Profiling of Secondary Metabolites of Optimized Ripe Ajwa Date Pulp (Phoenix dactylifera L.) Using Response Surface Methodology and Artificial Neural Network
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fitting of the RSM and ANN Models
2.2. Comparison of the Prediction Abilities of the RSM and ANN Models
2.3. Effect of HE Parameters on the TPC and TFC
2.4. Effect of HE Parameters on the In Vitro Antioxidant Capacity (AC)
2.5. Model Validation
2.6. Identification of Secondary Metabolites in RADP with High-Resolution Mass Spectrometry
2.6.1. Phenolic Acids
2.6.2. Flavonoids
2.6.3. Lignans
2.6.4. Sialic Acid and Derivatives
2.6.5. Amino Acids, Carboxylic Acids, and Fatty Acids
2.6.6. Sugar Molecules
2.6.7. Others
3. Materials and Methods
3.1. Sample Collection and Preparation
3.2. Antioxidant Activities
3.3. Experimental Design of Response Surface Methodology (RSM) for the Extraction Process
3.4. Artificial Neural Networks (ANN) Modeling
3.5. Comparison of the Prediction Ability of the RSM and ANN Models
3.6. Validation of the Model
3.7. Analysis of Chemical Compounds by ESI-MS/MS
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedraoui, S.; Badr, A.; Barba, M.G.M.; Doyen, A.; Tabka, Z.; Desjardins, Y. Optimization of the Ultrahigh-Pressure–Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Palm Dates (Phoenix dactylifera L.). Food Anal. Methods 2020, 13, 1556–1569. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Tabaraki, R.; Nateghi, A. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrason. Sonochemistry 2011, 18, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, H.S.; Amenaghawon, A.N.; Darmokoesoemo, H.; Neolaka, Y.A.B.; Widyaningrum, B.A.; Onowise, S.U.; Anyalewechi, C.L. A comparative evaluation of statistical empirical and neural intelligence modeling of Manihot esculenta-derived leaves extract for optimized bio-coagulation-flocculation of turbid water. Ind. Crops Prod. 2022, 186, 115194. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Baş, D.; Boyacı, İ.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. [Google Scholar] [CrossRef]
- Zobel, C.W.; Cook, D.F. Evaluation of neural network variable influence measures for process control. Eng. Appl. Artif. Intell. 2011, 24, 803–812. [Google Scholar] [CrossRef]
- Yasin, B.R.; El-Fawal, H.A.; Mousa, S.A. Date (Phoenix dactylifera) Polyphenolics and Other Bioactive Compounds: A Traditional Islamic Remedy’s Potential in Prevention of Cell Damage, Cancer Therapeutics and Beyond. Int. J. Mol. Sci. 2015, 16, 30075–30090. [Google Scholar] [CrossRef] [Green Version]
- Al-Yahya, M.; Raish, M.; AlSaid, M.S.; Ahmad, A.; Mothana, R.A.; Al-Sohaibani, M.; Al-Dosari, M.S.; Parvez, M.K.; Rafatullah, S. ’Ajwa’ dates (Phoenix dactylifera L.) extract ameliorates isoproterenol-induced cardiomyopathy through downregulation of oxidative, inflammatory and apoptotic molecules in rodent model. Phytomedicine Int. J. Phytother. Phytopharm. 2016, 23, 1240–1248. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Khan, A.A.; Aloliqi, A.A.; Ali Syed, M.; Rahmani, A.H. Therapeutic Potential of Ajwa Dates (Phoenix dactylifera) Extract in Prevention of Benzo(a)pyrene-Induced Lung Injury through the Modulation of Oxidative Stress, Inflammation, and Cell Signalling Molecules. Appl. Sci. 2022, 12, 6784. [Google Scholar] [CrossRef]
- Hassan, S.M.A.; Aboonq, M.S.; Albadawi, E.A.; Aljehani, Y.; Abdel-Latif, H.M.; Mariah, R.A.; Shafik, N.M.; Soliman, T.M.; Abdel-Gawad, A.R.; Omran, F.M.; et al. The Preventive and Therapeutic Effects of Ajwa Date Fruit Extract Against Acute Diclofenac Toxicity-Induced Colopathy: An Experimental Study. Drug Des. Devel. Ther. 2022, 16, 2601–2616. [Google Scholar] [CrossRef]
- Khalid, S.; Khalid, N.; Khan, R.S.; Ahmed, H.; Ahmad, A. A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends Food Sci. Technol. 2017, 63, 60–69. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Aly, S.M.; Ali, H.; Babiker, A.Y.; Srikar, S.; Khan, A.A. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. Int. J. Clin. Exp. Med. 2014, 7, 483–491. [Google Scholar] [PubMed]
- Siddiqui, S.; Ahmad, R.; Khan, M.A.; Upadhyay, S.; Husain, I.; Srivastava, A.N. Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells. Sci. Rep. 2019, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Boulenouar, N.; Marouf, A.; Cheriti, A. Antifungal activity and phytochemical screening of extracts from Phoenix dactylifera L. cultivars. Nat. Prod. Res. 2011, 25, 1999–2002. [Google Scholar] [CrossRef] [PubMed]
- Nematallah, K.A.; Ayoub, N.A.; Abdelsattar, E.; Meselhy, M.R.; Elmazar, M.M.; El-Khatib, A.H.; Linscheid, M.W.; Hathout, R.M.; Godugu, K.; Adel, A.; et al. Polyphenols LC-MS2 profile of Ajwa date fruit (Phoenix dactylifera L.) and their microemulsion: Potential impact on hepatic fibrosis. J. Funct. Foods 2018, 49, 401–411. [Google Scholar] [CrossRef]
- Almusallam, I.A.; Mohamed Ahmed, I.A.; Babiker, E.E.; Al Juhaimi, F.Y.; Fadimu, G.J.; Osman, M.A.; Al Maiman, S.A.; Ghafoor, K.; Alqah, H.A.S. Optimization of ultrasound-assisted extraction of bioactive properties from date palm (Phoenix dactylifera L.) spikelets using response surface methodology. LWT 2021, 140, 110816. [Google Scholar] [CrossRef]
- Benkerrou, F.; Bachir bey, M.; Amrane, M.; Louaileche, H. Ultrasonic-assisted extraction of total phenolic contents from Phoenix dactylifera and evaluation of antioxidant activity: Statistical optimization of extraction process parameters. J. Food Meas. Charact. 2018, 12, 1910–1916. [Google Scholar] [CrossRef]
- Dahmoune, F.; Remini, H.; Dairi, S.; Aoun, O.; Moussi, K.; Bouaoudia-Madi, N.; Adjeroud, N.; Kadri, N.; Lefsih, K.; Boughani, L.; et al. Ultrasound assisted extraction of phenolic compounds from P. lentiscus L. leaves: Comparative study of artificial neural network (ANN) versus degree of experiment for prediction ability of phenolic compounds recovery. Ind. Crops Prod. 2015, 77, 251–261. [Google Scholar] [CrossRef]
- Aung, T.; Kim, S.J.; Eun, J.B. A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract. Food Chem 2022, 366, 130689. [Google Scholar] [CrossRef] [PubMed]
- Qadir, R.; Anwar, F.; Naseem, K.; Tahir, M.H.; Alhumade, H. Enzyme-Assisted Extraction of Phenolics from Capparis spinosa Fruit: Modeling and Optimization of the Process by RSM and ANN. ACS Omega 2022, 7, 33031–33038. [Google Scholar] [CrossRef]
- Spiess, A.N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Wei, H.-L.; Balikhin, M.M. Nonlinear predictive model selection and model averaging using information criteria. Syst. Sci. Control Eng. 2018, 6, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.O.F.; Akanbi, O.D. Statistical modeling and optimization of the bleachability of regenerated spent bleaching earth using response surface methodology and artificial neural networks with genetic algorithm. Chem. Prod. Process Model. 2022; in press. [Google Scholar] [CrossRef]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Segovia, Á.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A. Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Sep. Purif. Technol. 2021, 270, 118779. [Google Scholar] [CrossRef]
- Choi, H.-J.; Naznin, M.; Alam, M.B.; Javed, A.; Alshammari, F.H.; Kim, S.; Lee, S.-H. Optimization of the extraction conditions of Nypa fruticans Wurmb. using response surface methodology and artificial neural network. Food Chem. 2022, 381, 132086. [Google Scholar] [CrossRef]
- Xu, S.; Li, X.; Liu, S.; Tian, P.; Li, D. Juniperus sabina L. as a Source of Podophyllotoxins: Extraction Optimization and Anticholinesterase Activities. Int. J. Mol. Sci. 2022, 23, 10205. [Google Scholar] [CrossRef]
- Huang, S.-M.; Kuo, C.-H.; Chen, C.-A.; Liu, Y.-C.; Shieh, C.-J. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid. Ultrason. Sonochemistry 2017, 36, 112–122. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Liu, T.-A.; Chen, J.-H.; Chang, C.-M.J.; Shieh, C.-J. Response surface methodology and artificial neural network optimized synthesis of enzymatic 2-phenylethyl acetate in a solvent-free system. Biocatal. Agric. Biotechnol. 2014, 3, 1–6. [Google Scholar] [CrossRef]
- Javed, A.; Naznin, M.; Alam, M.B.; Fanar, A.; Song, B.-R.; Kim, S.; Lee, S.-H. Metabolite Profiling of Microwave-Assisted Sargassum fusiforme Extracts with Improved Antioxidant Activity Using Hybrid Response Surface Methodology and Artificial Neural Networking-Genetic Algorithm. Antioxidants 2022, 11, 2246. [Google Scholar] [CrossRef]
- Aklilu, E.G.; Adem, A.; Kasirajan, R.; Ahmed, Y. Artificial neural network and response surface methodology for modeling and optimization of activation of lactoperoxidase system. South Afr. J. Chem. Eng. 2021, 37, 12–22. [Google Scholar] [CrossRef]
- Xi, J.; Wang, B. Optimization of Ultrahigh-Pressure Extraction of Polyphenolic Antioxidants from Green Tea by Response Surface Methodology. Food Bioprocess Technol. 2013, 6, 2538–2546. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.-X.; Lian, C.-X.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chem. 2011, 126, 1122–1126. [Google Scholar] [CrossRef]
- Derrien, M.; Badr, A.; Gosselin, A.; Desjardins, Y.; Angers, P. Optimization of a green process for the extraction of lutein and chlorophyll from spinach by-products using response surface methodology (RSM). LWT—Food Sci. Technol. 2017, 79, 170–177. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, W.; Wojakowska, A.; Grajzer, M.; Stobiecki, M. Mass spectrometric behavior of phenolic acids standards and their analysis in the plant samples with LC/ESI/MS system. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 967, 21–27. [Google Scholar] [CrossRef]
- Najm, O.A.; Addnan, F.H.; Mohd-Manzor, N.F.; Elkadi, M.A.; Abdullah, W.O.; Ismail, A.; Mansur, F.A.F. Identification of Phytochemicals of Phoenix dactylifera L. Cv Ajwa with UHPLC-ESI-QTOF-MS/MS. Int. J. Fruit Sci. 2021, 21, 848–867. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, Y.; Qiu, Q.; Jiang, C.; Jing, Y.; Qiu, G.; He, X. Bioactive phenolics from the fruits of Livistona chinensis. Fitoterapia 2012, 83, 104–109. [Google Scholar] [CrossRef]
- Li, F.; Yan, T.T.; Fu, Y.Y.; Zhang, N.L.; Wang, L.; Zhang, Y.B.; Du, J.; Liu, J.F. New phenylpropanoid glycosides from Illicium majus and their radical scavenging activities. Chem. Biodivers. 2021, 18, e2001012. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-H.; Kim, Y.-M.; Walsh, M.K.; Wee, Y.-J.; Yang, K.-Y.; Ko, J.-A.; Han, S.; Thanh Hanh Nguyen, T.; Kim, J.Y.; Kim, D. Synthesis and functional characterization of caffeic acid glucoside using Leuconostoc mesenteroides dextransucrase. J. Agric. Food Chem. 2017, 65, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
- Tsagkarakou, A.S.; Chasapi, S.A.; Koulas, S.M.; Tsialtas, I.; Kyriakis, E.; Drakou, C.E.; Kun, S.; Somsák, L.; Spyroulias, G.A.; Psarra, A.-M.G.; et al. Structure activity relationship of the binding of p-coumaroyl glucose to glycogen phosphorylase and its effect on hepatic cell metabolic pathways. Eur. J. Med. Chem. Rep. 2021, 3, 100011. [Google Scholar] [CrossRef]
- Błaszczak, W.; Jeż, M.; Szwengiel, A. Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymes. Food Chem. 2020, 314, 126181. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, W.; Choomuenwai, V.; Andrews, K.T.; Quinn, R.J.; Feng, Y. Chemical investigation of an antimalarial Chinese medicinal herb Picrorhiza scrophulariiflora. Bioorganic Med. Chem. Lett. 2013, 23, 5915–5918. [Google Scholar] [CrossRef] [Green Version]
- Naznin, M.; Badrul Alam, M.; Alam, R.; Islam, S.; Rakhmat, S.; Lee, S.-H.; Kim, S. Metabolite profiling of Nymphaea rubra (Burm. f.) flower extracts using cyclic ion mobility–mass spectrometry and their associated biological activities. Food Chem. 2023, 404, 134544. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.B.; Naznin, M.; Islam, S.; Alshammari, F.H.; Choi, H.J.; Song, B.R.; Kim, S.; Lee, S.H. High Resolution Mass Spectroscopy-Based Secondary Metabolite Profiling of Nymphaea nouchali (Burm. f) Stem Attenuates Oxidative Stress via Regulation of MAPK/Nrf2/HO-1/ROS Pathway. Antioxidants 2021, 10, 719. [Google Scholar] [CrossRef]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Aboulaghras, S.; Sahib, N.; Bakrim, S.; Benali, T.; Charfi, S.; Guaouguaou, F.E.; Omari, N.E.; Gallo, M.; Montesano, D.; Zengin, G.; et al. Health Benefits and Pharmacological Aspects of Chrysoeriol. Pharmaceuticals 2022, 15, 973. [Google Scholar] [CrossRef]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [Green Version]
- Vukics, V.; Guttman, A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, Q.; Wang, T.; Liu, J.; Chen, D. Comparison of the Antioxidant Effects of Quercitrin and Isoquercitrin: Understanding the Role of the 6″-OH Group. Molecules 2016, 21, 1246. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Jung, M.J.; Park, H.J.; Chung, H.Y.; Kang, S.S. Further isolation of peroxynitrite and 1,1-diphenyl-2-picrylhydrazyl radical scavenging isorhamnetin 7-O-glucoside from the leaves of Brassica juncea L. Arch. Pharmacal Res. 2002, 25, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Delazar, A.; Sabzevari, A.; Mojarrab, M.; Nazemiyeh, H.; Esnaashari, S.; Nahar, L.; Razavi, S.M.; Sarker, S.D. Free-radical-scavenging principles from Phlomis caucasica. J. Nat. Med. 2008, 62, 464–466. [Google Scholar] [CrossRef]
- Hyun, S.K.; Jung, Y.J.; Chung, H.Y.; Jung, H.A.; Choi, J.S. Isorhamnetin glycosides with free radical and ONOO-scavenging activities from the stamens of Nelumbo nucifera. Arch. Pharmacal Res. 2006, 29, 287–292. [Google Scholar] [CrossRef]
- Nakamura, Y.; Watanabe, S.; Miyake, N.; Kohno, H.; Osawa, T. Dihydrochalcones: Evaluation as novel radical scavenging antioxidants. J. Agric. Food Chem. 2003, 51, 3309–3312. [Google Scholar] [CrossRef]
- Nguyen, T.H.H.; Woo, S.-M.; Nguyen, N.A.; Cha, G.-S.; Yeom, S.-J.; Kang, H.-S.; Yun, C.-H. Regioselective Hydroxylation of Naringin Dihydrochalcone to Produce Neoeriocitrin Dihydrochalcone by CYP102A1 (BM3) Mutants. Catalysts 2020, 10, 823. [Google Scholar] [CrossRef]
- Kim, S.; Lee, E.Y.; Hillman, P.F.; Ko, J.; Yang, I.; Nam, S.J. Chemical Structure and Biological Activities of Secondary Metabolites from Salicornia europaea L. Molecules 2021, 26, 2252. [Google Scholar] [CrossRef]
- Limongelli, F.; Crupi, P.; Clodoveo, M.L.; Corbo, F.; Muraglia, M. Overview of the Polyphenols in Salicornia: From Recovery to Health-Promoting Effect. Molecules 2022, 27, 7954. [Google Scholar] [CrossRef]
- Minami, A.; Fujita, Y.; Shimba, S.; Shiratori, M.; Kaneko, Y.K.; Sawatani, T.; Otsubo, T.; Ikeda, K.; Kanazawa, H.; Mikami, Y.; et al. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid is a glucose-dependent potentiator of insulin secretion. Sci. Rep. 2020, 10, 5198. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.-J.; Oh, E.; Cho, C.; Kwon, H.; Lee, C.-G.; Jeon, J.; Lee, H.; Choi, S.; Han, S.J.; Nam, J.; et al. 3′-Sialyllactose prebiotics prevents skin inflammation via regulatory T cell differentiation in atopic dermatitis mouse models. Sci. Rep. 2020, 10, 5603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdijk, O.; Van Baarlen, P.; Fernandez-Gutierrez, M.M.; Van den Brink, E.; Schuren, F.H.; Brugman, S.; Savelkoul, H.F.; Kleerebezem, M.; Van Neerven, R.J. Sialyllactose and galactooligosaccharides promote epithelial barrier functioning and distinctly modulate microbiota composition and short chain fatty acid production in vitro. Front. Immunol. 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.; Kang, L.J.; Lee, K.M.; Cho, C.; Song, E.K.; Kim, W.; Park, T.J.; Yang, S. 3′-Sialyllactose protects against osteoarthritic development by facilitating cartilage homeostasis. J. Cell. Mol. Med. 2018, 22, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Almenara, X.; Guijas, C.; Billings, E.; Montenegro-Burke, J.R.; Uritboonthai, W.; Aisporna, A.E.; Chen, E.; Benton, H.P.; Siuzdak, G. The METLIN small molecule dataset for machine learning-based retention time prediction. Nat. Commun. 2019, 10, 5811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D.S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93, 11692–11700. [Google Scholar] [CrossRef]
- Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a large food chemical database: Chemical space, diversity, and complexity. F1000Research 2018, 7, 993. [Google Scholar] [CrossRef]
- Šudomová, M.; Hassan, S.T.S.; Khan, H.; Rasekhian, M.; Nabavi, S.M. A Multi-Biochemical and In Silico Study on Anti-Enzymatic Actions of Pyroglutamic Acid against PDE-5, ACE, and Urease Using Various Analytical Techniques: Unexplored Pharmacological Properties and Cytotoxicity Evaluation. Biomolecules 2019, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.B.; Ahmed, A.; Islam, S.; Choi, H.J.; Motin, M.A.; Kim, S.; Lee, S.H. Phytochemical Characterization of Dillenia indica L. Bark by Paper Spray Ionization-Mass Spectrometry and Evaluation of Its Antioxidant Potential Against t-BHP-Induced Oxidative Stress in RAW 264.7 Cells. Antioxidants 2020, 9, 1099. [Google Scholar] [CrossRef]
- Swapana, N.; Noji, M.; Nishiuma, R.; Izumi, M.; Imagawa, H.; Kasai, Y.; Okamoto, Y.; Iseki, K.; Singh, C.B.; Asakawa, Y.; et al. A New Diphenyl Ether Glycoside from Xylosma longifolium Collected from North-East India. Nat. Prod. Commun. 2017, 12, 1934578X1701200832. [Google Scholar] [CrossRef] [Green Version]
- Haewpetch, P.; Rudeekulthamrong, P.; Kaulpiboon, J. Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777. Biomolecules 2022, 12, 167. [Google Scholar] [CrossRef]
- Gao, K.; Zheng, C.; Wang, T.; Zhao, H.; Wang, J.; Wang, Z.; Zhai, X.; Jia, Z.; Chen, J.; Zhou, Y.; et al. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing. Molecules 2016, 21, 1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Run | Independent Variables | Responses | |||||
---|---|---|---|---|---|---|---|
(X1) | (X2) | (X3) | TPC (Y1) | TFC (Y2) | DPPH (Y3) | CUPRAC (Y4) | |
1 | 75 | 4 | 70 | 4.30 ± 0.68 | 3.16 ± 0.73 | 10.81 ± 0.72 | 1.38 ± 0.05 |
2 | 25 | 2 | 50 | 3.81 ± 0.83 | 2.55 ± 0.52 | 10.25 ± 0.39 | 1.47 ± 0.02 |
3 | 75 | 2 | 50 | 3.90 ± 0.34 | 2.55 ± 0.25 | 9.75 ± 0.37 | 1.16 ± 0.16 |
4 | 100 | 3 | 60 | 4.30 ± 0.26 | 3.44 ± 0.65 | 10.11 ± 0.24 | 1.12 ± 0.10 |
5 | 75 | 2 | 70 | 3.50 ± 0.41 | 2.56 ± 0.32 | 9.95 ± 1.00 | 1.17 ± 0.07 |
6 | 50 | 3 | 60 | 4.53 ± 0.82 | 3.10 ± 0.21 | 10.45 ± 0.10 | 1.40 ± 0.08 |
7 | 0 | 3 | 60 | 3.01 ± 1.02 | 2.52 ± 0.25 | 9.57 ± 0.56 | 0.91 ± 0.06 |
8 | 75 | 4 | 50 | 4.31 ± 0.49 | 2.95 ± 0.45 | 9.88 ± 0.26 | 0.88 ± 0.04 |
9 | 50 | 3 | 60 | 4.30 ± 0.42 | 3.15 ± 0.54 | 10.40 ± 0.95 | 1.46 ± 0.08 |
10 | 50 | 3 | 60 | 4.51 ± 0.23 | 3.09 ± 0.98 | 10.42 ± 0.35 | 1.43 ± 0.04 |
11 | 50 | 3 | 80 | 3.78 ± 0.62 | 2.26 ± 0.10 | 9.50 ± 0.26 | 1.11 ± 0.02 |
12 | 50 | 3 | 60 | 4.46 ± 0.06 | 3.01 ± 1.02 | 10.48 ± 0.33 | 1.45 ± 0.06 |
13 | 50 | 3 | 60 | 4.48 ± 0.04 | 3.12 ± 0.56 | 10.41 ± 0.53 | 1.43 ± 0.16 |
14 | 25 | 4 | 70 | 3.15 ± 0.08 | 2.16 ± 0.46 | 9.60 ± 0.35 | 1.00 ± 0.13 |
15 | 50 | 3 | 60 | 4.51 ± 0.06 | 2.95 ± 0.29 | 10.20 ± 0.15 | 1.45 ± 0.19 |
16 | 50 | 3 | 40 | 3.85 ± 0.24 | 2.48 ± 0.37 | 9.60 ± 0.60 | 0.92 ± 0.15 |
17 | 25 | 2 | 70 | 3.25 ± 0.68 | 2.15 ± 0.19 | 9.36 ± 0.72 | 1.12 ± 0.07 |
18 | 50 | 1 | 60 | 2.87 ± 0.68 | 2.03 ± 0.49 | 9.80 ± 0.39 | 1.32 ± 0.10 |
19 | 50 | 5 | 60 | 2.90 ±0.64 | 2.50 ± 1.05 | 9.90 ± 0.72 | 0.86 ± 0.02 |
20 | 25 | 4 | 50 | 2.96 ± 0.80 | 2.38 ± 1.06 | 9.53 ± 0.39 | 0.75 ± 0.08 |
ANOVA for Quadratic Model for TPC | |||||||
Source | RC | SS | DF | MS | F-Value | p-Value | |
Model | 7.18 | 9 | 0.7975 | 81.83 | <0.0001 | Significant | |
Intercept | 4.45 | ||||||
Linear terms | |||||||
X1 | 0.3400 | 1.85 | 1 | 1.85 | 189.79 | <0.0001 | Significant |
X2 | 0.0200 | 0.0064 | 1 | 0.0064 | 0.6567 | 0.4366 | Non-significant |
X3 | −0.0575 | 0.0529 | 1 | 0.0529 | 5.43 | 0.0421 | Significant |
Interaction terms | |||||||
X1X2 | 0.2700 | 0.5832 | 1 | 0.5832 | 59.84 | <0.0001 | Significant |
X1X3 | −0.0050 | 0.0002 | 1 | 0.0002 | 0.0205 | 0.8889 | Non-significant |
X2X3 | 0.1425 | 0.1625 | 1 | 0.1625 | 16.67 | 0.0022 | Significant |
Quadratic terms | |||||||
X12 | −0.2089 | 1.10 | 1 | 1.10 | 112.55 | <0.0001 | Significant |
X22 | −0.4001 | 4.03 | 1 | 4.03 | 413.02 | <0.0001 | Significant |
X32 | −0.1676 | 0.7064 | 1 | 0.7064 | 72.48 | <0.0001 | Significant |
Lack of Fit | 0.0617 | 5 | 0.0123 | 1.73 | 0.2819 | Non-significant | |
Pure error | 0.0358 | 5 | 0.0072 | ||||
R2 | 0.9866 | ||||||
Adjusted R2 | 0.9745 | ||||||
Predicted R2 | 0.9262 | ||||||
Adeq Precision | 23.5003 | ||||||
C.V. % | 2.58 | ||||||
PRESS | 0.5369 | ||||||
BIC | −19.77 | ||||||
AICc | −5.28 | ||||||
ANOVA for quadratic model for TFC | |||||||
Model | 3.11 | 9 | 0.3454 | 39.85 | <0.0001 | significant | |
Intercept | 3.05 | ||||||
Linear terms | |||||||
X1 | 0.2388 | 0.9120 | 1 | 0.9120 | 105.24 | <0.0001 | Significant |
X2 | 0.1113 | 0.1980 | 1 | 0.1980 | 22.85 | 0.0007 | Significant |
X3 | −0.0525 | 0.0441 | 1 | 0.0441 | 5.09 | 0.0477 | Significant |
Interaction terms | |||||||
X1X2 | 0.1450 | 0.1682 | 1 | 0.1682 | 19.41 | 0.0013 | Significant |
X1X3 | 0.1050 | 0.0882 | 1 | 0.0882 | 10.18 | 0.0097 | Significant |
X2X3 | 0.0475 | 0.0180 | 1 | 0.0180 | 2.08 | 0.1795 | Non-significant |
Quadratic terms | |||||||
X12 | −0.0328 | 0.0271 | 1 | 0.0271 | 3.13 | 0.1073 | Non-significant |
X22 | −0.2116 | 1.13 | 1 | 1.13 | 129.89 | <0.0001 | Significant |
X32 | −0.1853 | 0.8637 | 1 | 0.8637 | 99.66 | <0.0001 | Significant |
Lack of Fit | 0.0585 | 5 | 0.0117 | 2.07 | 0.2213 | Non-significant | |
Pure error | 0.0282 | 5 | 0.0056 | ||||
R2 | 0.9729 | ||||||
Adjusted R2 | 0.9485 | ||||||
Predicted R2 | 0.8432 | ||||||
Adeq Precision | 21.4961 | ||||||
C.V. % | 3.44 | ||||||
PRESS | 0.5009 | ||||||
BIC | −22.11 | ||||||
AICc | −7.63 | ||||||
ANOVA for quadratic model for DPPH | |||||||
Model | 3.12 | 9 | 0.3470 | 34.85 | <0.0001 | Significant | |
Intercept | 10.39 | ||||||
Linear terms | |||||||
X1 | 0.1706 | 0.4658 | 1 | 0.4658 | 46.77 | <0.0001 | Significant |
X2 | 0.0444 | 0.0315 | 1 | 0.0315 | 3.16 | 0.1057 | Non-significant |
X3 | 0.0069 | 0.0008 | 1 | 0.0008 | 0.0759 | 0.7885 | Non-significant |
Interaction terms | |||||||
X1X2 | 0.1837 | 0.2701 | 1 | 0.2701 | 27.12 | 0.0004 | Significant |
X1X3 | 0.2437 | 0.4753 | 1 | 0.4753 | 47.73 | <0.0001 | Significant |
X2X3 | 0.2112 | 0.3570 | 1 | 0.3570 | 35.85 | 0.0001 | Significant |
Quadratic terms | |||||||
X12 | −0.1399 | 0.4920 | 1 | 0.4920 | 49.40 | <0.0001 | Significant |
X22 | −0.1374 | 0.4746 | 1 | 0.4746 | 47.65 | <0.0001 | Significant |
X32 | −0.2124 | 1.13 | 1 | 1.13 | 113.88 | <0.0001 | Significant |
Lack of Fit | 0.0505 | 5 | 0.0101 | 1.03 | 0.4887 | Non-significant | |
Pure error | 0.0491 | 5 | 0.0098 | ||||
R2 | 0.9691 | ||||||
Adjusted R2 | 0.9413 | ||||||
Predicted R2 | 0.8504 | ||||||
Adeq Precision | 18.9896 | ||||||
C.V. % | 0.9981 | ||||||
PRESS | 0.4822 | ||||||
BIC | −19.33 | ||||||
AICc | −4.85 | ||||||
ANOVA for quadratic model for CUPRAC | |||||||
Model | 1.10 | 9 | 0.1218 | 154.89 | <0.0001 | Significant | |
Intercept | 1.43 | ||||||
Linear terms | |||||||
X1 | 0.0419 | 0.0281 | 1 | 0.0281 | 35.68 | 0.0001 | Significant |
X2 | −0.1144 | 0.2093 | 1 | 0.2093 | 266.19 | <0.0001 | Significant |
X3 | 0.0481 | 0.0371 | 1 | 0.0371 | 47.13 | <0.0001 | Significant |
Interaction terms | |||||||
X1X2 | 0.0963 | 0.0741 | 1 | 0.0741 | 94.25 | <0.0001 | Significant |
X1X3 | 0.0762 | 0.0465 | 1 | 0.0465 | 59.15 | <0.0001 | Significant |
X2X3 | 0.1363 | 0.1485 | 1 | 0.1485 | 188.87 | <0.0001 | Significant |
Quadratic terms | |||||||
X12 | −0.1074 | 0.2899 | 1 | 0.2899 | 368.74 | <0.0001 | Significant |
X22 | −0.0886 | 0.1975 | 1 | 0.1975 | 251.22 | <0.0001 | Significant |
X32 | −0.1086 | 0.2967 | 1 | 0.2967 | 377.37 | <0.0001 | Significant |
Lack of Fit | 0.0055 | 5 | 0.0011 | 2.37 | 0.1827 | Non-significant | |
Pure error | 0.0023 | 5 | 0.0005 | ||||
R2 | 0.9929 | ||||||
Adjusted R2 | 0.9865 | ||||||
Predicted R2 | 0.9580 | ||||||
Adeq Precision | 34.9882 | ||||||
C.V. % | 2.36 | ||||||
PRESS | 0.0464 | ||||||
BIC | −70.11 | ||||||
AICc | −55.62 |
Parameters | TPC | TFC | DPPH | CUPRAC | ||||
---|---|---|---|---|---|---|---|---|
RSM | ANN | RSM | ANN | RSM | ANN | RSM | ANN | |
R2 | 0.9866 | 0.9899 | 0.9729 | 0.9859 | 0.9691 | 0.9828 | 0.9929 | 0.9954 |
RMSE | 0.8053 | 0.4475 | 0.1663 | 0.1134 | 0.2586 | 0.1635 | 0.1063 | 0.0903 |
AAD (%) | 4.079 | 2.052 | 6.011 | 3.753 | 0.8815 | 0.7011 | 6.764 | 3.738 |
SEP (%) | 0.2225 | 0.1518 | 0.4591 | 0.2903 | 0.0529 | 0.0449 | 0.3710 | 0.2728 |
Response | Exp. | Pred. | Std | RSD (%) |
---|---|---|---|---|
TPC (mgGAE/g) | 4.49 ± 1.02 | 4.53 | 0.028 | 0.006 |
TFC (mgCAE/g) | 3.31 ± 0.65 | 3.30 | 0.007 | 0.002 |
DPPH (% inhibition) | 11.10 ± 0.78 | 10.69 | 0.290 | 0.027 |
CUPRAC (μM ASCE) | 1.43 ± 0.43 | 1.41 | 0.014 | 0.010 |
No. | Compound Name | EF | OM (m/z)−/+ | CM (m/z)−/+ | MS/MS (Negative Mode) | CE | CL | |
---|---|---|---|---|---|---|---|---|
Phenolic acids and derivatives | 1 | Coumalic acid # | C6H4O4 | 139.0050 | 139.0031 | 111.01, 95.01 | 20 | 3 |
2 | Hydroxybenzoylhexose | C13H16O8 | 299.0876 | 299.0884 | 281.06, 237.04, 179.03, 163.06, 137.02 | 20 | 2 | |
3 | Coumaroyl hexose | C15H18O8 | 325.0929 | 325.0923 | 163.03, 147.04 | 10 | 2 | |
4 | Caffeoylshikimic acid | C16H16O8 | 335.0776/337.0932 | 335.0772 | 179.01, 161.03, 155.03, 137.05 | 20 | 2 | |
5 | Caffeic acid hexoside | C15H18O9 | 341.1100 | 341.0872 | 215.03, 179.06, 161.04 | 20 | 2 | |
6 | Caffeic acid derivatives | C18H18O9 | 377.0885 | 377.0878 | 341.10, 215.03, 179.06, 161.04 | 10 | 2 | |
7 | Dicaffeoyl shikimic acid | C22H26O13 | 497.1297 | 497.1295 | 335.01, 178.02, 135.02 | 20 | 2 | |
8 | Hebitol II # | C21H30O14 | 505.1603 | 505.1557 | 341.08,325.09, 179.03, 163.03 | 30 | 3 | |
9 | 1,2-di-(syringoyl)-hexoside # | C24H28O14 | 539.1377/541.1533 | 539.1401 | 359.09, 341.08, 197.04, 153.05 | 30 | 3 | |
Flavonoids and derivatives | 10 | Chrysoeriol | C13H16O8 | 299.0561/301.0717 | 299.0555 | 285.03, 255.02, 153.01, 147.04, 135.03, 125.03 | 20 | 2 |
11 | Quercetin | C15H10O7 | 301.0354/303.0510 | 301.0348 | 273.02, 257.03, 229.05, 179.01, 151.01 | 20 | 2 | |
12 | Dihydrokaempferol hexoside | C21H22O11 | 449.1089 | 449.1083 | 287.04, 269.05, 259.06, 169.01, 151.01 | 20 | 2 | |
13 | Isoquercitrin | C21H20O12 | 463.0878 | 463.0876 | 301.05, 268.01, 179.02, 151.01 | 20 | 2 | |
14 | Isorhamnetin hexoside | C22H22O12 | 477.1035/479.1191 | 477.1033 | 315.05, 300.01, 271.02, 255.05, 179.05, 151.02 | 20 | 2 | |
15 | Luteolin hexosyl sulfate | C21H20O14S | 527.0491/529.0647 | 527.0495 | 447.05, 285.01, 241.06 | 20 | 2 | |
16 | Chrysoeriol hexosyl sulfate | C22H22O14S | 541.0645/543.0801 | 541.0652 | 299.05, 284.05, 241.02 | 20 | 2 | |
17 | Isoquercitrin sulfate | C21H20O15S | 543.0441/545.0597 | 543.0444 | 463.05, 301.01, 268.01, 179.02, 151.01 | 20 | 2 | |
18 | Apigenin-8-C-(pentosyl) hexoside | C26H28O14 | 563.1655 | 563.1400 | 473.01, 443.02, 413.05, 340.08, 311.02 | 30 | 2 | |
19 | Naringin dihydrochalcone # | C27H34O14 | 581.1863 | 581.1870 | 436.13, 274.08, 167.03, 149.06, 133.06, | 30 | 3 | |
20 | Afzelin gallate | C28H24O14 | 583.1093 | 583.1087 | 297.05, 285.04, 169.01 | 20 | 2 | |
21 | Luteolin rhamnosyl hexoside | C27H30O15 | 593.1507 | 593.1506 | 447.09, 285.03, 153.01, 135.04 | 20 | 2 | |
22 | Chrysoeriol rhamnosyl hexoside | C28H32O15 | 607.1669 | 607.1663 | 461.10, 299.05, 284.03, 153.01, 149.05 | 20 | 2 | |
23 | Quercetin rhamnosyl glucoside | C27H30O16 | 609.1459 | 609.1455 | 463.08, 447.09, 301.02, 151.04 | 20 | 2 | |
24 | Isorhamnetin rhamnosyl glucoside | C28H32O16 | 623.1617/625.1773 | 623.1612 | 477.10, 315.05, 299.05, 165.05 | 20 | 2 | |
25 | Quercetin diglucoside | C27H30O17 | 625.1410/627.1566 | 625.1404 | 463.08, 301.01 | 20 | 2 | |
26 | Isorhamnetin diglucoside | C28H32O17 | 639.1563/641.0612 | 639.1561 | 447.01, 315.01 | 20 | 2 | |
27 | Luteolin dihexosyl sulfate | C27H30O19S | 689.1029 | 689.1023 | 519.11, 489.10, 471.09, 399.07, 369.06, 339.05 | 20 | 2 | |
28 | Luteolin rhamnosyl dihexoside | C33H40O20 | 755.2046 | 755.2034 | 709.16, 593.10, 575.05, 285.01 | 20 | 2 | |
29 | Chrysoeriol rhamnosyl dihexoside | C34H42O20 | 769.2189 | 769.2191 | 623.16, 461.10, 299.05, 284.03, 153.02 | 20 | 2 | |
Lignans | 30 | Erythro-guaiacylglycerol-β-syringaresinol ether hexoside # | C38H48O17 | 775.2821 | 775.2813 | 613.22, 417.14, 181.05, 151.03 | 30 | 3 |
31 | Erythro-1-(4”-glucoside-3,5-dimethyoxyphenyl)-2-syringaresinoxyl-propane-1,3-diol # | C39H50O18 | 805.2926 | 805.2919 | 643.23, 417.14, 181.05, 151.03 | 30 | 3 | |
Sialic acids | 32 | 2-Deoxy-2,3-dehydro-N-acetylneuraminic acid # | C11H17NO8 | 290.0879 | 290.0876 | 230.06, 200.05, 171.01, 128.07 | 20 | 3 |
33 | N-acetyl-α-neuraminic acid # | C11H19NO9 | 308.0987/310.1143 | 308.0987 | 290.09, 219.06, 200.05, 146.08, 128.07 | 20 | 3 | |
34 | 6′-Sialyllactose # | C23H39NO19 | 632.2039 | 632.2044 | 290.09, 200.05, 128.07 | 30 | 3 | |
Amino acids | 35 | L-proline | C5H9NO2 | 114.0570 | 114.0561 | 70.06 | 10 | 2 |
36 | Pyroglutamic acid | C5H7NO3 | 128.0360/130.0416 | 128.0353 | 82.3, 71.9 | 10 | 2 | |
37 | L-aspartic acid | C4H7NO4 | 132.0329 | 132.0302 | 116.03, 88.04 | 10 | 2 | |
38 | Allysine # | C6H11NO3 | 144.0682 | 144.0666 | 127.04, 126.05, 100.07 | 20 | 3 | |
Sugar molecules | 39 | Ribonic acid | C5H10O6 | 165.0421 | 165.0418 | 149.04, 105.01, 87.00, 75.00 | 10 | 2 |
40 | L-Galactose | C6H12O6 | 179.0572 | 179.0561 | 161.04, 143.03, 113.02, 101.02, | 10 | 2 | |
41 | Mannitol | C6H14O6 | 181.0725 | 181.0718 | 165.01, 147.03, 129.05, 111.00 | 20 | 2 | |
42 | Gluconic acid | C6H12O7 | 195.0522 | 195.0504 | 177.05, 159.02, 129.05, 98.90 | 10 | 2 | |
43 | Sedoheptulose | C7H14O7 | 209.0679 | 209.0680 | 191.05, 179.05, 149.04, | 20 | 2 | |
44 | Hexose derivative | C12H19O10 | 323.0977 | 323.0978 | 179.05, 161.04, 143.03, 113.02, 101.02 | 10 | 2 | |
45 | Maltitol | C12H24O11 | 343.1255 | 343.1240 | 283.10, 265.09, 179.05, 161.04, 143.03 | 20 | 2 | |
46 | Unsaturated digalacturonate # | C12H16O12 | 351.0574/353.0730 | 351.0569 | 291.07, 273.06, 175.02, 131.03 | 20 | 3 | |
47 | Xylosmaloside # | C18H20O9 | 379.1027/381.1183 | 379.1029 | 343.08, 217.05, 179.05, 161.04 | 20 | 3 | |
Carboxylic acids | 48 | Fumaric acid | C4H4O4 | 115.0050 | 115.0037 | 71.01 | 10 | 2 |
49 | Glutaconic acid | C5H6O4 | 129.0203 | 129.0203 | 111.00, 85.02 | 10 | 2 | |
50 | Glutaric acid | C5H8O4 | 131.0355 | 131.0350 | 113.00, 87.02 | 10 | 2 | |
51 | 3-Methylglutaconic acid | C6H8O4 | 143.0367 | 143.0361 | 99.03 | 20 | 2 | |
52 | Methyl glutaric acid | C6H10O4 | 145.0521 | 145.0506 | 127.02, 101.02 | 10 | 2 | |
53 | 2-Hydroxyglutaric acid | C5H8O5 | 147.0301 | 147.0299 | 129.01, 99.03 | 10 | 2 | |
54 | Hydroxymethyl glutaric acid | C6H10O5 | 161.0459 | 161.0455 | 143.03, 117.05, 99.04 | 10 | 2 | |
55 | Citric acid | C6H8O7 | 191.0197/193.0353 | 191.0197 | 173.00, 129.01, 111.00 | 20 | 2 | |
Fatty acids | 56 | Palmitic acid | C16H32O2 | 255.2330 | 255.2330 | 237.23, 211.24, 197.22 | 20 | 2 |
57 | Linolenic acid | C18H30O2 | 277.2165 | 277.2169 | 259.20, 233.22, 205.21, 179.25, 165.23 | 10 | 2 | |
58 | α-Linoleic acid | C18H32O2 | 279.2331 | 279.2330 | 261.22 | 10 | 2 | |
59 | Oleic acid | C18H34O2 | 281.2487 | 281.2486 | 263.25, 181.21, 127.25 | 10 | 2 | |
60 | Hydroxy octadecatrienoic acid # | C18H30O3 | 293.2120 | 293.0216 | 275.22 | 20 | 3 | |
61 | Hydroxy octadecadienoic acid | C18H32O3 | 295.2276 | 295.2273 | 277.23 | 20 | 2 | |
62 | Hydroxy octadecenoic acid | C18H34O3 | 297.2433 | 297.2429 | 279.23 | 20 | 2 | |
63 | Dihydroxy octadecadienoic acid | C18H32O4 | 311.2246/313.2402 | 311.2239 | 293.22, 275.23 | 20 | 2 | |
64 | Dihydroxy octadecenoic acid | C18H34O4 | 313.2381/315.2537 | 313.2378 | 295.23, 277.25, 183.32 | 20 | 2 | |
65 | Dihydroxy octadecanoic acid | C18H36O4 | 315.2538/317.2694 | 315.2535 | 297.23, 279.25 | 20 | 2 | |
66 | Trihydroxy octadecadienoic acid | C18H32O5 | 327.2176 | 327.2171 | 309.23, 291.25, 273.23 | 20 | 2 | |
67 | Trihydroxy octadecenoic acid | C18H34O5 | 329.2346/331.2502 | 329.2333 | 311.25, 293.26, 275.23 | 20 | 2 | |
Others | 68 | Linustatin # | C16H27NO11 | 408.151/410.1666 | 408.1506 | 318.11, 246.09, 228.08, 214.07 | 20 | 3 |
69 | Norbellidifodin # | C13H8O6 | 259.024/261.0396 | 259.0248 | 241.01, 215.12, 187.05, 171.03 | 30 | 3 | |
70 | 1-Deoxynojirimycin hexoside # | C12H23NO9 | 324.1293 | 324.1295 | 161.04, 144.06, 143.03, 113.02 | 30 | 3 | |
71 | Oxycoumarin-4-acetic acid methyl ester hexoside # | C18H20O10 | 395.0962 | 395.0978 | 233.04, 205.05, 161.02, 133.02 | 30 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, F.; Alam, M.B.; Naznin, M.; Javed, A.; Kim, S.; Lee, S.-H. Profiling of Secondary Metabolites of Optimized Ripe Ajwa Date Pulp (Phoenix dactylifera L.) Using Response Surface Methodology and Artificial Neural Network. Pharmaceuticals 2023, 16, 319. https://doi.org/10.3390/ph16020319
Alshammari F, Alam MB, Naznin M, Javed A, Kim S, Lee S-H. Profiling of Secondary Metabolites of Optimized Ripe Ajwa Date Pulp (Phoenix dactylifera L.) Using Response Surface Methodology and Artificial Neural Network. Pharmaceuticals. 2023; 16(2):319. https://doi.org/10.3390/ph16020319
Chicago/Turabian StyleAlshammari, Fanar, Md Badrul Alam, Marufa Naznin, Ahsan Javed, Sunghwan Kim, and Sang-Han Lee. 2023. "Profiling of Secondary Metabolites of Optimized Ripe Ajwa Date Pulp (Phoenix dactylifera L.) Using Response Surface Methodology and Artificial Neural Network" Pharmaceuticals 16, no. 2: 319. https://doi.org/10.3390/ph16020319
APA StyleAlshammari, F., Alam, M. B., Naznin, M., Javed, A., Kim, S., & Lee, S. -H. (2023). Profiling of Secondary Metabolites of Optimized Ripe Ajwa Date Pulp (Phoenix dactylifera L.) Using Response Surface Methodology and Artificial Neural Network. Pharmaceuticals, 16(2), 319. https://doi.org/10.3390/ph16020319