy Based on the Inverse Electron-Demand Diels–Alder Reaction and Key Factors in the Pretargeted Synthetic Design. Contrast Media Mol. Imaging 2019, 2019, 9182476. [Google Scholar] [CrossRef] [Green Version]
- Rondon, A.; Rouanet, J.; Degoul, F. Radioimmunotherapy in Oncology: Overview of the Last Decade Clinical Trials. Cancers 2021, 13, 5570. [Google Scholar] [CrossRef]
- Liu, G. A Revisit to the Pretargeting Concept—A Target Conversion. Front. Pharmacol. 2018, 9, 1476. [Google Scholar] [CrossRef]
- Verhoeven; Seimbille; Dalm. Therapeutic Applications of Pretargeting. Pharmaceutics 2019, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Hapuarachchige, S.; Artemov, D. Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. Front. Oncol. 2020, 10, 1131. [Google Scholar] [CrossRef]
- Cheal, S.M.; Chung, S.K.; Vaughn, B.A.; Cheung, N.-K.V.; Larson, S.M. Pretargeting: A Path Forward for Radioimmunotherapy. J. Nucl. Med. 2022, 63, 1302–1315. [Google Scholar] [CrossRef]
- Staudt, M.; Herth, M.M.; Poulie, C.B.M. Pretargeted Theranostics. In Theranostics—An Old Concept in New Clothing; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Edem, P.E.; Nørregaard, K.; Jørgensen, J.T.; Shalgunov, V.; Kjaer, A.; Herth, M.M. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials 2018, 179, 209–245. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Jørgensen, J.T.; Johann, K.; Nørregaard, K.; Sohr, B.; Svatunek, D.; Birke, A.; Shalgunov, V.; Edem, P.E.; Rossin, R.; et al. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano 2020, 14, 568–584. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Jørgensen, J.T.; Denk, C.; Battisti, U.M.; Nørregaard, K.; Edem, P.E.; Bratteby, K.; Shalgunov, V.; Wilkovitsch, M.; Svatunek, D.; et al. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted in Vivo Chemistry. ACS Pharmacol. Transl. Sci. 2021, 4, 824–833. [Google Scholar] [CrossRef]
- Poulie, C.B.M.; Jørgensen, J.T.; Shalgunov, V.; Kougioumtzoglou, G.; Jeppesen, T.E.; Kjaer, A.; Herth, M.M. Evaluation of [64Cu]Cu-NOTA-PEG7-H-Tz for Pretargeted Imaging in LS174T Xenografts—Comparison to [111In]In-DOTA-PEG11-BisPy-Tz. Molecules 2021, 26, 544. [Google Scholar] [CrossRef]
- Edem, P.E.; Jørgensen, J.T.; Nørregaard, K.; Rossin, R.; Yazdani, A.; Valliant, J.F.; Robillard, M.; Herth, M.M.; Kjaer, A. Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules 2020, 25, 463. [Google Scholar] [CrossRef] [Green Version]
- García-Vázquez, R.; Battisti, U.M.; Jørgensen, J.T.; Shalgunov, V.; Hvass, L.; Stares, D.L.; Petersen, I.N.; Crestey, F.; Löffler, A.; Svatunek, D.; et al. Direct Cu-Mediated Aromatic 18F-Labeling of Highly Reactive Tetrazines for Pretargeted Bioorthogonal PET Imaging. Chem. Sci. 2021, 12, 11668–11675. [Google Scholar] [CrossRef]
- García-Vázquez, R.; Jørgensen, J.T.; Bratteby, K.E.; Shalgunov, V.; Hvass, L.; Herth, M.M.; Kjær, A.; Battisti, U.M. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals 2022, 15, 245. [Google Scholar] [CrossRef]
- García-Vázquez, R.; Battisti, U.M.; Shalgunov, V.; Schäfer, G.; Barz, M.; Herth, M.M. [11C]Carboxylated Tetrazines for Facile Labeling of Trans-Cyclooctene-Functionalized PeptoBrushes. Macromol. Rapid Commun. 2022, 43, 2100655. [Google Scholar] [CrossRef]
- Otaru, S.; Paulus, A.; Imlimthan, S.; Kuurne, I.; Virtanen, H.; Liljenbäck, H.; Tolvanen, T.; Auchynnikava, T.; Roivainen, A.; Helariutta, K.; et al. Development of [18F]AmBF 3 Tetrazine for Radiolabeling of Peptides: Preclinical Evaluation and PET Imaging of [18F]AmBF 3 -PEG 7 -Tyr 3 -Octreotide in an AR42J Pancreatic Carcinoma Model. Bioconjug. Chem. 2022, 33, 1393–1404. [Google Scholar] [CrossRef]
- Van Duijn, P.; Willighagen, R.G.J.; Meijer, A.E.F.H. Increase of Acid Phosphatase Activity in Mouse Liver after Dextran Storage. Biochem. Pharmacol. 1959, 2, 177–181. [Google Scholar] [CrossRef]
- Vercauteren, R.; Schacht, E.; Duncan, R. Effect of the Chemical Modification of Dextran on the Degradation by Rat Liver Lysosomal Enzymes. J. Bioact. Compat. Polym. 1992, 7, 346–357. [Google Scholar] [CrossRef]
- Mowry, R.W.; Millican, R.C. A Histochemical Study of the Distribution and Fate of Dextran in Tissues of the Mouse. Am. J. Pathol. 1953, 29, 523–545. [Google Scholar]
- Chen, H.; Liu, Y.-C.; Zhang, Z.; Li, M.; Du, L.; Wu, P.-C.; Chong, W.-H.; Ren, F.; Zheng, W.; Liu, T.-M. Mouse Strain– and Charge-Dependent Vessel Permeability of Nanoparticles at the Lower Size Limit. Front. Chem. 2022, 10, 797. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Wittrup, K.D. A Modeling Analysis of the Effects of Molecular Size and Binding Affinity on Tumor Targeting. Mol. Cancer Ther. 2009, 8, 2861–2871. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.; Cheal, S.M.; Torchon, G.; Dilhas, A.; Yang, G.; Pu, J.; Punzalan, B.; Larson, S.M.; Ouerfelli, O. N -Acetylgalactosamino Dendrons as Clearing Agents to Enhance Liver Targeting of Model Antibody-Fusion Protein. Bioconjug. Chem. 2013, 24, 2088–2103. [Google Scholar] [CrossRef] [Green Version]
- Baenziger, J.U.; Maynard, Y. Human Hepatic Lectin. Physiochemical Properties and Specificity. J. Biol. Chem. 1980, 255, 4607–4613. [Google Scholar] [CrossRef]
- Ashwell, G.; Harford, J. Carbohydrate-Specific Receptors of the Liver. Annu. Rev. Biochem. 1982, 51, 531–554. [Google Scholar] [CrossRef]
- Lee, Y.C.; Townsend, R.R.; Hardy, M.R.; Lönngren, J.; Arnarp, J.; Haraldsson, M.; Lönn, H. Binding of Synthetic Oligosaccharides to the Hepatic Gal/GalNAc Lectin. Dependence on Fine Structural Features. J. Biol. Chem. 1983, 258, 199–202. [Google Scholar] [CrossRef]
- Cheal, S.M.; Patel, M.; Yang, G.; Veach, D.; Xu, H.; Guo, H.; Zanzonico, P.B.; Axworthy, D.B.; Cheung, N.-K.V.; Ouerfelli, O.; et al. An N -Acetylgalactosamino Dendron-Clearing Agent for High-Therapeutic-Index DOTA-Hapten Pretargeted Radioimmunotherapy. Bioconjug. Chem. 2020, 31, 501–506. [Google Scholar] [CrossRef]
- Cheal, S.M.; Xu, H.; Guo, H.; Zanzonico, P.B.; Larson, S.M.; Cheung, N.-K. Preclinical Evaluation of Multistep Targeting of Diasialoganglioside GD2 Using an IgG-ScFv Bispecific Antibody with High Affinity for GD2 and DOTA Metal Complex. Mol. Cancer Ther. 2014, 13, 1803–1812. [Google Scholar] [CrossRef] [Green Version]
- Cheal, S.M.; Xu, H.; Guo, H.f.; Lee, S.g.; Punzalan, B.; Chalasani, S.; Fung, E.K.; Jungbluth, A.; Zanzonico, P.B.; Carrasquillo, J.A.; et al. Theranostic Pretargeted Radioimmunotherapy of Colorectal Cancer Xenografts in Mice Using Picomolar Affinity 86Y- or 177Lu-DOTA-Bn Binding ScFv C825/GPA33 IgG Bispecific Immunoconjugates. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Cheal, S.M.; Xu, H.; Guo, H.; Patel, M.; Punzalan, B.; Fung, E.K.; Lee, S.; Bell, M.; Singh, M.; Jungbluth, A.A.; et al. Theranostic Pretargeted Radioimmunotherapy of Internalizing Solid Tumor Antigens in Human Tumor Xenografts in Mice: Curative Treatment of HER2-Positive Breast Carcinoma. Theranostics 2018, 8, 5106–5125. [Google Scholar] [CrossRef]
- Cheal, S.M.; Yoo, B.; Boughdad, S.; Punzalan, B.; Yang, G.; Dilhas, A.; Torchon, G.; Pu, J.; Axworthy, D.B.; Zanzonico, P.; et al. Evaluation of Glycodendron and Synthetically Modified Dextran Clearing Agents for Multistep Targeting of Radioisotopes for Molecular Imaging and Radioimmunotherapy. Mol. Pharm. 2014, 11, 400–416. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zhang, M.; Axworthy, D.B.; Wong, K.J.; Garmestani, K.; Park, L.; Park, C.W.; Mallett, R.W.; Theodore, L.J.; Yau, E.K.; et al. Radioimmunotherapy of A431 Xenografted Mice with Pretargeted B3 Antibody-Streptavidin and 90Y-Labeled 1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-Tetraacetic Acid (DOTA)-Biotin. Cancer Res. 2002, 62, 5755–5760. [Google Scholar]
- Cheung, N.K.V.; Modak, S.; Lin, Y.; Guo, H.; Zanzonico, P.; Chung, J.; Zuo, Y.; Sanderson, J.; Wilbert, S.; Theodore, L.J.; et al. Single-Chain Fv-Streptavidin Substantially Improved Therapeutic Index in Multistep Targeting Directed at Disialoganglioside GD2. J. Nucl. Med. 2004, 45, 867–877. [Google Scholar]
- Pagel, J.M.; Orgun, N.; Hamlin, D.K.; Wilbur, D.S.; Gooley, T.A.; Gopal, A.K.; Park, S.I.; Green, D.J.; Lin, Y.; Press, O.W. A Comparative Analysis of Conventional and Pretargeted Radioimmunotherapy of B-Cell Lymphomas by Targeting CD20, CD22, and HLA-DR Singly and in Combinations. Blood 2009, 113, 4903–4913. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Pagel, J.M.; Axworthy, D.; Pantelias, A.; Hedin, N.; Press, O.W. A Genetically Engineered Anti-CD45 Single-Chain Antibody-Streptavidin Fusion Protein for Pretargeted Radioimmunotherapy of Hematologic Malignancies. Cancer Res. 2006, 66, 3884–3892. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, K.; Hamlin, D.K.; Pagel, J.M.; Wilbur, D.S.; Meyer, D.L.; Axworthy, D.B.; Mallett, R.W.; Theodore, L.J.; Stayton, P.S.; Press, O.W. Comparison of Immunoscintigraphy, Efficacy, and Toxicity of Conventional and Pretargeted Radioimmunotherapy in CD20-Expressing Human Lymphoma Xenografts. J. Nucl. Med. 2003, 44, 437–445. [Google Scholar]
- Mohsin, H.; Jia, F.; Bryan, J.N.; Sivaguru, G.; Cutler, C.S.; Ketring, A.R.; Miller, W.H.; Simón, J.; Frank, R.K.; Theodore, L.J.; et al. Comparison of Pretargeted and Conventional CC49 Radioimmunotherapy Using 149Pm, 166Ho, and 177Lu. Bioconjug. Chem. 2011, 22, 2444–2452. [Google Scholar] [CrossRef]
- Park, S.I.; Shenoi, J.; Pagel, J.M.; Hamlin, D.K.; Wilbur, D.S.; Orgun, N.; Kenoyer, A.L.; Frayo, S.; Axtman, A.; Bäck, T.; et al. Conventional and Pretargeted Radioimmunotherapy Using Bismuth-213 to Target and Treat Non-Hodgkin Lymphomas Expressing CD20: A Preclinical Model toward Optimal Consolidation Therapy to Eradicate Minimal Residual Disease. Blood 2010, 116, 4231–4239. [Google Scholar] [CrossRef]
- Buchsbaum, D.J.; Khazaeli, M.B.; Axworthy, D.B.; Schultz, J.; Chaudhuri, T.R.; Zinn, K.R.; Carpenter, M.; LoBuglio, A.F. Intraperitoneal Pretarget Radioimmunotherapy with CC49 Fusion Protein. Clin. Cancer Res. 2005, 11, 8180–8185. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zhang, M.; Garmestani, K.; Axworthy, D.B.; Mallett, R.W.; Fritzberg, A.R.; Theodore, L.J.; Plascjak, P.S.; Eckelman, W.C.; Waldmann, T.A.; et al. Pretargeted α Emitting Radioimmunotherapy Using 213Bi 1,4,7,10-Tetraazacyclododecane- N, N′, N″, N‴-Tetraacetic Acid-Biotin. Clin. Cancer Res. 2004, 10, 3137–3146. [Google Scholar] [CrossRef] [Green Version]
- Pagel, J.M.; Lin, Y.; Hedin, N.; Pantelias, A.; Axworthy, D.; Stone, D.; Hamlin, D.K.; Wilbur, D.S.; Press, O.W. Comparison of a Tetravalent Single-Chain Antibody-Streptavidin Fusion Protein and an Antibody-Streptavidin Chemical Conjugate for Pretargeted Anti-CD20 Radioimmunotherapy of B-Cell Lymphomas. Blood 2006, 108, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Pagel, J.M.; Hedin, N.; Subbiah, K.; Meyer, D.; Mallet, R.; Axworthy, D.; Theodore, L.J.; Wilbur, D.S.; Matthews, D.C.; Press, O.W. Comparison of Anti-CD20 and Anti-CD45 Antibodies for Conventional and Pretargeted Radioimmunotherapy of B-Cell Lymphomas. Blood 2003, 101, 2340–2348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yao, Z.; Garmestani, K.; Axworthy, D.B.; Zhang, Z.; Mallett, R.W.; Theodore, L.J.; Goldman, C.K.; Brechbiel, M.W.; Carrasquillo, J.A.; et al. Pretargeting Radioimmunotherapy of a Murine Model of Adult T-Cell Leukemia with the α-Emitting Radionuclide, Bismuth 213. Blood 2002, 100, 208–216. [Google Scholar] [CrossRef]
- Press, O.W.; Corcoran, M.; Subbiah, K.; Hamlin, D.K.; Wilbur, D.S.; Johnson, T.; Theodore, L.; Yau, E.; Mallett, R.; Meyer, D.L.; et al. A Comparative Evaluation of Conventional and Pretargeted Radioimmunotherapy of CD20-Expressing Lymphoma Xenografts. Blood 2001, 98, 2535–2543. [Google Scholar] [CrossRef] [Green Version]
- Forero, A.; Weiden, P.L.; Vose, J.M.; Knox, S.J.; LoBuglio, A.F.; Hankins, J.; Goris, M.L.; Picozzi, V.J.; Axworthy, D.B.; Breitz, H.B.; et al. Phase 1 Trial of a Novel Anti-CD20 Fusion Protein in Pretargeted Radioimmunotherapy for B-Cell Non-Hodgkin Lymphoma. Blood 2004, 104, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Weiden, P.L.; Breitz, H.B. Pretargeted Radioimmunotherapy (PRITTM) for Treatment of Non-Hodgkin’s Lymphoma (NHL). Crit. Rev. Oncol. Hematol. 2001, 40, 37–51. [Google Scholar] [CrossRef]
- Weiden, P.L.; Breitz, H.B.; Press, O.; Appelbaum, J.W.; Bryan, J.K.; Gaffigan, S.; Stone, D.; Axworthy, D.; Fisher, D.; Reno, J. Pretargeted Radioimmunotherapy (PRITTM) for Treatment of Non-Hodgkin’s Lymphoma (NHL): Initial Phase I/II Study Results. Cancer Biother. Radiopharm. 2000, 15, 15–29. [Google Scholar] [CrossRef]
- Shen, S.; Forero, A.; LoBuglio, A.F.; Breitz, H.; Khazaeli, M.B.; Fisher, D.R.; Wang, W.; Meredith, R.F. Patient-Specific Dosimetry of Pretargeted Radioimmunotherapy Using CC49 Fusion Protein in Patients with Gastrointestinal Malignancies. J. Nucl. Med. 2005, 46, 642–651. [Google Scholar]
- Forero-Torres, A.; Shen, S.; Breitz, H.; Sims, R.B.; Axworthy, D.B.; Khazaeli, M.B.; Chen, K.-H.; Percent, I.; Besh, S.; LoBuglio, A.F. Pretargeted Radioimmunotherapy (RIT) with a Novel Anti-TAG-72 Fusion Protein. Cancer Biother. Radiopharm. 2005, 20, 379–390. [Google Scholar] [CrossRef]
- Rossin, R.; Läppchen, T.; Van Den Bosch, S.M.; Laforest, R.; Robillard, M.S. Diels-Alder Reaction for Tumor Pretargeting: In Vivo Chemistry Can Boost Tumor Radiation Dose Compared with Directly Labeled Antibody. J. Nucl. Med. 2013, 54, 1989–1995. [Google Scholar] [CrossRef] [Green Version]
- Rossin, R.; Renart Verkerk, P.; van den Bosch, S.M.; Vulders, R.C.M.; Verel, I.; Lub, J.; Robillard, M.S. In Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice. Angew. Chemie Int. Ed. 2010, 49, 3375–3378. [Google Scholar] [CrossRef]
- Rossin, R.; van Duijnhoven, S.M.J.; Läppchen, T.; van den Bosch, S.M.; Robillard, M.S. Trans -Cyclooctene Tag with Improved Properties for Tumor Pretargeting with the Diels–Alder Reaction. Mol. Pharm. 2014, 11, 3090–3096. [Google Scholar] [CrossRef]
- Shah, M.A.; Zhang, X.; Rossin, R.; Robillard, M.S.; Fisher, D.R.; Bueltmann, T.; Hoeben, F.J.M.; Quinn, T.P. Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using α-Particle Radiation. Bioconjug. Chem. 2017, 28, 3007–3015. [Google Scholar] [CrossRef]
- Breitz, H.B.; Weiden, P.L.; Beaumier, P.L.; Axworthy, D.B.; Seiler, C.; Su, F.M.; Graves, S.; Bryan, K.; Reno, J.M. Clinical Optimization of Pretargeted Radioimmunotherapy with Antibody- Streptavidin Conjugate and 90Y-DOTA-Biotin. J. Nucl. Med. 2000, 41, 131–140. [Google Scholar]
- Knox, S.J.; Goris, M.L.; Tempero, M.; Weiden, P.L.; Gentner, L.; Breitz, H.; Adams, G.P.; Axworthy, D.; Gaffigan, S.; Bryan, K.; et al. Phase II Trial of Yttrium-90-DOTA-Biotin Pretargeted by NR-LU-10 Antibody/Streptavidin in Patients with Metastatic Colon Cancer. Clin. Cancer Res. 2000, 6, 406–414. [Google Scholar]
- Myrhammar, A.; Vorobyeva, A.; Westerlund, K.; Yoneoka, S.; Orlova, A.; Tsukahara, T.; Tolmachev, V.; Karlström, A.E.; Altai, M. Evaluation of an Antibody-PNA Conjugate as a Clearing Agent for Antibody-Based PNA-Mediated Radionuclide Pretargeting. Sci. Rep. 2020, 10, 20777. [Google Scholar] [CrossRef]
- Karacay, H.; Sharkey, R.M.; Govindan, S.V.; McBride, W.J.; Goldenberg, D.M.; Hansen, H.J.; Griffiths, G.L. Development of a Streptavidin−Anti-Carcinoembryonic Antigen Antibody, Radiolabeled Biotin Pretargeting Method for Radioimmunotherapy of Colorectal Cancer. Reagent Development. Bioconjug. Chem. 1997, 8, 585–594. [Google Scholar] [CrossRef]
- Sharkey, R.M.; Karacay, H.; Griffiths, G.L.; Behr, T.M.; Blumenthal, R.D.; Mattes, M.J.; Hansen, H.J.; Goldenberg, D.M. Development of a Streptavidin-Anti-Carcinoembryonic Antigen Antibody, Radiolabeled Biotin Pretargeting Method for Radioimmunotherapy of Colorectal Cancer. Studies in a Human Colon Cancer Xenograft Model. Bioconjug. Chem. 1997, 8, 595–604. [Google Scholar] [CrossRef]
- Karacay, H.; Sharkey, R.M.; McBride, W.J.; Griffiths, G.L.; Qu, Z.; Chang, K.; Hansen, H.J.; Goldenberg, D.M. Pretargeting for Cancer Radioimmunotherapy with Bispecific Antibodies: Role of the Bispecific Antibody’s Valency for the Tumor Target Antigen. Bioconjug. Chem. 2002, 13, 1054–1070. [Google Scholar] [CrossRef]
- Paganelli, G.; Malcovati, M.; Siccardi, A.G.; Villa, E.; Sudati, F.; Rossetti, C.; Fazio, F. Three-Step Monoclonal Antibody Tumor Targeting in Carcinoembryonic Antigenpositive Patients. Cancer Res. 1991, 51, 5960–5966. [Google Scholar] [PubMed]
- Casalini, P.; Luison, E.; Ménard, S.; Colnaghi, M.I.; Paganelli, G.; Canevari, S. Tumor Pretargeting: Role of Avidin/Streptavidin on Monoclonal Antibody Internalization. J. Nucl. Med. 1997, 38, 1378–1381. [Google Scholar] [PubMed]
- Paganelli, G.; Pervez, S.; Siccardi, A.G.; Rowlinson, G.; Deleide, G.; Chiolerio, F.; Malcovati, M.; Scassellati, G.A.; Epenetos, A.A. Intraperitoneal Radio-Localization of Tumors Pre-Targeted by Biotinylated Monoclonal Antibodies. Int. J. Cancer 1990, 45, 1184–1189. [Google Scholar] [CrossRef]
- Mirallié, E.; Saï-Maurel, C.; Faivre-Chauvet, A.; Regenet, N.; Chang, C.-H.; Goldenberg, D.M.; Chatal, J.-F.; Barbet, J.; Thedrez, P. Improved Pretargeted Delivery of Radiolabelled Hapten to Human Tumour Xenograft in Mice by Avidin Chase of Circulating Bispecific Antibody. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 901–909. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sakahara, H.; Hosono, M.; Yao, Z.S.; Toyama, S.; Endo, K.; Konishi, J. Improved Clearance of Radiolabeled Biotinylated Monoclonal Antibody Following the Infusion of Avidin as a “chase” without Decreased Accumulation in the Target Tumor. J. Nucl. Med. 1994, 35, 1677–1684. [Google Scholar]
- Liu, G.; Dou, S.; Chen, X.; Chen, L.; Liu, X.; Rusckowski, M.; Hnatowich, D.J. Adding a Clearing Agent to Pretargeting Does Not Lower the Tumor Accumulation of the Effector as Predicted. Cancer Biother. Radiopharm. 2010, 25, 757–762. [Google Scholar] [CrossRef]
- Goodwin, D.A.; Meares, C.F.; McTigue, M.; Chaovapong, W.; Diamanti, C.I.; Ransone, C.H.; McCall, M.J. Pretargeted Immunoscintigraphy: Effect of Hapten Valency on Murine Tumor Uptake. J. Nucl. Med. 1992, 33, 2006–2013. [Google Scholar]
- Goodwin, D.A.; Meares, C.F.; McCall, M.J.; McTigue, M.; Chaovapong, W. Pre-Targeted Immunoscintigraphy of Murine Tumors with Indium-111-Labeled Bifunctional Haptens. J. Nucl. Med. 1988, 29, 226–234. [Google Scholar]
- Schuhmacher, J.; Klivényi, G.; Matys, R.; Stadler, M.; Regiert, T.; Hauser, H.; Doll, J.; Maier-Borst, W.; Zöller, M. Multistep Tumor Targeting in Nude Mice Using Bispecific Antibodies and a Gallium Chelate Suitable for Immunoscintigraphy with Positron Emission Tomography1. Cancer Res. 1995, 55, 115–123. [Google Scholar]
- Goodwin, D.A.; Meares, C.F.; Watanabe, N.; McTigue, M.; Chaovapong, W.; Ransone, C.M.; Renn, O.; Greiner, D.P.; Kukis, D.L.; Kronenberger, S.I. Pharmacokinetics of Pretargeted Monoclonal Antibody 2D12.5 and 88Y-Janus-2-(p-Nitrobenzyl)-1,4,7,10-Tetraazacyclododecanetetraacetic Acid (DOTA) in BALB/c Mice with KHJJ Mouse Adenocarcinoma: A Model for 90Y Radioimmunotherapy. Cancer Res. 1994, 54, 5937–5946. [Google Scholar] [PubMed]
- Schuhmacher, J.; Klivényi, G.; Kaul, S.; Henze, M.; Matys, R.; Hauser, H.; Clorius, J. Pretargeting of Human Mammary Carcinoma Xenografts with Bispecific Anti-MUC1/Anti-Ga Chelate Antibodies and Immunoscintigraphy with PET. Nucl. Med. Biol. 2001, 28, 821–828. [Google Scholar] [CrossRef]
- Meyer, J.-P.; Tully, K.M.; Jackson, J.; Dilling, T.R.; Reiner, T.; Lewis, J.S. Bioorthogonal Masking of Circulating Antibody–TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjug. Chem. 2018, 29, 538–545. [Google Scholar] [CrossRef]
- Membreno, R.; Keinänen, O.M.; Cook, B.E.; Tully, K.M.; Fung, K.C.; Lewis, J.S.; Zeglis, B.M. Toward the Optimization of Click-Mediated Pretargeted Radioimmunotherapy. Mol. Pharm. 2019, 16, 2259–2263. [Google Scholar] [CrossRef]
- Häfeli, U.O.; Saatchi, K.; Elischer, P.; Misri, R.; Bokharaei, M.; Labiris, N.R.; Stoeber, B. Lung Perfusion Imaging with Monosized Biodegradable Microspheres. Biomacromolecules 2010, 11, 561–567. [Google Scholar] [CrossRef]
- Pérez-Campaña, C.; Gómez-Vallejo, V.; Puigivila, M.; Martín, A.; Calvo-Fernández, T.; Moya, S.E.; Ziolo, R.F.; Reese, T.; Llop, J. Biodistribution of Different Sized Nanoparticles Assessed by Positron Emission Tomography: A General Strategy for Direct Activation of Metal Oxide Particles. ACS Nano 2013, 7, 3498–3505. [Google Scholar] [CrossRef]
Entry | Clearing Agent | Dose of CA | Pretargeting Pair | Radio-Nuclide | Blood (% ID/g) w/o CA w/CA | Tumor-to-Blood Ratio w/o CA w/CA | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
1 | Dextran | 62.5 µg, 0.125 nmol | bsAb huA33-C825, Hapten | 177Lu | 11.9 ± 0.36 | 0.45 ± 0.09 | 2.9 ± 0.4 | 77.3 ± 19.2 | [30] |
GalNAc16 | 20 µg, 2.2 nmol | 11.9 ± 0.36 | 0.46 ± 0.13 | 2.9 ± 0.4 | 59.2 ± 20.0 | ||||
GalNAc16 | 25 µg, 2.8 nmol | 11.9 ± 0.36 | 0.40 ± 0.18 | 2.9 ± 0.4 | 76.4 ± 36.2 | ||||
2 | Dextran | 250.0 µg, 0.49 nmol | bsAb hu3F8-C825, Hapten | 177Lu | 3.8 ± 0.12 | 0.14 ± 0.02 | 3.5 ± 0.4 | 73.5 ± 10.5 | [31] |
3 | Dextran | 62.5 µg, 0.125 nmol | bsAb huA33-C825, Hapten | 177Lu | ~8 | ~0.1 | 2.2 ± 0.4 | 105.8 ± 52.3 | [32] |
4 | Dextran | 62.5 µg, 0.125 nmol | bsAb trastuzumab-C825, Hapten | 177Lu | 4.95 ± 1.17 | ~0.3 | 4.0 ± 1.2 | 26.7 ± 9.0 | [33] |
5 | GalNAc4 | 13 µg, 5.7 nmol | scFv4−SA DOTA-biotin | 111In | 0.62 ± 0.14 | 0.02 ± 0.00 | 29.8 ± 9.3 | 337.7 ± 103.5 | [34] |
GalNAc8 | 26 µg, 5.9 nmol | 0.62 ± 0.14 | 0.03 ± 0.01 | 29.8 ± 9.3 | 174.3 ± 71.7 | ||||
GalNAc16 | 50 µg, 5.8 nmol | 0.62 ± 0.14 | 0.03 ± 0.01 | 29.8 ± 9.3 | 381.2 ± 100.6 | ||||
GalNAc32 | 100 µg, 5.7 nmol | 0.62 ± 0.14 | 0.02 ± 0.01 | 29.8 ± 9.3 | 639.8 ± 317.7 | ||||
Dextran | 100 µg, 0.2 nmol | 0.62 ± 0.14 | 0.02 ± 0.01 | 29.8 ± 9.3 | 243.5 ± 85.1 | ||||
6 | GalNAc16 | 100 µg, 1.1 nmol | B3-SA DOTA-biotin | 111In | 19.2 ± 1.9 | 1.71 ± 0.66 | ~1.1 | ~7.3 | [35] |
7 | GalNAc16 | 15 µg, 1.7 nmol | 5F11-scFv-SA DOTA-biotin | 111In | Not reported | ~0.11 | Not reported | 71.8 ± 43.3 | [36] |
GalNAc16 | 75 µg, 8.7 nmol | ~0.02 | 277.1 ± 74.5 | ||||||
GalNAc16 | 300 µg, 34.7 nmol | ~0.02 | 263.1 ± 75.2 | ||||||
GalNAc16 | 450 µg, 52.0 nmol | ~0.01 | 1040 ± 349 | ||||||
GalNAc16 | 900 µg, 140.0 nmol | ~0.01 | 629 ± 177 |
Entry | mAb | Target | Therapeutic Radionuclide | Clinical Status | Ref. |
---|---|---|---|---|---|
1 | 1F5 | CD20 | 90Y | Preclinical | [37] |
HD39 | CD22 | ||||
Lym-1 | DR | ||||
2 | BC8 | CD45 | 90Y | Preclinical | [38] |
3 | 1F5 | CD20 | 90Y | Preclinical | [39] |
4 | CC49 | TAG72 | 149Pm, 166Ho, 177Lu | Preclinical | [40] |
5 | 1F5 | CD20 | 213Bi | Preclinical | [41] |
6 | CC49 | TAG72 | 90Y, 177Lu | Preclinical | [42] |
7 | B3 | Leγ | 213Bi | Preclinical | [43] |
8 | 1F5 | CD20 | 90Y | Preclinical | [44] |
9 | BC8 | CD45 | 90Y | Preclinical | [45] |
1F5 | CD20 | ||||
10 | HAT | CD25 | 213Bi | Preclinical | [46] |
11 | 1F5 | CD20 | 90Y | Preclinical | [47] |
12 | B9E9 | CD20 | 90Y | Phase I | [48] |
13 | Rituximab (C2B8) | CD20 | 90Y | Phase I/II | [49,50] |
14 | CC49 | TAG72 | 90Y | Phase I | [51,52] |
Entry | Clearing Agent | Dose of CA | Pretargeting Pair | Radio-Nuclide | Blood [% ID/g] w/o CA w/CA | Tumor-to-Blood Ratio w/o CA w/CA | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
1 | aTf-DOTA | 0.75 equiv. | mAb Hapten (DOTA) | 111In | 6.05 ± 0.57 | 0.16 ± 0.05 | 1.80 | 8.72 | [70] |
2 | aTf-HBED | 1.7 µg, 0.02 nmol | bsAb Hapten (HBED) | 67Ga | 27.51 | 17.55 ± 1.04 | ~0.14 | ~0.30 | |
4.3 µg, 0.05 nmol | 27.51 | 6.12 ± 0.82 | ~0.14 | ~1.05 | [71] | ||||
8.6 µg, 0.1 nmol | 27.51 | 3.27 ± 0.61 | ~0.14 | ~2.43 |
Entry | Masking Agent | Equivalents of Masking Agent | Masking Time (h) | Blood Uptake (% ID/g) | Tumor-to-Blood Ratio |
---|---|---|---|---|---|
1 | None | - | - | 20.8 ± 2.9 | 0.22 ± 0.13 |
2 | In-IMP-156 | 1.5 | 0.5 | 15.7 ± 2.6 | 0.56 ± 0.19 |
3 | gal-BSA-DTPA4.4 | 5 | 2 | 16.2 ± 2.7 | 0.35 ± 0.12 |
4 | gal-BSA-DTPA4.4 | 5 | 24 | 14.7 ± 7.7 | 1.11 ± 1.69 |
5 | BSA-DTPA4.4 | 1.5 | 2 | 5.79 ± 3.19 | 1.61 ± 1.26 |
6 | BSA-DTPA4.4 | 5 | 2 | 0.90 ± 0.53 | 12.3 ± 5.2 |
7 | BSA-DTPA8.3 | 5 | 2 | 0.61 ± 0.16 | 13.4 ± 3.9 |
8 | BSA-DTPA4.4 | 5 | 0.5 | 1.43 ± 0.63 | 3.55 ± 1.99 |
9 | BSA-DTPA4.4 | 5 | 1 | 1.10 ± 0.60 | 4.79 ± 1.54 |
10 | BSA-DTPA4.4 | 5 | 2 | 1.00 ± 0.41 | 14.2 ± 4.9 |
11 | BSA-DTPA4.4 | 5 | 24 | 1.17 ± 0.54 | 2.20 ± 0.74 |
12 | IgG-DTPA4 | 5 | 0.5 | 1.05 ± 0.72 | 9.66 ± 8.34 |
13 | IgG-DTPA4 | 5 | 4 | 0.57 ± 0.15 | 15.3 ± 6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staudt, M.; Herth, M.M. Clearing and Masking Agents in Pretargeting Strategies. Pharmaceuticals 2023, 16, 497. https://doi.org/10.3390/ph16040497
Staudt M, Herth MM. Clearing and Masking Agents in Pretargeting Strategies. Pharmaceuticals. 2023; 16(4):497. https://doi.org/10.3390/ph16040497
Chicago/Turabian StyleStaudt, Markus, and Matthias M. Herth. 2023. "Clearing and Masking Agents in Pretargeting Strategies" Pharmaceuticals 16, no. 4: 497. https://doi.org/10.3390/ph16040497
APA StyleStaudt, M., & Herth, M. M. (2023). Clearing and Masking Agents in Pretargeting Strategies. Pharmaceuticals, 16(4), 497. https://doi.org/10.3390/ph16040497