Synthesis, Characterization, and Biological Evaluation of Meldrum’s Acid Derivatives: Dual Activity and Molecular Docking Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Synthesis of Benzylidene Meldrum’s Acid Derivatives (3)
4.2. Determination of Antimicrobial Activity
4.3. Evaluation of Cytotoxicity
4.4. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meldrum, A.N. A β-lactonic acid from acetone and malonic acid. J. Chem. Soc. Trans. 1908, 93, 598–601. [Google Scholar] [CrossRef]
- Davidson, D.; Bernhard, S.A. The Structure of Meldrum’s supposed β-Lactonic Acid. JACS 1948, 70, 3426–3428. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Armstrong, J.D.; Zhou, G.X.; Simmons, B.; Hughes, D.; Ge, Z.; Grabowski, E.J.J. Mechanistic evidence for an α-Oxoketene pathway in the formation of β-Ketoamides/Esters via Meldrum’s acid adducts. JACS 2004, 126, 13002–13009. [Google Scholar] [CrossRef] [PubMed]
- Brosge, F.; Singh, P.; Bolm, C. Selected applications of Meldrum’s acid—A tutorial. Org. Biomol. Chem. 2021, 19, 5014–5027. [Google Scholar] [CrossRef] [PubMed]
- Dumas, A.M.; Fillion, E. Meldrum’s acids and 5-Alkylidene Meldrum’s acids in catalytic carbon−carbon bond-forming processes. Acc. Chem. Res. 2010, 43, 440–454. [Google Scholar] [CrossRef]
- Ivanov, A.S. Meldrum’s acid and related compounds in the synthesis of natural products and analogs. Chem. Soc. Rev. 2008, 37, 789–811. [Google Scholar] [CrossRef]
- Tokala, R.; Bora, D.; Shankaraiah, N. Contribution of Knoevenagel condensation products toward the development of anticancer agents: An updated review. ChemMedChem 2022, 17, e202100736. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Sapra, S.; Gupta, M.; Nepali, K.; Gautam, R.; Yadav, S.; Kumar, R.; Jachak, S.M.; Chugh, M.; Gupta, M.K.; et al. Synthesis and biological evaluation of arylidene analogues of Meldrum’s acid as a new class of antimalarial and antioxidant agents. Bioorg. Med. Chem. 2010, 18, 5626–5633. [Google Scholar] [CrossRef]
- Janković, N.; Muškinja, J.; Ratković, Z.; Bugarčić, Z.; Ranković, B.; Kosanić, M.; Stefanović, S. Solvent-free synthesis of novel vanillidene derivatives of Meldrum’s acid: Biological evaluation, DNA and BSA binding study. RSC Adv. 2016, 6, 39452–39459. [Google Scholar] [CrossRef]
- Elham, M.; Enayatollah, S.; Dadkhoda, G.; Shahla, S. Uncatalyzed synthesis of new antibacterial bisarylidene Meldrum’s acid derivatives functionalized with ether groups. Lett. Org. Chem. 2019, 16, 818–824. [Google Scholar]
- Da Silva, M.M.C.; de Araújo-Neto, J.B.; de Araújo, A.C.J.; Freitas, P.R.; de M Oliveira-Tintino, C.D.; Begnini, I.M.; Rebelo, R.A.; da Silva, L.E.; Mireski, S.L.; Nasato, M.C.; et al. Potentiation of antibiotic activity by a Meldrum’s acid arylamino methylene derivative against multidrug-resistant bacterial strains. Indian J. Microbiol. 2021, 61, 100–103. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Azuaje, J.; Alberto, C.; Ernesto, C.; Matilde, Y.; Carmen, L.; Vicente, Y.; Carlos, C.; Eddy, S. Discovery and preliminary SAR of 5-Arylidene-2,2-dimethyl-1,3-dioxane- 4,6-diones as platelet aggregation inhibitors. Comb. Chem. 2012, 15, 551–554. [Google Scholar]
- Takashi, T.; Kunio, S.; Hideo, A. A facile epoxidation of 5-Methylene-1,3-dioxane-4,6-diones with hydrogen peroxide without catalyst. Heterocycles 1994, 38, 2631. [Google Scholar]
- Kadam, A.J.; Desai, U.V.; Mane, R.B. Microwave assisted hydrolysis of Meldrum’s acid derivatives and decarboxylation of derived malonic acids. J. Labbeled. Comp. Radiopharm. 1999, 42, 835. [Google Scholar] [CrossRef]
- Rodriguez, H.; Martin, O.; Ochoa, E.; Suarez, M.; Reyes, O.; Garay, H.; Albericio, F.; Martin, N. High-throughput preparation of alkyl 4-aryl substituted-2-methyl-6-thioxo-1,4,5,6-tetrahydropyridine-3-carboxylates under microwave irradiation. ARKIVOC 2011, ix, 125–141. [Google Scholar] [CrossRef]
- Frost, C.G.; Hartley, B.C. Tandem Molybdenum Catalyzed Hydrosilylations: An Expedient Synthesis of β-Aryl Aldehydes. Org. Lett. 2007, 9, 4259–4261. [Google Scholar] [CrossRef]
- Huang, X.; Xie, L. One Pot Synthesis of Monosubstituted Isopropylidene Malonates. Synth. Commun. 1986, 16, 1701. [Google Scholar] [CrossRef]
- Madasu, C.; Xu, Y.-M.; Wijeratne, E.M.K.; Liu, M.X.; Molnár, I.; Gunatilaka, A.A.L. Semi-synthesis and cytotoxicity evaluation of pyrimidine, thiazole, and indole analogues of argentatins A–C from guayule (Parthenium argentatum) resin. Med. Chem. Res. 2022, 31, 1088–1098. [Google Scholar] [CrossRef]
- Arshad, L.; Jantan, I.; Bukhari, S.N.A.; Haque, M.A. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review. Front. Pharmacol. 2017, 8, 22. [Google Scholar] [CrossRef]
- Janković, N.; Milović, E.; Đorović Jovanović, J.; Marković, Z.; Vraneš, M.; Stanojković, T.; Matić, I.; Đorđić Crnogorac, M.; Klisurić, O.; Cvetinov, M.; et al. A new class of half-sandwich ruthenium complexes containing Biginelli hybrids: Anticancer and anti-SARS-CoV-2 activities. Chem. Biol. Interact. 2022, 363, 110025. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.; Guo, H.; Wang, S.; Ni, S.; Zhou, Y.; Wang, Z.; Bao, H.; Wang, Y. Antitussive and anti-inflammatory dual-active agents developed from natural product lead compound 1-Methylhydantoin. Molecules 2019, 24, 2355. [Google Scholar] [CrossRef] [PubMed]
- Milović, E.; Janković, N.; Petronijević, J.; Joksimović, N.; Kosanić, M.; Stanojković, T.; Matić, I.; Grozdanić, N.; Klisurić, O.; Stefanović, S. Synthesis, characterization, and biological evaluation of tetrahydropyrimidines: Dual-Activity and mechanism of action. Pharmaceutics 2022, 14, 2254. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, G.E.; Abu-Serie, M.M.; Abo-Elela, G.M.; Ghozlan, H.; Sabry, S.A.; Soliman, N.A.; Abdel-Fattah, Y.R. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Sci. Rep. 2020, 10, 5986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaela Aldea, M.; Michot, J.-M.; Danlos, F.-X.; Ribas, A.; Soria, J.-C. Repurposing of Anticancer Drugs Expands Possibilities for Antiviral and Anti-Inflammatory Discovery in COVID-19. Cancer Discov. 2021, 11, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, T.J. Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. J. Bacterio. 1999, 181, 4725–4733. [Google Scholar] [CrossRef]
- Canals, A.; Purciolas, M.; Aymamí, J.; Coll, M. The anticancer agent ellipticine unwinds DNA by intercalative binding in an orientation parallel to base pairs. Acta Cryst. Des. 2005, 61, 1009–1012. [Google Scholar] [CrossRef]
- Narramore, S.; Stevenson, C.E.M.; Maxwell, A.; Lawson, D.M.; Fishwick, C.W.G. New insights into the binding mode of pyridine-3-carboxamide inhibitors of E. coli DNA gyrase. Bioorg. Med. Chem. 2019, 27, 3546–3550. [Google Scholar] [CrossRef]
- Wu, C.-C.; Li, T.-K.; Farh, L.; Lin, L.-Y.; Lin, T.-S.; Yu, Y.-J.; Yen, T.J.; Chiang, C.-W.; Chan, N.-L. Structural Basis of Type II Topoisomerase Inhibition by the Anticancer Drug Etoposide. Science 2011, 333, 459–462. [Google Scholar] [CrossRef]
- Liu, K.; Ren, Z.-L.; Wang, W.; Gong, J.-X.; Chu, M.-J.; Ma, Q.-W.; Wang, J.-C.; Lv, X.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur. J. Med. Chem. 2018, 157, 81–87. [Google Scholar] [CrossRef]
- Krishnan, P.; Bastow, K.F. Novel mechanisms of DNA topoisomerase II inhibition by pyranonaphthoquinone derivatives- eleutherin, α-lapachone, and β-lapachone. Biochem. Pharmacol. 2000, 60, 1367–1379. [Google Scholar] [CrossRef]
- Krishnan, P.; Bastow, K.F. Novel mechanism of cellular DNA topoisomerase II inhibition by the pyranonaphthoquinone derivatives alpha-lapachone and beta-lapachone. Cancer Chemother. Pharmacol. 2001, 47, 187–198. [Google Scholar] [CrossRef]
- Bianco, G.; Forli, S.; Goodsell, D.S.; Olson, A.J. Covalent Docking Using Autodock: Two-Point Attractor and Flexible Side Chain Methods. Protein Sci. 2016, 25, 295–301. [Google Scholar] [CrossRef]
- Lawandi, J.; Toumieux, S.; Seyer, V.; Campbell, P.; Thielges, S.; Juillerat Jeanneret, L.; Moitessier, N. Constrained peptidomimetics reveal detailed geometric requirements of covalent prolyl oligopeptidase inhibitors. J. Med. Chem. 2009, 52, 6672–6684. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Y.; Jin, H.; Liu, Z.; Zhang, L. Covalent complexes of proteasome model with peptide aldehyde inhibitors MG132 and MG101: Docking and molecular dynamics study. J. Mol. Model. 2009, 15, 1481–1490. [Google Scholar] [CrossRef]
- Moura-Tamames, S.A.; Ramos, M.J.; Fernandes, P.A. Modelling beta-1,3-exoglucanase-saccharide interactions: Structure of the enzyme-substrate complex and enzyme binding to the cell wall. J. Mol. Graph. Model. 2009, 27, 908–920. [Google Scholar] [CrossRef]
- Pair, E.; Cadart, T.; Levacher, V.; Brière, J.-F. Meldrum’s Acid: A Useful Platform in Asymmetric Organocatalysis. ChemCatChem 2016, 8, 1882–1890. [Google Scholar] [CrossRef]
- Bernasconi, C.F.; Murray, C.J. Nucleophilic addition to olefins. 18. Kinetics of the addition of primary amines and.alpha.-effect nucleophiles to benzylidene Meldrum’s acid. J. Am. Chem. Soc. 1986, 108, 5251–5257. [Google Scholar] [CrossRef]
- Frydman, B.; Marton, L.J.; Sun, J.S.; Neder, K.; Witiak, D.T.; Liu, A.A.; Wang, H.-M.; Mao, Y.; Wu, H.-Y.; Sanders, M.M.; et al. Induction of DNA Topoisomerase II-mediated DNA Cleavage by β-Lapachone and Related Naphthoquinones. Cancer Res. 1997, 57, 620–627. [Google Scholar]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Ohno, M.; Abe, T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Methods 1991, 145, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J. Comput.-Aided Mol. Des. 1996, 10, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comput.-Aided Mol. Des. 1990, 4, 1–103. [Google Scholar] [CrossRef] [PubMed]
- AutoDock. CCSB AutoDock Suite. Available online: http://autodock.scripps.edu/ (accessed on 10 January 2023).
E. coli | B. subtilis | S. aureus | B. cereus | |
---|---|---|---|---|
3a | 115.3 | - | - | - |
3b | 89.5 | 175.3 | 210.5 | 174.2 |
3c | 85.1 | 180.5 | 205.8 | 171.5 |
3d | 74.8 | 169.1 | 199.6 | 168.4 |
3e | 38.1 | 133.1 | 145.1 | 80.5 |
3f | 37.5 | 48.3 | 73.9 | 42.3 |
3g | 36.1 | 45.2 | 60.4 | 37.5 |
3h | 14.7 | 31.5 | 54.2 | 64.8 |
3i | 12.4 | 29.5 | 50.9 | 41.5 |
streptomycin | 0.010 | 0.003 | 0.005 | 0.003 |
HeLa | K562 | A549 | LS174 | PaCa-2 | MRC-5 | |
---|---|---|---|---|---|---|
3a | 126.1 ± 1.45 | 151.2 ± 3.47 | >200 | >200 | >200 | >200 |
3b | 101.7 ± 2.14 | 74.5 ± 1.73 | 41.2 ± 1.74 | 104.7 ± 4.62 | 152.7 ± 4.29 | >200 |
3c | 84.6 ± 1.84 | 70.2 ± 1.68 | 45.7 ± 1.65 | 99.6 ± 1.44 | 172.5 ± 5.25 | >200 |
3d | 94.5 ± 3.15 | 105.1 ± 0.92 | 36.2 ± 0.39 | 118.9 ± 0.95 | 145.1 ± 2.92 | >200 |
3e | 37.3 ± 1.20 | 80.5 ± 2.36 | 25.9 ± 0.46 | 38.1 ± 0.41 | 181.5 ± 3.94 | 110.9 ± 2.19 |
3f | 63.5 ± 0.45 | 71.9 ± 1.65 | 39.6 ± 0.74 | 45.3 ± 0.58 | 110.5 ± 1.75 | 144.2 ± 2.84 |
3g | 62.6 ± 0. 71 | 69.5 ± 1.37 | 35.1 ± 0.27 | 47.1 ± 1.69 | 94.2 ± 1.09 | 139.1 ± 3.07 |
3h | 18.2 ± 0.11 | 73.5 ± 1.43 | 27.4 ± 0.78 | 36.5 ± 0.24 | 90.5 ± 0.83 | 72.8 ± 0.77 |
3i | 15.7 ± 0.28 | 63.7 ± 2.49 | 21.8 ± 0.91 | 30.5 ± 0.35 | 58.2 ± 0.74 | 74.6 ± 1.46 |
cis-DDP | 2.36 ± 0.28 | 5.56±0.23 | 17.93 ± 0.44 | 20.8 ± 0.44 | 25.8 ± 0.65 | 4.26 ± 0.46 |
Eb (kcal mol−1) | |||
---|---|---|---|
I | II | III | |
3e | −5.61 | −5.45 | −8.46 |
3h | −6.94 | −7.20 | −9.37 |
3i | −7.74 | −7.52 | −9.51 |
Eb (kcal mol−1) | |||
---|---|---|---|
Gyrase B-LYS139 | Topoisomerase-LYS482 | Topoisomerase-SER480 | |
3i | −5.64 | −7.40 | −5.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukhari, S.N.A.; Abdelgawad, M.A.; Ahmed, N.; Amjad, M.W.; Hussain, M.A.; Elsherif, M.A.; Ejaz, H.; Alotaibi, N.H.; Filipović, I.; Janković, N. Synthesis, Characterization, and Biological Evaluation of Meldrum’s Acid Derivatives: Dual Activity and Molecular Docking Study. Pharmaceuticals 2023, 16, 281. https://doi.org/10.3390/ph16020281
Bukhari SNA, Abdelgawad MA, Ahmed N, Amjad MW, Hussain MA, Elsherif MA, Ejaz H, Alotaibi NH, Filipović I, Janković N. Synthesis, Characterization, and Biological Evaluation of Meldrum’s Acid Derivatives: Dual Activity and Molecular Docking Study. Pharmaceuticals. 2023; 16(2):281. https://doi.org/10.3390/ph16020281
Chicago/Turabian StyleBukhari, Syed Nasir Abbas, Mohamed Abdelwahab Abdelgawad, Naveed Ahmed, Muhammad Wahab Amjad, Muhammad Ajaz Hussain, Mervat A. Elsherif, Hasan Ejaz, Nasser H. Alotaibi, Ignjat Filipović, and Nenad Janković. 2023. "Synthesis, Characterization, and Biological Evaluation of Meldrum’s Acid Derivatives: Dual Activity and Molecular Docking Study" Pharmaceuticals 16, no. 2: 281. https://doi.org/10.3390/ph16020281
APA StyleBukhari, S. N. A., Abdelgawad, M. A., Ahmed, N., Amjad, M. W., Hussain, M. A., Elsherif, M. A., Ejaz, H., Alotaibi, N. H., Filipović, I., & Janković, N. (2023). Synthesis, Characterization, and Biological Evaluation of Meldrum’s Acid Derivatives: Dual Activity and Molecular Docking Study. Pharmaceuticals, 16(2), 281. https://doi.org/10.3390/ph16020281