Clearing and Masking Agents in Pretargeting Strategies
Abstract
1. Introduction
1.1. Pretargeting in Nuclear Imaging and Radionuclide Therapy
1.2. Bioorthogonal Strategies
1.3. Clearing Versus Masking—What Are the Basics behind These Strategies?
2. Clearing Strategies
2.1. Carbohydrate-Based Clearing Agents
2.1.1. Efficiency of Clearing
2.1.2. Preclinical and Clinical Translation
2.2. Serum Albumin-Based Clearing Agents
2.2.1. Efficiency of Clearing
2.2.2. Preclinical and Clinical Translation
2.3. Other
2.3.1. Monoclonal Antibody-Based Clearing Agents
2.3.2. Avidin-Based Clearing Agents
2.3.3. Apotransferrin-Based Clearing Agents
3. Masking Strategies
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poletto, G.; Cecchin, D.; Bartoletti, P.; Venturini, F.; Realdon, N.; Evangelista, L. Radionuclide Delivery Strategies in Tumor Treatment: A Systematic Review. Curr. Issues Mol. Biol. 2022, 44, 3267–3282. [Google Scholar] [CrossRef]
- Handula, M.; Chen, K.-T.; Seimbille, Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021, 26, 4640. [Google Scholar] [CrossRef]
- Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem. Rev. 2022, 122, 340–384. [Google Scholar] [CrossRef]
- Rondon, A.; Degoul, F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug. Chem. 2020, 31, 159–173. [Google Scholar] [CrossRef]
- Qiu, L.; Mao, W.; Yin, H.; Tan, H.; Cheng, D.; Shi, H. Pretargeted Nuclear Imaging and Radioimmunotherapy Based on the Inverse Electron-Demand Diels–Alder Reaction and Key Factors in the Pretargeted Synthetic Design. Contrast Media Mol. Imaging 2019, 2019, 9182476. [Google Scholar] [CrossRef]
- Rondon, A.; Rouanet, J.; Degoul, F. Radioimmunotherapy in Oncology: Overview of the Last Decade Clinical Trials. Cancers 2021, 13, 5570. [Google Scholar] [CrossRef]
- Liu, G. A Revisit to the Pretargeting Concept—A Target Conversion. Front. Pharmacol. 2018, 9, 1476. [Google Scholar] [CrossRef]
- Verhoeven; Seimbille; Dalm. Therapeutic Applications of Pretargeting. Pharmaceutics 2019, 11, 434. [Google Scholar] [CrossRef]
- Hapuarachchige, S.; Artemov, D. Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. Front. Oncol. 2020, 10, 1131. [Google Scholar] [CrossRef]
- Cheal, S.M.; Chung, S.K.; Vaughn, B.A.; Cheung, N.-K.V.; Larson, S.M. Pretargeting: A Path Forward for Radioimmunotherapy. J. Nucl. Med. 2022, 63, 1302–1315. [Google Scholar] [CrossRef]
- Staudt, M.; Herth, M.M.; Poulie, C.B.M. Pretargeted Theranostics. In Theranostics—An Old Concept in New Clothing; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Edem, P.E.; Nørregaard, K.; Jørgensen, J.T.; Shalgunov, V.; Kjaer, A.; Herth, M.M. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials 2018, 179, 209–245. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Jørgensen, J.T.; Johann, K.; Nørregaard, K.; Sohr, B.; Svatunek, D.; Birke, A.; Shalgunov, V.; Edem, P.E.; Rossin, R.; et al. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano 2020, 14, 568–584. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Jørgensen, J.T.; Denk, C.; Battisti, U.M.; Nørregaard, K.; Edem, P.E.; Bratteby, K.; Shalgunov, V.; Wilkovitsch, M.; Svatunek, D.; et al. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted in Vivo Chemistry. ACS Pharmacol. Transl. Sci. 2021, 4, 824–833. [Google Scholar] [CrossRef]
- Poulie, C.B.M.; Jørgensen, J.T.; Shalgunov, V.; Kougioumtzoglou, G.; Jeppesen, T.E.; Kjaer, A.; Herth, M.M. Evaluation of [64Cu]Cu-NOTA-PEG7-H-Tz for Pretargeted Imaging in LS174T Xenografts—Comparison to [111In]In-DOTA-PEG11-BisPy-Tz. Molecules 2021, 26, 544. [Google Scholar] [CrossRef]
- Edem, P.E.; Jørgensen, J.T.; Nørregaard, K.; Rossin, R.; Yazdani, A.; Valliant, J.F.; Robillard, M.; Herth, M.M.; Kjaer, A. Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules 2020, 25, 463. [Google Scholar] [CrossRef]
- García-Vázquez, R.; Battisti, U.M.; Jørgensen, J.T.; Shalgunov, V.; Hvass, L.; Stares, D.L.; Petersen, I.N.; Crestey, F.; Löffler, A.; Svatunek, D.; et al. Direct Cu-Mediated Aromatic 18F-Labeling of Highly Reactive Tetrazines for Pretargeted Bioorthogonal PET Imaging. Chem. Sci. 2021, 12, 11668–11675. [Google Scholar] [CrossRef]
- García-Vázquez, R.; Jørgensen, J.T.; Bratteby, K.E.; Shalgunov, V.; Hvass, L.; Herth, M.M.; Kjær, A.; Battisti, U.M. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals 2022, 15, 245. [Google Scholar] [CrossRef]
- García-Vázquez, R.; Battisti, U.M.; Shalgunov, V.; Schäfer, G.; Barz, M.; Herth, M.M. [11C]Carboxylated Tetrazines for Facile Labeling of Trans-Cyclooctene-Functionalized PeptoBrushes. Macromol. Rapid Commun. 2022, 43, 2100655. [Google Scholar] [CrossRef]
- Otaru, S.; Paulus, A.; Imlimthan, S.; Kuurne, I.; Virtanen, H.; Liljenbäck, H.; Tolvanen, T.; Auchynnikava, T.; Roivainen, A.; Helariutta, K.; et al. Development of [18F]AmBF 3 Tetrazine for Radiolabeling of Peptides: Preclinical Evaluation and PET Imaging of [18F]AmBF 3 -PEG 7 -Tyr 3 -Octreotide in an AR42J Pancreatic Carcinoma Model. Bioconjug. Chem. 2022, 33, 1393–1404. [Google Scholar] [CrossRef]
- Van Duijn, P.; Willighagen, R.G.J.; Meijer, A.E.F.H. Increase of Acid Phosphatase Activity in Mouse Liver after Dextran Storage. Biochem. Pharmacol. 1959, 2, 177–181. [Google Scholar] [CrossRef]
- Vercauteren, R.; Schacht, E.; Duncan, R. Effect of the Chemical Modification of Dextran on the Degradation by Rat Liver Lysosomal Enzymes. J. Bioact. Compat. Polym. 1992, 7, 346–357. [Google Scholar] [CrossRef]
- Mowry, R.W.; Millican, R.C. A Histochemical Study of the Distribution and Fate of Dextran in Tissues of the Mouse. Am. J. Pathol. 1953, 29, 523–545. [Google Scholar]
- Chen, H.; Liu, Y.-C.; Zhang, Z.; Li, M.; Du, L.; Wu, P.-C.; Chong, W.-H.; Ren, F.; Zheng, W.; Liu, T.-M. Mouse Strain– and Charge-Dependent Vessel Permeability of Nanoparticles at the Lower Size Limit. Front. Chem. 2022, 10, 797. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Wittrup, K.D. A Modeling Analysis of the Effects of Molecular Size and Binding Affinity on Tumor Targeting. Mol. Cancer Ther. 2009, 8, 2861–2871. [Google Scholar] [CrossRef]
- Yoo, B.; Cheal, S.M.; Torchon, G.; Dilhas, A.; Yang, G.; Pu, J.; Punzalan, B.; Larson, S.M.; Ouerfelli, O. N -Acetylgalactosamino Dendrons as Clearing Agents to Enhance Liver Targeting of Model Antibody-Fusion Protein. Bioconjug. Chem. 2013, 24, 2088–2103. [Google Scholar] [CrossRef]
- Baenziger, J.U.; Maynard, Y. Human Hepatic Lectin. Physiochemical Properties and Specificity. J. Biol. Chem. 1980, 255, 4607–4613. [Google Scholar] [CrossRef]
- Ashwell, G.; Harford, J. Carbohydrate-Specific Receptors of the Liver. Annu. Rev. Biochem. 1982, 51, 531–554. [Google Scholar] [CrossRef]
- Lee, Y.C.; Townsend, R.R.; Hardy, M.R.; Lönngren, J.; Arnarp, J.; Haraldsson, M.; Lönn, H. Binding of Synthetic Oligosaccharides to the Hepatic Gal/GalNAc Lectin. Dependence on Fine Structural Features. J. Biol. Chem. 1983, 258, 199–202. [Google Scholar] [CrossRef]
- Cheal, S.M.; Patel, M.; Yang, G.; Veach, D.; Xu, H.; Guo, H.; Zanzonico, P.B.; Axworthy, D.B.; Cheung, N.-K.V.; Ouerfelli, O.; et al. An N -Acetylgalactosamino Dendron-Clearing Agent for High-Therapeutic-Index DOTA-Hapten Pretargeted Radioimmunotherapy. Bioconjug. Chem. 2020, 31, 501–506. [Google Scholar] [CrossRef]
- Cheal, S.M.; Xu, H.; Guo, H.; Zanzonico, P.B.; Larson, S.M.; Cheung, N.-K. Preclinical Evaluation of Multistep Targeting of Diasialoganglioside GD2 Using an IgG-ScFv Bispecific Antibody with High Affinity for GD2 and DOTA Metal Complex. Mol. Cancer Ther. 2014, 13, 1803–1812. [Google Scholar] [CrossRef]
- Cheal, S.M.; Xu, H.; Guo, H.f.; Lee, S.g.; Punzalan, B.; Chalasani, S.; Fung, E.K.; Jungbluth, A.; Zanzonico, P.B.; Carrasquillo, J.A.; et al. Theranostic Pretargeted Radioimmunotherapy of Colorectal Cancer Xenografts in Mice Using Picomolar Affinity 86Y- or 177Lu-DOTA-Bn Binding ScFv C825/GPA33 IgG Bispecific Immunoconjugates. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 925–937. [Google Scholar] [CrossRef]
- Cheal, S.M.; Xu, H.; Guo, H.; Patel, M.; Punzalan, B.; Fung, E.K.; Lee, S.; Bell, M.; Singh, M.; Jungbluth, A.A.; et al. Theranostic Pretargeted Radioimmunotherapy of Internalizing Solid Tumor Antigens in Human Tumor Xenografts in Mice: Curative Treatment of HER2-Positive Breast Carcinoma. Theranostics 2018, 8, 5106–5125. [Google Scholar] [CrossRef]
- Cheal, S.M.; Yoo, B.; Boughdad, S.; Punzalan, B.; Yang, G.; Dilhas, A.; Torchon, G.; Pu, J.; Axworthy, D.B.; Zanzonico, P.; et al. Evaluation of Glycodendron and Synthetically Modified Dextran Clearing Agents for Multistep Targeting of Radioisotopes for Molecular Imaging and Radioimmunotherapy. Mol. Pharm. 2014, 11, 400–416. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, M.; Axworthy, D.B.; Wong, K.J.; Garmestani, K.; Park, L.; Park, C.W.; Mallett, R.W.; Theodore, L.J.; Yau, E.K.; et al. Radioimmunotherapy of A431 Xenografted Mice with Pretargeted B3 Antibody-Streptavidin and 90Y-Labeled 1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-Tetraacetic Acid (DOTA)-Biotin. Cancer Res. 2002, 62, 5755–5760. [Google Scholar]
- Cheung, N.K.V.; Modak, S.; Lin, Y.; Guo, H.; Zanzonico, P.; Chung, J.; Zuo, Y.; Sanderson, J.; Wilbert, S.; Theodore, L.J.; et al. Single-Chain Fv-Streptavidin Substantially Improved Therapeutic Index in Multistep Targeting Directed at Disialoganglioside GD2. J. Nucl. Med. 2004, 45, 867–877. [Google Scholar]
- Pagel, J.M.; Orgun, N.; Hamlin, D.K.; Wilbur, D.S.; Gooley, T.A.; Gopal, A.K.; Park, S.I.; Green, D.J.; Lin, Y.; Press, O.W. A Comparative Analysis of Conventional and Pretargeted Radioimmunotherapy of B-Cell Lymphomas by Targeting CD20, CD22, and HLA-DR Singly and in Combinations. Blood 2009, 113, 4903–4913. [Google Scholar] [CrossRef]
- Lin, Y.; Pagel, J.M.; Axworthy, D.; Pantelias, A.; Hedin, N.; Press, O.W. A Genetically Engineered Anti-CD45 Single-Chain Antibody-Streptavidin Fusion Protein for Pretargeted Radioimmunotherapy of Hematologic Malignancies. Cancer Res. 2006, 66, 3884–3892. [Google Scholar] [CrossRef]
- Subbiah, K.; Hamlin, D.K.; Pagel, J.M.; Wilbur, D.S.; Meyer, D.L.; Axworthy, D.B.; Mallett, R.W.; Theodore, L.J.; Stayton, P.S.; Press, O.W. Comparison of Immunoscintigraphy, Efficacy, and Toxicity of Conventional and Pretargeted Radioimmunotherapy in CD20-Expressing Human Lymphoma Xenografts. J. Nucl. Med. 2003, 44, 437–445. [Google Scholar]
- Mohsin, H.; Jia, F.; Bryan, J.N.; Sivaguru, G.; Cutler, C.S.; Ketring, A.R.; Miller, W.H.; Simón, J.; Frank, R.K.; Theodore, L.J.; et al. Comparison of Pretargeted and Conventional CC49 Radioimmunotherapy Using 149Pm, 166Ho, and 177Lu. Bioconjug. Chem. 2011, 22, 2444–2452. [Google Scholar] [CrossRef]
- Park, S.I.; Shenoi, J.; Pagel, J.M.; Hamlin, D.K.; Wilbur, D.S.; Orgun, N.; Kenoyer, A.L.; Frayo, S.; Axtman, A.; Bäck, T.; et al. Conventional and Pretargeted Radioimmunotherapy Using Bismuth-213 to Target and Treat Non-Hodgkin Lymphomas Expressing CD20: A Preclinical Model toward Optimal Consolidation Therapy to Eradicate Minimal Residual Disease. Blood 2010, 116, 4231–4239. [Google Scholar] [CrossRef]
- Buchsbaum, D.J.; Khazaeli, M.B.; Axworthy, D.B.; Schultz, J.; Chaudhuri, T.R.; Zinn, K.R.; Carpenter, M.; LoBuglio, A.F. Intraperitoneal Pretarget Radioimmunotherapy with CC49 Fusion Protein. Clin. Cancer Res. 2005, 11, 8180–8185. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, M.; Garmestani, K.; Axworthy, D.B.; Mallett, R.W.; Fritzberg, A.R.; Theodore, L.J.; Plascjak, P.S.; Eckelman, W.C.; Waldmann, T.A.; et al. Pretargeted α Emitting Radioimmunotherapy Using 213Bi 1,4,7,10-Tetraazacyclododecane- N, N′, N″, N‴-Tetraacetic Acid-Biotin. Clin. Cancer Res. 2004, 10, 3137–3146. [Google Scholar] [CrossRef]
- Pagel, J.M.; Lin, Y.; Hedin, N.; Pantelias, A.; Axworthy, D.; Stone, D.; Hamlin, D.K.; Wilbur, D.S.; Press, O.W. Comparison of a Tetravalent Single-Chain Antibody-Streptavidin Fusion Protein and an Antibody-Streptavidin Chemical Conjugate for Pretargeted Anti-CD20 Radioimmunotherapy of B-Cell Lymphomas. Blood 2006, 108, 328–336. [Google Scholar] [CrossRef]
- Pagel, J.M.; Hedin, N.; Subbiah, K.; Meyer, D.; Mallet, R.; Axworthy, D.; Theodore, L.J.; Wilbur, D.S.; Matthews, D.C.; Press, O.W. Comparison of Anti-CD20 and Anti-CD45 Antibodies for Conventional and Pretargeted Radioimmunotherapy of B-Cell Lymphomas. Blood 2003, 101, 2340–2348. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Z.; Garmestani, K.; Axworthy, D.B.; Zhang, Z.; Mallett, R.W.; Theodore, L.J.; Goldman, C.K.; Brechbiel, M.W.; Carrasquillo, J.A.; et al. Pretargeting Radioimmunotherapy of a Murine Model of Adult T-Cell Leukemia with the α-Emitting Radionuclide, Bismuth 213. Blood 2002, 100, 208–216. [Google Scholar] [CrossRef]
- Press, O.W.; Corcoran, M.; Subbiah, K.; Hamlin, D.K.; Wilbur, D.S.; Johnson, T.; Theodore, L.; Yau, E.; Mallett, R.; Meyer, D.L.; et al. A Comparative Evaluation of Conventional and Pretargeted Radioimmunotherapy of CD20-Expressing Lymphoma Xenografts. Blood 2001, 98, 2535–2543. [Google Scholar] [CrossRef]
- Forero, A.; Weiden, P.L.; Vose, J.M.; Knox, S.J.; LoBuglio, A.F.; Hankins, J.; Goris, M.L.; Picozzi, V.J.; Axworthy, D.B.; Breitz, H.B.; et al. Phase 1 Trial of a Novel Anti-CD20 Fusion Protein in Pretargeted Radioimmunotherapy for B-Cell Non-Hodgkin Lymphoma. Blood 2004, 104, 227–236. [Google Scholar] [CrossRef]
- Weiden, P.L.; Breitz, H.B. Pretargeted Radioimmunotherapy (PRITTM) for Treatment of Non-Hodgkin’s Lymphoma (NHL). Crit. Rev. Oncol. Hematol. 2001, 40, 37–51. [Google Scholar] [CrossRef]
- Weiden, P.L.; Breitz, H.B.; Press, O.; Appelbaum, J.W.; Bryan, J.K.; Gaffigan, S.; Stone, D.; Axworthy, D.; Fisher, D.; Reno, J. Pretargeted Radioimmunotherapy (PRITTM) for Treatment of Non-Hodgkin’s Lymphoma (NHL): Initial Phase I/II Study Results. Cancer Biother. Radiopharm. 2000, 15, 15–29. [Google Scholar] [CrossRef]
- Shen, S.; Forero, A.; LoBuglio, A.F.; Breitz, H.; Khazaeli, M.B.; Fisher, D.R.; Wang, W.; Meredith, R.F. Patient-Specific Dosimetry of Pretargeted Radioimmunotherapy Using CC49 Fusion Protein in Patients with Gastrointestinal Malignancies. J. Nucl. Med. 2005, 46, 642–651. [Google Scholar]
- Forero-Torres, A.; Shen, S.; Breitz, H.; Sims, R.B.; Axworthy, D.B.; Khazaeli, M.B.; Chen, K.-H.; Percent, I.; Besh, S.; LoBuglio, A.F. Pretargeted Radioimmunotherapy (RIT) with a Novel Anti-TAG-72 Fusion Protein. Cancer Biother. Radiopharm. 2005, 20, 379–390. [Google Scholar] [CrossRef]
- Rossin, R.; Läppchen, T.; Van Den Bosch, S.M.; Laforest, R.; Robillard, M.S. Diels-Alder Reaction for Tumor Pretargeting: In Vivo Chemistry Can Boost Tumor Radiation Dose Compared with Directly Labeled Antibody. J. Nucl. Med. 2013, 54, 1989–1995. [Google Scholar] [CrossRef]
- Rossin, R.; Renart Verkerk, P.; van den Bosch, S.M.; Vulders, R.C.M.; Verel, I.; Lub, J.; Robillard, M.S. In Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice. Angew. Chemie Int. Ed. 2010, 49, 3375–3378. [Google Scholar] [CrossRef]
- Rossin, R.; van Duijnhoven, S.M.J.; Läppchen, T.; van den Bosch, S.M.; Robillard, M.S. Trans -Cyclooctene Tag with Improved Properties for Tumor Pretargeting with the Diels–Alder Reaction. Mol. Pharm. 2014, 11, 3090–3096. [Google Scholar] [CrossRef]
- Shah, M.A.; Zhang, X.; Rossin, R.; Robillard, M.S.; Fisher, D.R.; Bueltmann, T.; Hoeben, F.J.M.; Quinn, T.P. Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using α-Particle Radiation. Bioconjug. Chem. 2017, 28, 3007–3015. [Google Scholar] [CrossRef]
- Breitz, H.B.; Weiden, P.L.; Beaumier, P.L.; Axworthy, D.B.; Seiler, C.; Su, F.M.; Graves, S.; Bryan, K.; Reno, J.M. Clinical Optimization of Pretargeted Radioimmunotherapy with Antibody- Streptavidin Conjugate and 90Y-DOTA-Biotin. J. Nucl. Med. 2000, 41, 131–140. [Google Scholar]
- Knox, S.J.; Goris, M.L.; Tempero, M.; Weiden, P.L.; Gentner, L.; Breitz, H.; Adams, G.P.; Axworthy, D.; Gaffigan, S.; Bryan, K.; et al. Phase II Trial of Yttrium-90-DOTA-Biotin Pretargeted by NR-LU-10 Antibody/Streptavidin in Patients with Metastatic Colon Cancer. Clin. Cancer Res. 2000, 6, 406–414. [Google Scholar]
- Myrhammar, A.; Vorobyeva, A.; Westerlund, K.; Yoneoka, S.; Orlova, A.; Tsukahara, T.; Tolmachev, V.; Karlström, A.E.; Altai, M. Evaluation of an Antibody-PNA Conjugate as a Clearing Agent for Antibody-Based PNA-Mediated Radionuclide Pretargeting. Sci. Rep. 2020, 10, 20777. [Google Scholar] [CrossRef]
- Karacay, H.; Sharkey, R.M.; Govindan, S.V.; McBride, W.J.; Goldenberg, D.M.; Hansen, H.J.; Griffiths, G.L. Development of a Streptavidin−Anti-Carcinoembryonic Antigen Antibody, Radiolabeled Biotin Pretargeting Method for Radioimmunotherapy of Colorectal Cancer. Reagent Development. Bioconjug. Chem. 1997, 8, 585–594. [Google Scholar] [CrossRef]
- Sharkey, R.M.; Karacay, H.; Griffiths, G.L.; Behr, T.M.; Blumenthal, R.D.; Mattes, M.J.; Hansen, H.J.; Goldenberg, D.M. Development of a Streptavidin-Anti-Carcinoembryonic Antigen Antibody, Radiolabeled Biotin Pretargeting Method for Radioimmunotherapy of Colorectal Cancer. Studies in a Human Colon Cancer Xenograft Model. Bioconjug. Chem. 1997, 8, 595–604. [Google Scholar] [CrossRef]
- Karacay, H.; Sharkey, R.M.; McBride, W.J.; Griffiths, G.L.; Qu, Z.; Chang, K.; Hansen, H.J.; Goldenberg, D.M. Pretargeting for Cancer Radioimmunotherapy with Bispecific Antibodies: Role of the Bispecific Antibody’s Valency for the Tumor Target Antigen. Bioconjug. Chem. 2002, 13, 1054–1070. [Google Scholar] [CrossRef]
- Paganelli, G.; Malcovati, M.; Siccardi, A.G.; Villa, E.; Sudati, F.; Rossetti, C.; Fazio, F. Three-Step Monoclonal Antibody Tumor Targeting in Carcinoembryonic Antigenpositive Patients. Cancer Res. 1991, 51, 5960–5966. [Google Scholar] [PubMed]
- Casalini, P.; Luison, E.; Ménard, S.; Colnaghi, M.I.; Paganelli, G.; Canevari, S. Tumor Pretargeting: Role of Avidin/Streptavidin on Monoclonal Antibody Internalization. J. Nucl. Med. 1997, 38, 1378–1381. [Google Scholar] [PubMed]
- Paganelli, G.; Pervez, S.; Siccardi, A.G.; Rowlinson, G.; Deleide, G.; Chiolerio, F.; Malcovati, M.; Scassellati, G.A.; Epenetos, A.A. Intraperitoneal Radio-Localization of Tumors Pre-Targeted by Biotinylated Monoclonal Antibodies. Int. J. Cancer 1990, 45, 1184–1189. [Google Scholar] [CrossRef]
- Mirallié, E.; Saï-Maurel, C.; Faivre-Chauvet, A.; Regenet, N.; Chang, C.-H.; Goldenberg, D.M.; Chatal, J.-F.; Barbet, J.; Thedrez, P. Improved Pretargeted Delivery of Radiolabelled Hapten to Human Tumour Xenograft in Mice by Avidin Chase of Circulating Bispecific Antibody. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 901–909. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sakahara, H.; Hosono, M.; Yao, Z.S.; Toyama, S.; Endo, K.; Konishi, J. Improved Clearance of Radiolabeled Biotinylated Monoclonal Antibody Following the Infusion of Avidin as a “chase” without Decreased Accumulation in the Target Tumor. J. Nucl. Med. 1994, 35, 1677–1684. [Google Scholar]
- Liu, G.; Dou, S.; Chen, X.; Chen, L.; Liu, X.; Rusckowski, M.; Hnatowich, D.J. Adding a Clearing Agent to Pretargeting Does Not Lower the Tumor Accumulation of the Effector as Predicted. Cancer Biother. Radiopharm. 2010, 25, 757–762. [Google Scholar] [CrossRef]
- Goodwin, D.A.; Meares, C.F.; McTigue, M.; Chaovapong, W.; Diamanti, C.I.; Ransone, C.H.; McCall, M.J. Pretargeted Immunoscintigraphy: Effect of Hapten Valency on Murine Tumor Uptake. J. Nucl. Med. 1992, 33, 2006–2013. [Google Scholar]
- Goodwin, D.A.; Meares, C.F.; McCall, M.J.; McTigue, M.; Chaovapong, W. Pre-Targeted Immunoscintigraphy of Murine Tumors with Indium-111-Labeled Bifunctional Haptens. J. Nucl. Med. 1988, 29, 226–234. [Google Scholar]
- Schuhmacher, J.; Klivényi, G.; Matys, R.; Stadler, M.; Regiert, T.; Hauser, H.; Doll, J.; Maier-Borst, W.; Zöller, M. Multistep Tumor Targeting in Nude Mice Using Bispecific Antibodies and a Gallium Chelate Suitable for Immunoscintigraphy with Positron Emission Tomography1. Cancer Res. 1995, 55, 115–123. [Google Scholar]
- Goodwin, D.A.; Meares, C.F.; Watanabe, N.; McTigue, M.; Chaovapong, W.; Ransone, C.M.; Renn, O.; Greiner, D.P.; Kukis, D.L.; Kronenberger, S.I. Pharmacokinetics of Pretargeted Monoclonal Antibody 2D12.5 and 88Y-Janus-2-(p-Nitrobenzyl)-1,4,7,10-Tetraazacyclododecanetetraacetic Acid (DOTA) in BALB/c Mice with KHJJ Mouse Adenocarcinoma: A Model for 90Y Radioimmunotherapy. Cancer Res. 1994, 54, 5937–5946. [Google Scholar] [PubMed]
- Schuhmacher, J.; Klivényi, G.; Kaul, S.; Henze, M.; Matys, R.; Hauser, H.; Clorius, J. Pretargeting of Human Mammary Carcinoma Xenografts with Bispecific Anti-MUC1/Anti-Ga Chelate Antibodies and Immunoscintigraphy with PET. Nucl. Med. Biol. 2001, 28, 821–828. [Google Scholar] [CrossRef]
- Meyer, J.-P.; Tully, K.M.; Jackson, J.; Dilling, T.R.; Reiner, T.; Lewis, J.S. Bioorthogonal Masking of Circulating Antibody–TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjug. Chem. 2018, 29, 538–545. [Google Scholar] [CrossRef]
- Membreno, R.; Keinänen, O.M.; Cook, B.E.; Tully, K.M.; Fung, K.C.; Lewis, J.S.; Zeglis, B.M. Toward the Optimization of Click-Mediated Pretargeted Radioimmunotherapy. Mol. Pharm. 2019, 16, 2259–2263. [Google Scholar] [CrossRef]
- Häfeli, U.O.; Saatchi, K.; Elischer, P.; Misri, R.; Bokharaei, M.; Labiris, N.R.; Stoeber, B. Lung Perfusion Imaging with Monosized Biodegradable Microspheres. Biomacromolecules 2010, 11, 561–567. [Google Scholar] [CrossRef]
- Pérez-Campaña, C.; Gómez-Vallejo, V.; Puigivila, M.; Martín, A.; Calvo-Fernández, T.; Moya, S.E.; Ziolo, R.F.; Reese, T.; Llop, J. Biodistribution of Different Sized Nanoparticles Assessed by Positron Emission Tomography: A General Strategy for Direct Activation of Metal Oxide Particles. ACS Nano 2013, 7, 3498–3505. [Google Scholar] [CrossRef]
Entry | Clearing Agent | Dose of CA | Pretargeting Pair | Radio-Nuclide | Blood (% ID/g) w/o CA w/CA | Tumor-to-Blood Ratio w/o CA w/CA | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
1 | Dextran | 62.5 µg, 0.125 nmol | bsAb huA33-C825, Hapten | 177Lu | 11.9 ± 0.36 | 0.45 ± 0.09 | 2.9 ± 0.4 | 77.3 ± 19.2 | [30] |
GalNAc16 | 20 µg, 2.2 nmol | 11.9 ± 0.36 | 0.46 ± 0.13 | 2.9 ± 0.4 | 59.2 ± 20.0 | ||||
GalNAc16 | 25 µg, 2.8 nmol | 11.9 ± 0.36 | 0.40 ± 0.18 | 2.9 ± 0.4 | 76.4 ± 36.2 | ||||
2 | Dextran | 250.0 µg, 0.49 nmol | bsAb hu3F8-C825, Hapten | 177Lu | 3.8 ± 0.12 | 0.14 ± 0.02 | 3.5 ± 0.4 | 73.5 ± 10.5 | [31] |
3 | Dextran | 62.5 µg, 0.125 nmol | bsAb huA33-C825, Hapten | 177Lu | ~8 | ~0.1 | 2.2 ± 0.4 | 105.8 ± 52.3 | [32] |
4 | Dextran | 62.5 µg, 0.125 nmol | bsAb trastuzumab-C825, Hapten | 177Lu | 4.95 ± 1.17 | ~0.3 | 4.0 ± 1.2 | 26.7 ± 9.0 | [33] |
5 | GalNAc4 | 13 µg, 5.7 nmol | scFv4−SA DOTA-biotin | 111In | 0.62 ± 0.14 | 0.02 ± 0.00 | 29.8 ± 9.3 | 337.7 ± 103.5 | [34] |
GalNAc8 | 26 µg, 5.9 nmol | 0.62 ± 0.14 | 0.03 ± 0.01 | 29.8 ± 9.3 | 174.3 ± 71.7 | ||||
GalNAc16 | 50 µg, 5.8 nmol | 0.62 ± 0.14 | 0.03 ± 0.01 | 29.8 ± 9.3 | 381.2 ± 100.6 | ||||
GalNAc32 | 100 µg, 5.7 nmol | 0.62 ± 0.14 | 0.02 ± 0.01 | 29.8 ± 9.3 | 639.8 ± 317.7 | ||||
Dextran | 100 µg, 0.2 nmol | 0.62 ± 0.14 | 0.02 ± 0.01 | 29.8 ± 9.3 | 243.5 ± 85.1 | ||||
6 | GalNAc16 | 100 µg, 1.1 nmol | B3-SA DOTA-biotin | 111In | 19.2 ± 1.9 | 1.71 ± 0.66 | ~1.1 | ~7.3 | [35] |
7 | GalNAc16 | 15 µg, 1.7 nmol | 5F11-scFv-SA DOTA-biotin | 111In | Not reported | ~0.11 | Not reported | 71.8 ± 43.3 | [36] |
GalNAc16 | 75 µg, 8.7 nmol | ~0.02 | 277.1 ± 74.5 | ||||||
GalNAc16 | 300 µg, 34.7 nmol | ~0.02 | 263.1 ± 75.2 | ||||||
GalNAc16 | 450 µg, 52.0 nmol | ~0.01 | 1040 ± 349 | ||||||
GalNAc16 | 900 µg, 140.0 nmol | ~0.01 | 629 ± 177 |
Entry | mAb | Target | Therapeutic Radionuclide | Clinical Status | Ref. |
---|---|---|---|---|---|
1 | 1F5 | CD20 | 90Y | Preclinical | [37] |
HD39 | CD22 | ||||
Lym-1 | DR | ||||
2 | BC8 | CD45 | 90Y | Preclinical | [38] |
3 | 1F5 | CD20 | 90Y | Preclinical | [39] |
4 | CC49 | TAG72 | 149Pm, 166Ho, 177Lu | Preclinical | [40] |
5 | 1F5 | CD20 | 213Bi | Preclinical | [41] |
6 | CC49 | TAG72 | 90Y, 177Lu | Preclinical | [42] |
7 | B3 | Leγ | 213Bi | Preclinical | [43] |
8 | 1F5 | CD20 | 90Y | Preclinical | [44] |
9 | BC8 | CD45 | 90Y | Preclinical | [45] |
1F5 | CD20 | ||||
10 | HAT | CD25 | 213Bi | Preclinical | [46] |
11 | 1F5 | CD20 | 90Y | Preclinical | [47] |
12 | B9E9 | CD20 | 90Y | Phase I | [48] |
13 | Rituximab (C2B8) | CD20 | 90Y | Phase I/II | [49,50] |
14 | CC49 | TAG72 | 90Y | Phase I | [51,52] |
Entry | Clearing Agent | Dose of CA | Pretargeting Pair | Radio-Nuclide | Blood [% ID/g] w/o CA w/CA | Tumor-to-Blood Ratio w/o CA w/CA | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
1 | aTf-DOTA | 0.75 equiv. | mAb Hapten (DOTA) | 111In | 6.05 ± 0.57 | 0.16 ± 0.05 | 1.80 | 8.72 | [70] |
2 | aTf-HBED | 1.7 µg, 0.02 nmol | bsAb Hapten (HBED) | 67Ga | 27.51 | 17.55 ± 1.04 | ~0.14 | ~0.30 | |
4.3 µg, 0.05 nmol | 27.51 | 6.12 ± 0.82 | ~0.14 | ~1.05 | [71] | ||||
8.6 µg, 0.1 nmol | 27.51 | 3.27 ± 0.61 | ~0.14 | ~2.43 |
Entry | Masking Agent | Equivalents of Masking Agent | Masking Time (h) | Blood Uptake (% ID/g) | Tumor-to-Blood Ratio |
---|---|---|---|---|---|
1 | None | - | - | 20.8 ± 2.9 | 0.22 ± 0.13 |
2 | In-IMP-156 | 1.5 | 0.5 | 15.7 ± 2.6 | 0.56 ± 0.19 |
3 | gal-BSA-DTPA4.4 | 5 | 2 | 16.2 ± 2.7 | 0.35 ± 0.12 |
4 | gal-BSA-DTPA4.4 | 5 | 24 | 14.7 ± 7.7 | 1.11 ± 1.69 |
5 | BSA-DTPA4.4 | 1.5 | 2 | 5.79 ± 3.19 | 1.61 ± 1.26 |
6 | BSA-DTPA4.4 | 5 | 2 | 0.90 ± 0.53 | 12.3 ± 5.2 |
7 | BSA-DTPA8.3 | 5 | 2 | 0.61 ± 0.16 | 13.4 ± 3.9 |
8 | BSA-DTPA4.4 | 5 | 0.5 | 1.43 ± 0.63 | 3.55 ± 1.99 |
9 | BSA-DTPA4.4 | 5 | 1 | 1.10 ± 0.60 | 4.79 ± 1.54 |
10 | BSA-DTPA4.4 | 5 | 2 | 1.00 ± 0.41 | 14.2 ± 4.9 |
11 | BSA-DTPA4.4 | 5 | 24 | 1.17 ± 0.54 | 2.20 ± 0.74 |
12 | IgG-DTPA4 | 5 | 0.5 | 1.05 ± 0.72 | 9.66 ± 8.34 |
13 | IgG-DTPA4 | 5 | 4 | 0.57 ± 0.15 | 15.3 ± 6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staudt, M.; Herth, M.M. Clearing and Masking Agents in Pretargeting Strategies. Pharmaceuticals 2023, 16, 497. https://doi.org/10.3390/ph16040497
Staudt M, Herth MM. Clearing and Masking Agents in Pretargeting Strategies. Pharmaceuticals. 2023; 16(4):497. https://doi.org/10.3390/ph16040497
Chicago/Turabian StyleStaudt, Markus, and Matthias M. Herth. 2023. "Clearing and Masking Agents in Pretargeting Strategies" Pharmaceuticals 16, no. 4: 497. https://doi.org/10.3390/ph16040497
APA StyleStaudt, M., & Herth, M. M. (2023). Clearing and Masking Agents in Pretargeting Strategies. Pharmaceuticals, 16(4), 497. https://doi.org/10.3390/ph16040497