A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)—From Ethnopharmacology to Clinical Evidence
Abstract
:1. Introduction
2. Clinical Studies on Salvia Species against AD
2.1. Salvia officinalis L.
Salvia Species | Preparation Used | Number of Participants | Age Range of Participants | Control Group | Tests Applied | References |
---|---|---|---|---|---|---|
S. rosmarinus | Hydrolat extract mixture | 80 | Mean, 23 | Plain mineral water | Computerized Mental Performance Assessment System | [50] |
S. rosmarinus | Dried leaf | 28 | 65–90 | Placebo | Cognitive Drug Research | [94] |
S. officinalis | Dried leaf | 30 | Young volunteers | Placebo | Defined Intensity Stressor Simulation, Bond–Lader mood scales, State-Trait Anxiety Inventory | [87] |
S. officinalis | Leaf extract (45% ethanol) | 103 | 65–80 | Placebo | Alzheimer’s Disease Assessment Scale, Clinical Dementia Rating Scale | [88] |
S. lavandulaefolia | Essential oil | 44 | 18–37 | Placebo | Cognitive Drug Research computerized test battery | [74] |
S. lavandulaefolia | Essential oil | 24 | 18–37 | Sunflower oil | Cognitive Drug Research computerized test battery | [95] |
S. officinalis | Leaf extract (70% ethanol) | 20 | 65–90 | Placebo | Cognitive Drug Research test | [93] |
S. officinalis, S. lavandulaefolia | Aroma | 135 | Mean, 22 | No aroma | Cognitive Drug Research system Bond–Lader mood scales | [96] |
S. lavandulaefolia | Essential oil and sunflower oil mixture | 11 | 76–95 | - | Cognitive Drug Research computerized cognitive assessment | [83] |
S. lavandulaefolia | Essential oil | 36 | Mean, 24 | Placebo | Computerized Mental Performance Assessment System | [97] |
Cognivia™ | S. officinalis aqueous extract and S. lavandulaefolia essential oil mixture | 94 | 30–60 | Placebo | Computerized Mental Performance Assessment System | [98] |
S. officinalis, R. officinalis, M. officinalis | Mixture of ethanol (45%) extracts | 44 | Mean, 61 | Placebo | Immediate word recall | [99] |
NaO Li Su | Mixture of bee pollen, radix polygoni multiflore, semen ziziphi spinosae, radix salviae multiorhizae, fructus schisandrae, and fructus ligustris lucidae drogs | 100 | 50–69 | Placebo | Wechsler Adult Intelligence Scale, Wechsler Memory Scale | [100] |
Fufangdanshen | Mixture of Salvia miltiorrhiza, Panax notoginseng, and Borneolum syntheticum | 231 | 45–80 | Placebo | Alzheimer’s Disease Assessment Scale, cognitive subscale | [101] |
Beta vulgaris, S. officinalis, Panax sp. | Mixture of blueberry, apple, and coffee berry extracts | 32 | 18–35 | Placebo | Computerized Mental Performance Assessment System, Cognitive Demand Battery | [102] |
S. divinorum | Salvinorin A | 4 | 23–35 | Placebo | Hallucinogen Rating Scale, Mysticism Scale | [103] |
S. divinorum | Salvinorin A | 32 | 25–65 | Placebo | Hallucinogen Rating Scale | [104] |
S. divinorum | Dried leaf and extracts | 47 | 19–43 | - | Hallucinogen Rating Scale | [105] |
S. divinorum | Salvinorin A | 8 | 21–35 | Placebo | Hallucinogen Rating Scale, Pharmacological Class Questionnaire | [106] |
2.2. Salvia lavandulaefolia Vahl.
2.3. Salvia rosmarinus Schleid.
2.4. Salvia miltiorrhiza Schleid.
2.5. Salvia divinorum Epling and Jativa
2.6. Salvia Species in Combinations
3. Conclusion and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machado, S.; Cunha, M.; Minc, D.; Portella, C.E.; Velasques, B.; Basile, L.F.; Cagy, M.; Piedade, R.; Ribeiro, P. Alzheimer’s disease and implicit memory. Arq. Neuropsiquiatr. 2009, 67, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013, 15, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Zokaei, N.; Husain, M. Working memory in Alzheimer’s disease and Parkinson’s disease. In Processes of Visuospatial Attention and Working Memory; Springer: Cham, Switzerland, 2019; Volume 41, pp. 325–344. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.A. The fragility of temporal memory in Alzheimer’s disease. J. Alzheimers Dis. 2021, 79, 1631–1646. [Google Scholar] [CrossRef] [PubMed]
- Peña-Casanova, J.; Sanchez-Benavides, G.; de Sola, S.; Manero-Borrás, R.M.; Casals-Coll, M. Neuropsychology of Alzheimer’s disease. Arch. Med. Res. 2012, 43, 686–693. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.; Chang, K.A. Spatial memory deficiency early in 6xTg Alzheimer’s disease mouse model. Sci. Rep. 2021, 11, 1334. [Google Scholar] [CrossRef]
- Davies, P. Challenging the cholinergic hypothesis in Alzheimer disease. JAMA 1999, 281, 1433–1434. [Google Scholar] [CrossRef]
- Lane, R.M.; Kivipelto, M.; Greig, N.H. Acetylcholinesterase and its inhibition in Alzheimer disease. Clin. Neuropharmacol. 2004, 27, 141–149. [Google Scholar] [CrossRef]
- Sivaprakasam, K. Towards a unifying hypothesis of Alzheimer’s disease: Cholinergic system linked to plaques, tangles and neuroinflammation. Curr. Med. Chem. 2006, 13, 2179–2188. [Google Scholar] [CrossRef]
- Niquet, J.; Lumley, L.; Baldwin, R.; Rossetti, F.; Suchomelova, L.; Naylor, D.; Estrada, I.B.F.; Schultz, M.; Furtado, M.D.A.; Wasterlain, C.G. Rational polytherapy in the treatment of cholinergic seizures. Neurobiol. Dis. 2020, 133, 104537. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef] [PubMed]
- Ha, Z.Y.; Mathew, S.; Yeong, K.Y. Butyrylcholinesterase: A multifaceted pharmacological target and tool. Curr. Protein Pept. Sci. 2020, 21, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Guillozet, A.L.; Smiley, J.F.; Mash, D.C.; Mesulam, M.M. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 1997, 42, 909–918. [Google Scholar] [CrossRef]
- Darvesh, S.; Cash, M.K.; Reid, G.A.; Martin, E.; Mitnitski, A.; Geula, C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 2012, 71, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, K.; Akatsu, H.; Abrahamson, E.E.; Mi, Z.; Ikonomovic, M.D. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer’s disease. Neuropathology 2016, 36, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cash, M.K.; Rockwood, K.; Fisk, J.D.; Darvesh, S. Clinicopathological correlations and cholinesterase expression in early-onset familial Alzheimer’s disease with the presenilin 1 mutation, Leu235Pro. Neurobiol. Aging 2021, 103, 31–41. [Google Scholar] [CrossRef]
- Olivares, D.; Deshpande, V.K.; Shi, Y.; Lahiri, D.K.; Greig, N.H.; Rogers, J.T.; Huang, X. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr. Alzheimer Res. 2012, 9, 746–758. [Google Scholar] [CrossRef]
- Fong, R.K.; Johnson, A.; Gill, S.S. Cholinesterase inhibitors: An example of geographic variation in prescribing patterns within a drug class. Int. J. Geriatr. Psychiatry 2015, 30, 220–222. [Google Scholar] [CrossRef]
- Atri, A. Current and future treatments in Alzheimer’s disease. Semin. Neurol. 2019, 39, 227–240. [Google Scholar] [CrossRef]
- Ahmed, H.; Haider, A.; Ametamey, S.M. N-Methyl-D-Aspartate (NMDA) receptor modulators: A patent review (2015-present). Expert Opin. Ther. Pat. 2020, 30, 743–767. [Google Scholar] [CrossRef]
- Pohanka, M. Inhibitors of cholinesterases in pharmacology: The Current Trends. Mini Rev. Med. Chem. 2020, 20, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Przybyłowska, M.; Dzierzbicka, K.; Kowalski, S.; Chmielewska, K.; Inkielewicz-Stepniak, I. Therapeutic potential of multifunctional derivatives of cholinesterase inhibitors. Curr. Neuropharmacol. 2021, 19, 1323–1344. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, B.P.; Giardina, G.A. γ-Secretase inhibitors and modulators for the treatment of Alzheimer’s disease: Disappointments and hopes. Curr. Top. Med. Chem. 2011, 11, 1555–1570. [Google Scholar] [CrossRef]
- Golde, T.E.; Koo, E.H.; Felsenstein, K.M.; Osborne, B.A.; Miele, L. γ-Secretase inhibitors and modulators. Biochim. Biophys. Acta 2013, 1828, 2898–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussa, C.E. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert. Opin. Investig. Drugs 2017, 26, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev. 2020, 40, 339–384. [Google Scholar] [CrossRef]
- Hur, J.Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med. 2022, 54, 433–446. [Google Scholar] [CrossRef]
- Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflammation 2018, 15, 276. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimer’s Dis. 2018, 62, 1403–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. [Google Scholar] [CrossRef] [PubMed]
- Birla, H.; Minocha, T.; Kumar, G.; Misra, A.; Singh, S.K. Role of oxidative stress and metal toxicity in the progression of Alzheimer’s disease. Curr. Neuropharmacol. 2020, 18, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef]
- Hashemiaghdam, A.; Mroczek, M. Microglia heterogeneity and neurodegeneration: The emerging paradigm of the role of immunity in Alzheimer’s disease. J. Neuroimmunol. 2020, 341, 577185. [Google Scholar] [CrossRef]
- Yoo, S.M.; Park, J.; Kim, S.H.; Jung, Y.K. Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer’s disease. BMB Rep. 2020, 53, 35–46. [Google Scholar] [CrossRef]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Sharma, S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J. Neurol. Sci. 2021, 421, 117253. [Google Scholar] [CrossRef]
- Takata, K.; Ginhoux, F.; Shimohama, S. Roles of microglia in Alzheimer’s disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochem. Pharmacol. 2021, 192, 114754. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chang, X.; Lang, M. Iron homeostasis disorder and Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 12442. [Google Scholar] [CrossRef]
- Silvin, A.; Uderhardt, S.; Piot, C.; Da Mesquita, S.; Yang, K.; Geirsdottir, L.; Mulder, K.; Eyal, D.; Liu, Z.; Bridlance, C.; et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 2022, 55, 1448–1465.e6. [Google Scholar] [CrossRef] [PubMed]
- Tolar, M.; Abushakra, S.; Hey, J.A.; Porsteinsson, A.; Sabbagh, M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimer’s Res. Ther. 2020, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Jeremic, D.; Jiménez-Díaz, L.; Navarro-López, J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2021, 72, 101496. [Google Scholar] [CrossRef] [PubMed]
- Kuller, L.H.; Lopez, O.L. ENGAGE and EMERGE: Truth and consequences? Alzheimer’s Dement. 2021, 17, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimer’s Dement. 2021, 17, 696–701. [Google Scholar] [CrossRef]
- Orini, S.; Geroldi, C.; Zanetti, O. The new therapy for Alzheimer’s disease: From a hope for a few to a false hope? Aging Clin. Exp. Res. 2022, 34, 3151–3153. [Google Scholar] [CrossRef]
- Bardia, A.; Nisly, N.L.; Zimmerman, M.B.; Gryzlak, B.M.; Wallace, R.B. Use of herbs among adults based on evidence-based indications: Findings from the National Health Interview Survey. Mayo Clin. Proc. 2007, 82, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Braun, L.; Cohen, M. Herbs and Natural Supplements, Volume 2: An Evidence-Based Guide; Elsevier Health Sciences, Elsevier: Chatswood, Australia, 2005. [Google Scholar]
- Moss, M.; Smith, E.; Milner, M.; McCready, J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J. Psychopharmacol. 2018, 32, 1319–1329. [Google Scholar] [CrossRef]
- Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules 2021, 11, 543. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Sun, J.; Zhang, K.; Liu, J. Ginkgo biloba for mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Curr. Top. Med. Chem. 2016, 16, 520–528. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Y.; Chen, K. Ginkgo biloba extract in vascular protection: Molecular mechanisms and clinical applications. Curr. Vasc. Pharmacol. 2017, 15, 532–548. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Srivastav, S.; Castellani, R.J.; Plascencia-Villa, G.; Perry, G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019, 16, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Coley, N.; Ousset, P.-J.; Berrut, G.; Dartigues, J.-F.; Dubois, B.; Grandjean, H.; Pasquier, F.; Piette, F.; Robert, P.; et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): A randomised placebo-controlled trial. Lancet Neurol. 2012, 11, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, B. Ethnopharmacology and drug discovery. J. Ethnopharmacol. 2005, 100, 50–52. [Google Scholar] [CrossRef]
- Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol. 2015, 147, 59–110. [Google Scholar] [CrossRef]
- Leonti, M.; Stafford, G.; Cero, M.D.; Cabras, S.; Castellanos, M.E.; Casu, L.; Weckerle, C. Reverse ethnopharmacology and drug discovery. J. Ethnopharmacol. 2017, 198, 417–431. [Google Scholar] [CrossRef]
- Pirintsos, S.; Panagiotopoulos, A.; Bariotakis, M.; Daskalakis, V.; Lionis, C.; Sourvinos, G.; Karakasiliotis, I.; Kampa, M.; Castanas, E. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules 2022, 27, 4060. [Google Scholar] [CrossRef]
- Farnsworth, N.R. Ethnopharmacology and drug development. Ciba. Found. Symp. 1994, 185, 42–51. [Google Scholar] [CrossRef]
- Castañeda, R.; Natarajan, S.; Jeong, S.Y.; Hong, B.N.; Kang, T.H. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? J. Ethnopharmacol. 2019, 231, 409–428. [Google Scholar] [CrossRef]
- Leonti, M. The relevance of quantitative ethnobotanical indices for ethnopharmacology and ethnobotany. J. Ethnopharmacol. 2022, 288, 115008. [Google Scholar] [CrossRef]
- Nasim, N.; Sandeep, I.S.; Mohanty, S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022, 18, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Perry, N.; Court, G.; Bidet, N.; Court, J.; Perry, E. European herbs with cholinergic activities: Potential in dementia therapy. Int. J. Geriatr. Psychiatry 1996, 11, 1063–1069. [Google Scholar] [CrossRef]
- Kuang, P.; Tao, Y.; Tian, Y. Radix Salviae miltiorrhizae treatment results in decreased lipid peroxidation in reperfusion injury. J. Tradit. Chin. Med. 1996, 16, 138–142. [Google Scholar] [PubMed]
- Kamatou, G.P.; Makunga, N.P.; Ramogola, W.P.; Viljoen, A.M. South African Salvia species: A review of biological activities and phytochemistry. J. Ethnopharmacol. 2008, 119, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Gao, Z.X.; Weng, Z.; Du, Z.M.; Xu, W.A.; Yang, J.S.; Zhang, M.L.; Tong, Z.H.; Fang, Y.S.; Chai, X.S. Efficacy of tablet huperzine A on memory, cognition, and behavior in Alzheimer’s disease. Zhongguo Yao Li Xue Bao 1995, 16, 391–395. [Google Scholar]
- Zhang, R.; Tang, X.; Han, Y.; Sang, G.W.; Zhang, Y.D.; Ma, Y.X.; Zhang, C.L.; Yang, R.M. Drug evaluation of huperzine A in the treatment of senile memory disorders. Zhongguo Yao Li Xue Bao 1991, 12, 250–252. [Google Scholar]
- Bai, D.L.; Tang, X.C.; He, X.C. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem. 2000, 7, 355–374. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Tian, J.; Liu, J.P. Huperzine A for Alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. PLoS ONE 2013, 23, e74916. [Google Scholar] [CrossRef] [Green Version]
- Villegas, C.; Perez, R.; Petiz, L.L.; Glaser, T.; Ulrich, H.; Paz, C. Ginkgolides and huperzine A for complementary treatment of Alzheimer’s disease. IUBMB Life 2022, 74, 763–779. [Google Scholar] [CrossRef]
- Perry, N.S.L.; Houghton, P.J.; Sampson, J.; Theobald, A.E.; Hart, S.; Lis-Balchin, M.; Hoult, J.R.S.; Evans, P.; Jenner, P.; Milligan, S.; et al. In vitro activity of S. lavandulaefolia (Spanish sage) relevant to treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2001, 53, 1347–1356. [Google Scholar] [CrossRef]
- Perry, N.S.L.; Houghton, P.J.; Jenner, P.; Keith, A.; Perry, E.K. Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo. Phytomedicine 2002, 9, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Tildesley, N.T.; Kennedy, D.O.; Perry, E.K.; Ballard, C.G.; Savelev, S.A.W.K.; Wesnes, K.A.; Scholey, A.B. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharm. Biochem. Behavior. 2003, 75, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Houghton, P.J.; Hider, R.C.; Howes, M.R. Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza. Planta Med. 2004, 70, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Imanshahidi, M.; Hosseinzadeh, H. The pharmacological effects of Salvia species on the central nervous system. Phytother. Res. 2006, 20, 427–437. [Google Scholar] [CrossRef]
- Lin, H.Q.; Ho, M.T.; Lau, L.S.; Wong, K.K.; Shaw, P.C.; Wan, D.C.C. Anti-acetylcholinesterase activities of traditional Chinese medicine for treating Alzheimer’s disease. Chem. Biol. Inter. 2008, 175, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Pickering, A.T.; Wang, W.W.; Houghton, P.; Perry, N.S. Medicinal plants and Alzheimer’s disease: Integrating ethnobotanical and contemporary scientific evidence. J. Altern. Complement Med. 1998, 4, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Pikering, A.T.; Wang, W.W.; Houghton, P.J.; Perry, N.S. Medicinal plants and Alzheimer’s disease: From ethnobotany to phytotherapy. J. Pharm. Pharmacol. 1999, 51, 527–534. [Google Scholar] [CrossRef]
- Perry, E.; Howes, M.J. Medicinal plants and dementia therapy: Herbal hopes for brain aging. CNS Neurosci. Ther. 2011, 17, 683–698. [Google Scholar] [CrossRef]
- Wake, G.; Court, J.; Pikering, A.; Lewis, R.; Wilkins, R.; Perry, E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J. Ethnopharmacol. 2000, 69, 105–114. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B.; Tildesley, N.T.J.; Perry, E.K.; Wesnes, K.A. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol. Biochem. Behav. 2002, 72, 953–964. [Google Scholar] [CrossRef]
- Perry, N.S.; Bollen, C.; Perry, E.K.; Ballard, C. Salvia for dementia therapy: Review of pharmacological activity and pilot tolerability clinical trial. Pharmacol. Biochem. Behav. 2003, 75, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Miroddi, M.; Navarra, M.; Quattropani, M.; Calapai, C.; Gangemi, F.; Calapai, S.G. Systematic review of clinical trials assessing pharmacological properties of Salvia species on memory, cognitive impairment and Alzheimer’s disease. CNS Neurosci. Ther. 2014, 20, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L. Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs R&D 2017, 17, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2014, 7, 433–440. [Google Scholar] [CrossRef]
- Kennedy, D.; Pace, S.; Haskell, C.F.; Okello, E.J.; Milne, A.; Scholey, A. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology 2006, 31, 845–852. [Google Scholar] [CrossRef]
- Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 2003, 28, 53–59. [Google Scholar] [CrossRef]
- Garg, V.; Dhar, V.J.; Sharma, A.; Dutt, R. Facts about standardization of herbal medicine: A review. Chin. J. Integr. Med. 2012, 10, 1077–1083. [Google Scholar] [CrossRef]
- Zhang, J.; Wider, B.; Shang, H.; Li, X.; Ernst, E. Quality of herbal medicines: Challenges and solutions. Complement. Ther. Med. 2012, 20, 100–106. [Google Scholar] [CrossRef]
- Länger, R.; Stöger, E.; Kubelka, W.; Helliwell, K. Quality standards for herbal drugs and herbal drug preparations—Appropriate or improvements necessary? Planta Med. 2018, 84, 350–360. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Yao, C.L.; Guo, D.A. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J. Pharm. Biomed. Anal. 2020, 185, 113215. [Google Scholar] [CrossRef]
- Scholey, A.; Tildesley, N.T.J.; Ballard, C.; Wesnes, K.; Tasker, A.; Perry, E.K.; Kennedy, D. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology 2008, 198, 127–139. [Google Scholar] [CrossRef]
- Laybourne, G.; Moss, M.; Wesnes, K.; Scott, S.D. Effects of acute oral administration of rosemary and peppermint on cognition and mood in healthy adults. J. Psychopharmacol. 2003, 17, A62. [Google Scholar]
- Tildesley, N.T.J.; Kennedy, E.K.; Perry, C.G.; Ballard, C.G.; Wesnes, K.A.; Scholey, A.B. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol. Behav. 2005, 83, 699–709. [Google Scholar] [CrossRef]
- Moss, L.; Rouse, M.; Wesnes, K.A.; Moss, M. Differential effects of the aromas of Salvia species on memory and moody. Hum. Psychopharmacol. Clin. Exp. 2010, 25, 388–396. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Dodd, F.; Robertson, B.C.; Okello, E.J.; Reay, J.; Scholey, A.; Haskell, C.F. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J. Psychopharmacol. 2011, 25, 1088–1100. [Google Scholar] [CrossRef]
- Wightman, E.L.; Jackson, P.A.; Spittlehouse, B.; Heffernan, T.; Guillemet, D.; Kennedy, D.O. The acute and chronic cognitive effects of a sage extract: A randomized, placebo-controlled study in healthy humans. Nutrients 2021, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Wake, G.; Savelev, S.; Tildesley, N.T.J.; Perry, E.K.; Wesnes, K.A.; Scholey, A.B. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology 2003, 28, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Pengelly, A.; Snow, J.; Mills, S.Y.; Scholey, A.; Wesnes, K.; Butler, L.R. Short-term study on the effects of rosemary on cognitive function in an elderly population. J. Med. Food 2012, 15, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.S.; Liang, M.R.; Liu, O.D. An experimental study on the effects of borneol as adjuvant drug and messenger drug. J. Tradit. Chin. Med. 1994, 35, 46–47. [Google Scholar]
- Perry, N.S.L.; Menzies, R.; Hodgson, F.; Wedgewood, P.; Howes, M.R.; Brooker, H.J.; Wesnes, K.A.; Perry, E.K. A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age. Phytomedicine 2018, 15, 42–48. [Google Scholar] [CrossRef]
- Tejeda, H.A.; Shippenburg, T.S.; Henriksson, R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell. Mol. Life Sci. 2012, 69, 857–896. [Google Scholar] [CrossRef]
- Johnson, M.W.; MacLean, K.A.; Reissig, C.J.; Prisinzano, T.E.; Griffiths, R.R. Human psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen present in the plant Salvia divinorum. Drug Alcohol Depend. 2011, 115, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, R.R.; Johnson, M.W.; Richards, W.A.; Richards, B.R.; McCann, U.D.; Jesse, R. Psilocybin occasioned mystical-type experiences: Immediate and persisting dose-related effects. Psychopharmacology 2011, 218, 649–665. [Google Scholar] [CrossRef]
- Karam, A.; Said, A.; Assaad, C.; Hallit, S.; Haddad, G.; Hachem, D.; Kazour, F. Abuse and effects of Salvia divinorum in a sample of patients hospitalized for substance dependence. Community Ment. Health J. 2019, 55, 702–708. [Google Scholar] [CrossRef]
- Orhan, I.; Aslan, S.; Kartal, M.; Sener, B.; Baser, K.H.C. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem. 2008, 108, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.; Oliver, L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther. Adv. Psychopharmacol. 2012, 2, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, R.R.; McLean, S.; Brandon, S.; Wiggins, N. Rapid absorption of dietary 1,8-cineole results in critical blood concentration of cineole and immediate cessation of eating in the common brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 2005, 31, 2775–2790. [Google Scholar] [CrossRef] [PubMed]
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Major selected monoterpenes alpha-pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharm. Biol. 2014, 53, 921–929. [Google Scholar] [CrossRef]
- Kammoun El Euch, S.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of antienzymatic and antioxidant bioactivities. South Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Dinel, A.L.; Lucas, C.; Guillemet, D.; Layé, S.; Pallet, V.; Joffre, C. Chronic supplementation with a mix of Salvia officinalis and Salvia lavandulaefolia improves morris water maze learning in normal adult C57Bl/6J mice. Nutrients 2020, 12, 1777. [Google Scholar] [CrossRef]
- Yamauchi, T. Neuronal Ca2+/Calmodulin-Dependent Protein Kinase II—Discovery, progress in a quarter of a century, and perspective: Implication for learning and memory. Biol. Pharm. Bull. 2005, 28, 1342–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraize, N.; Hamieh, A.M.; Joseph, M.A.; Touret, M.; Parmentier, R.; Salin, P.A.; Malleret, G. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting. Learn. Mem. 2017, 24, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzheimer’s Association. 2015 Alzheimer Facts and Figures. Alzheimers Dement. 2015, 11, 332–384. [Google Scholar] [CrossRef]
- Canevelli, M.; Lucchini, F.; Quarata, F.; Bruno, G.; Cesari, M. Nutrition and dementia: Evidence for preventive approaches. Nutrients 2016, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol. 2009, 175, 2557–2565. [Google Scholar] [CrossRef] [Green Version]
- Kayashima, T.; Matsubara, K. Antiangiogenic effect of carnosic acid and carnosol, neuroprotective compounds in rosemary leaves. Biosci. Biotechnol. Biochem. 2012, 76, 115–119. [Google Scholar] [CrossRef]
- Sasaki, K.; El Omri, A.; Kondo, S.; Han, J.; Isoda, H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav. Brain Res. 2013, 238, 86–94. [Google Scholar] [CrossRef]
- Iversen, T.; Fiirgaard, K.M.; Schriver, P.; Rasmussen, O.; Andreasen, F. The effect of NaO Li Su on memory functions and blood chemistry in elderly people. J. Ethnopharmacol. 1997, 56, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Li, L.X.; Ru, L.Q. Influence of tanshinone on learning and memory impairment induced by amyloidβ-peptide1-40 in rats. Chin. J. Gerontol. 2003, 23, 294–297. [Google Scholar]
- Jiang, P.; Chen, M.; Lv, J.; Chen, C.; Jiao, B.H. Effect of tanshinone II A on MMP-2 and iNOS expression and free radical release in hippocampus of rat Alzheimer’s disease mode. Acad. J. Second Military Med. Univ. 2010, 31, 380–384. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Yang, W.Q. Effects of compound tablet of red sage root on the expression of VEGF in brain of rat during chronic cerebral ischemia. Chin. J. Practical. Nerv. Dis. 2007, 10, 26–27. [Google Scholar]
- Tian, J.; Shi, J.; Wei, M.; Qin, R.; Ni, J.; Zhang, X.; Li, T.; Wang, Y. The efficacy and safety of Fufangdanshen tablets (Radix Salviae miltiorrhizae formula tablets) for mild to moderate vascular dementia: A study protocol for a randomized controlled trial. Trials 2016, 17, 281. [Google Scholar] [CrossRef] [Green Version]
- Perron, B.E.; Ahmedani, B.K.; Vaughn, M.G.; Glass, J.E.; Abdon, A.; Wu, L.T. Use of Salvia divinorum in a nationally representative sample. Am. J. Drug Alcohol Abus. 2012, 38, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.W.; Rothman, R.B.; Prisinzano, T.E. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol. Rev. 2011, 63, 316–347. [Google Scholar] [CrossRef] [Green Version]
- Kivell, B.; Prisinzano, T.E. Kappa opioids and the modulation of pain. Psychopharmacology 2010, 210, 109–119. [Google Scholar] [CrossRef]
- Addy, P.H. Acute and post-acute behavioral and psychological effects of salvinorin A in humans. Psychopharmacology 2012, 220, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, M.; Schnakenburg, A.; Skosnik, P.D.; Cohen, B.M.; Pittman, B.; Sewell, R.A.; D’Souza, D.C. Dose-related behavioral, subjective, endocrine, and psychophysiological effects of the κ-opioid agonist salvinorin A in humans. Biol. Psychiatry 2012, 72, 871–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelson, J.E.; Coyle, J.R.; Lopez, J.C.; Baggott, M.J.; Flower, K.; Everhart, E.T.; Munro, T.A.; Galloway, G.P.; Cohen, B.M. Lack of effect of sublingual salvinorin A, a naturally occurring kappa opioid, in humans: A placebo-controlled trial. Psychopharmacology 2011, 214, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertson, D.N.; Grubbs, L.E. Subjective effects of Salvia divinorum: LSD- or marijuana-like. J. Psychoact. Drugs 2009, 41, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Baggott, M.J.; Erowid, E.; Erowid, F.; Galloway, G.P.; Mendelson, J. Use patterns and self-reported effects of Salvia divinorum: An internet-based survey. Drug Alcohol Depend. 2010, 111, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.C. Legally tripping: A qualitative profile of Salvia divinorum use among young adults. J. Psychoact. Drugs 2011, 43, 46–54. [Google Scholar] [CrossRef]
- Sumnall, H.R.; Measham, F.; Brandt, S.D.; Cole, J.C. Salvia divinorum use and phenomenology: Results from an online survey. J. Psychopharmacol. 2011, 25, 1496–1507. [Google Scholar] [CrossRef]
- MacLean, K.A.; Johnson, M.W.; Reissig, C.J.; Prisinzano, T.E.; Griffiths, R.R. Dose-related effects of salvinorin A in humans: Dissociative, hallucinogenic, and memory effects. Psychopharmacology 2013, 226, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.A.; Wightman, E.L.; Veasey, R.; Forster, J.; Khan, J.; Saunders, C.; Mitchell, S.; Haskell-Ramsay, C.F.; Kennedy, D.O. A randomized, crossover study of the acute cognitive and cerebral blood flow effects of phenolic, nitrate and botanical beverages in young, healthy humans. Nutrients 2020, 12, 2254. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertas, A.; Yigitkan, S.; Orhan, I.E. A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)—From Ethnopharmacology to Clinical Evidence. Pharmaceuticals 2023, 16, 171. https://doi.org/10.3390/ph16020171
Ertas A, Yigitkan S, Orhan IE. A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)—From Ethnopharmacology to Clinical Evidence. Pharmaceuticals. 2023; 16(2):171. https://doi.org/10.3390/ph16020171
Chicago/Turabian StyleErtas, Abdulselam, Serkan Yigitkan, and Ilkay Erdogan Orhan. 2023. "A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)—From Ethnopharmacology to Clinical Evidence" Pharmaceuticals 16, no. 2: 171. https://doi.org/10.3390/ph16020171
APA StyleErtas, A., Yigitkan, S., & Orhan, I. E. (2023). A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)—From Ethnopharmacology to Clinical Evidence. Pharmaceuticals, 16(2), 171. https://doi.org/10.3390/ph16020171