Next Article in Journal
Improved Solubility and Activity of Natural Product in Nanohydrogel
Previous Article in Journal
From Selye’s and Szabo’s Cysteamine-Duodenal Ulcer in Rats to Dopamine in the Stomach: Therapy Significance and Possibilities
Previous Article in Special Issue
Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Current Insights on Lipid-Based Nanosystems 2023

by
Ana Catarina Silva
1,2,3,*,
João Nuno Moreira
4,5 and
José Manuel Sousa Lobo
1,2
1
UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
2
Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
3
FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
4
CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
5
Faculty of Pharmacy, Univ Coimbra—University of Coimbra, CIBB, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
*
Author to whom correspondence should be addressed.
Pharmaceuticals 2023, 16(12), 1700; https://doi.org/10.3390/ph16121700
Submission received: 20 November 2023 / Accepted: 24 November 2023 / Published: 8 December 2023
(This article belongs to the Special Issue Current Insights on Lipid-Based Nanosystems 2023)
Among the different types of nanosystems that have been investigated for therapeutic use, lipid-based ones are the most explored, as they have advantages over non-lipid nanosystems, especially for improving the transport and efficacy of drugs through different routes of administration, such as ocular, cutaneous, intranasal, and intravenous [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].
The concept of lipid-based nanosystems is broad and includes solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), cationic lipid nanoparticles, liposomes, exosomes, nanoemulsions, microemulsions, and self-nanoemulsifying systems. Studies have shown that these nanosystems are promising for improving the efficacy of lipophilic drugs or nucleic acids in different therapeutic applications, especially those that respond to unmet medical needs [2,4,19,20,21,22,23,24,25,26].
In the second edition of the Special Issue on lipid-based nanosystems, we notice that research in this field remains very active, as we published 16 works, including 10 research articles and 6 review articles, which were the following:
  • Aljuffali, I.A.; Anwer, M.K.; Ahmed, M.M.; Alalaiwe, A.; Aldawsari, M.F.; Fatima, F.; Jamil, S. Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells. Pharmaceuticals 2023, 16, 1549. https://doi.org/10.3390/ph16111549.
  • Ocaña-Arakachi, K.; Martínez-Herculano, J.; Jurado, R.; Llaguno-Munive, M.; Garcia-Lopez, P. Pharmacokinetics and Anti-Tumor Efficacy of PEGylated Liposomes Co-Loaded with Cisplatin and Mifepristone. Pharmaceuticals 2023, 16, 1337. https://doi.org/10.3390/ph16101337.
  • Arif, S.T.; Khan, M.A.; Zaman, S.u.; Sarwar, H.S.; Raza, A.; Sarfraz, M.; Bin Jardan, Y.A.; Amin, M.U.; Sohail, M.F. Enhanced Antidepressant Activity of Nanostructured Lipid Carriers Containing Levosulpiride in Behavioral Despair Tests in Mice. Pharmaceuticals 2023, 16, 1220. https://doi.org/10.3390/ph16091220.
  • Tyagi, R.; Waheed, A.; Kumar, N.; Ahad, A.; Bin Jardan, Y.A.; Mujeeb, M.; Kumar, A.; Naved, T.; Madan, S. Formulation and Evaluation of Plumbagin-Loaded Niosomes for an Antidiabetic Study: Optimization and In Vitro Evaluation. Pharmaceuticals 2023, 16, 1169. https://doi.org/10.3390/ph16081169.
  • Ahalwat, S.; Bhatt, D.C.; Rohilla, S.; Jogpal, V.; Sharma, K.; Virmani, T.; Kumar, G.; Alhalmi, A.; Alqahtani, A.S.; Noman, O.M.; et al. Mannose-Functionalized Isoniazid-Loaded Nanostructured Lipid Carriers for Pulmonary Delivery: In Vitro Prospects and In Vivo Therapeutic Efficacy Assessment. Pharmaceuticals 2023, 16, 1108. https://doi.org/10.3390/ph16081108.
  • Peczek, S.H.; Tartari, A.P.S.; Zittlau, I.C.; Diedrich, C.; Machado, C.S.; Mainardes, R.M. Enhancing Oral Bioavailability and Brain Biodistribution of Perillyl Alcohol Using Nanostructured Lipid Carriers. Pharmaceuticals 2023, 16, 1055. https://doi.org/10.3390/ph16081055.
  • Satyanarayana, S.D.; Abu Lila, A.S.; Moin, A.; Moglad, E.H.; Khafagy, E.-S.; Alotaibi, H.F.; Obaidullah, A.J.; Charyulu, R.N. Ocular Delivery of Bimatoprost-Loaded Solid Lipid Nanoparticles for Effective Management of Glaucoma. Pharmaceuticals 2023, 16, 1001. https://doi.org/10.3390/ph16071001.
  • Garrós, N.; Bustos-Salgados, P.; Domènech, Ò.; Rodríguez-Lagunas, M.J.; Beirampour, N.; Mohammadi-Meyabadi, R.; Mallandrich, M.; Calpena, A.C.; Colom, H. Baricitinib Lipid-Based Nanosystems as a Topical Alternative for Atopic Dermatitis Treatment. Pharmaceuticals 2023, 16, 894. https://doi.org/10.3390/ph16060894.
  • Tong, Y.; Shi, W.; Zhang, Q.; Wang, J. Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS). Pharmaceuticals 2023, 16, 99. https://doi.org/10.3390/ph16010099.
  • Rincón, M.; Espinoza, L.C.; Silva-Abreu, M.; Sosa, L.; Pesantez-Narvaez, J.; Abrego, G.; Calpena, A.C.; Mallandrich, M. Quality by Design of Pranoprofen Loaded Nanostructured Lipid Carriers and Their Ex Vivo Evaluation in Different Mucosae and Ocular Tissues. Pharmaceuticals 2022, 15, 1185. https://doi.org/10.3390/ph15101185.
  • Paiva, D.d.F.; Matos, A.P.d.S.; Garófalo, D.d.A.; do Nascimento, T.; Monteiro, M.S.d.S.d.B.; Santos-Oliveira, R.; Ricci-Junior, E. Use of Nanocarriers Containing Antitrypanosomal Drugs for the Treatment of Chagas Disease. Pharmaceuticals 2023, 16, 1163. https://doi.org/10.3390/ph16081163.
  • Korzun, T.; Moses, A.S.; Diba, P.; Sattler, A.L.; Taratula, O.R.; Sahay, G.; Taratula, O.; Marks, D.L. From Bench to Bedside: Implications of Lipid Nanoparticle Carrier Reactogenicity for Advancing Nucleic Acid Therapeutics. Pharmaceuticals 2023, 16, 1088. https://doi.org/10.3390/ph16081088.
  • Subhan, M.A.; Filipczak, N.; Torchilin, V.P. Advances with Lipid-Based Nanosystems for siRNA Delivery to Breast Cancers. Pharmaceuticals 2023, 16, 970. https://doi.org/10.3390/ph16070970.
  • Gugleva, V.; Andonova, V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals 2023, 16, 474. https://doi.org/10.3390/ph16030474.
  • Richards, T.; Patel, H.; Patel, K.; Schanne, F. Endogenous Lipid Carriers—Bench-to-Bedside Roadblocks in Production and Drug Loading of Exosomes. Pharmaceuticals 2023, 16, 421. https://doi.org/10.3390/ph16030421.
  • Torres, J.; Costa, I.; Peixoto, A.F.; Silva, R.; Sousa Lobo, J.M.; Silva, A.C. Intranasal Lipid Nanoparticles Containing Bioactive Compounds Obtained from Marine Sources to Manage Neurodegenerative Diseases. Pharmaceuticals 2023, 16, 311. https://doi.org/10.3390/ph16020311.
Among the articles published in this Special Issue on lipid-based nanosystems, the lipid nanoparticles, specifically NLC, are the most explored, which suggests the potential of these systems to reach clinic in the upcoming years. Regarding the most investigated diseases, these include cancer, brain diseases, ocular diseases, skin diseases, microbial infections, and metabolic diseases. Thereby, we hope that all these works will contribute to the advancement of these scientific fields.
We would like to thank all the authors of this Special Issue for contributing high-quality articles, as well as all the reviewers who critically evaluated these works. We also thank to the assistant editor Evelyn Du for her kind help in managing this Special Issue.

Author Contributions

Conceptualization, A.C.S.; writing—original draft preparation, A.C.S.; writing—review and editing, J.N.M. and J.M.S.L. All authors have read and agreed to the published version of the manuscript.

Funding

The Applied Molecular Biosciences Unit—UCIBIO, which is financed by national funds from Fundação para a Ciência e a Tecnologia—FCT (UIDP/04378/2020 and UIDB/04378/2020), supported this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Almeida, H.; Silva, A.C. Nanoparticles in Ocular Drug Delivery Systems. Pharmaceutics 2023, 15, 1675. [Google Scholar] [CrossRef] [PubMed]
  2. Correia, A.C.; Monteiro, A.R.; Silva, R.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv. Drug Deliv. Rev. 2022, 189, 114485. [Google Scholar] [CrossRef] [PubMed]
  3. Garcês, A.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef] [PubMed]
  4. Kon, E.; Ad-El, N.; Hazan-Halevy, I.; Stotsky-Oterin, L.; Peer, D. Targeting cancer with mRNA–lipid nanoparticles: Key considerations and future prospects. Nat. Rev. Clin. Oncol. 2023, 20, 739–754. [Google Scholar] [CrossRef] [PubMed]
  5. Gugleva, V.; Andonova, V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals 2023, 16, 474. [Google Scholar] [CrossRef] [PubMed]
  6. Han, H.; Li, S.; Xu, M.; Zhong, Y.; Fan, W.; Xu, J.; Zhou, T.; Ji, J.; Ye, J.; Yao, K. Polymer-and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv. Drug Deliv. Rev. 2023, 7, 114770. [Google Scholar] [CrossRef] [PubMed]
  7. Wang, X.; Liu, S.; Sun, Y.; Yu, X.; Lee, S.M.; Cheng, Q.; Wei, T.; Gong, J.; Robinson, J.; Zhang, D. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 2023, 18, 265–291. [Google Scholar] [CrossRef]
  8. Mohammed, H.A.; Khan, R.A.; Singh, V.; Yusuf, M.; Akhtar, N.; Sulaiman, G.M.; Albukhaty, S.; Abdellatif, A.A.; Khan, M.; Mohammed, S.A. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnol. Rev. 2023, 12, 20220517. [Google Scholar] [CrossRef]
  9. Czajkowska-Kośnik, A.; Szekalska, M.; Winnicka, K. Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharmacol. Rep. 2019, 71, 156–166. [Google Scholar] [CrossRef]
  10. Nguyen, T.-T.-L.; Maeng, H.-J. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022, 14, 572. [Google Scholar] [CrossRef]
  11. Abla, K.K.; Mehanna, M.M. The battle of lipid-based nanocarriers against blood-brain barrier: A critical review. J. Drug Target. 2023, 31, 832–857. [Google Scholar] [CrossRef]
  12. Ilić, T.; Đoković, J.B.; Nikolić, I.; Mitrović, J.R.; Pantelić, I.; Savić, S.D.; Savić, M.M. Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023, 15, 443. [Google Scholar] [CrossRef]
  13. Jiang, Y.; Pan, X.; Yu, T.; Wang, H. Intranasal administration nanosystems for brain-targeted drug delivery. Nano Res. 2023, 12, 1–23. [Google Scholar] [CrossRef]
  14. Almawash, S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm. J. 2023, 31, 1167–1180. [Google Scholar] [CrossRef]
  15. Xu, Y.; Fourniols, T.; Labrak, Y.; Préat, V.; Beloqui, A.; des Rieux, A. Surface modification of lipid-based nanoparticles. ACS Nano 2022, 16, 7168–7196. [Google Scholar] [CrossRef] [PubMed]
  16. Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm. Dev. Technol. 2022, 27, 525–544. [Google Scholar] [CrossRef] [PubMed]
  17. Das, B.; Nayak, A.K.; Mallick, S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J. Drug Deliv. Sci. Technol. 2022, 15, 103780. [Google Scholar] [CrossRef]
  18. Henostroza, M.A.B.; Tavares, G.D.; Yukuyama, M.N.; De Souza, A.; Barbosa, E.J.; Avino, V.C.; dos Santos Neto, E.; Lourenço, F.R.; Löbenberg, R.; Bou-Chacra, N.A. Antibiotic-loaded lipid-based nanocarrier: A promising strategy to overcome bacterial infection. Int. J. Pharm. 2022, 621, 121782. [Google Scholar] [CrossRef] [PubMed]
  19. Silva, A.C.; Moreira, J.N.; Lobo, J.M.S. Editorial—Current Insights on Lipid-Based Nanosystems. Pharmaceuticals 2022, 15, 1267. [Google Scholar] [CrossRef] [PubMed]
  20. Chapa González, C.; Martínez Saráoz, J.V.; Roacho Pérez, J.A.; Olivas Armendáriz, I. Lipid nanoparticles for gene therapy in ocular diseases. DARU J. Pharm. Sci. 2023, 15, 75–82. [Google Scholar] [CrossRef]
  21. Zeng, L.; Gowda, B.J.; Ahmed, M.G.; Abourehab, M.A.; Chen, Z.-S.; Zhang, C.; Li, J.; Kesharwani, P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 2023, 22, 10. [Google Scholar] [CrossRef] [PubMed]
  22. Correia, A.; Moreira, J.; Sousa Lobo, J.; Silva, A. Design of experiment (DoE) as a quality by design (QbD) tool to optimize formulations of lipid nanoparticles for nose-to-brain drug delivery. Expert Opin. Drug Deliv. 2023, 31, 1–18. [Google Scholar] [CrossRef]
  23. Zong, Y.; Lin, Y.; Wei, T.; Cheng, Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Adv. Mater. 2023, e2303261. [Google Scholar] [CrossRef] [PubMed]
  24. Akanda, M.; Mithu, M.S.H.; Douroumis, D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J. Drug Deliv. Sci. Technol. 2023, 3, 104709. [Google Scholar] [CrossRef]
  25. Jeong, M.; Lee, Y.; Park, J.; Jung, H.; Lee, H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 2023, 7, 114990. [Google Scholar] [CrossRef]
  26. Tenchov, R.; Sasso, J.M.; Zhou, Q.A. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug. Chem. 2023, 34, 941–960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Silva, A.C.; Moreira, J.N.; Sousa Lobo, J.M. Current Insights on Lipid-Based Nanosystems 2023. Pharmaceuticals 2023, 16, 1700. https://doi.org/10.3390/ph16121700

AMA Style

Silva AC, Moreira JN, Sousa Lobo JM. Current Insights on Lipid-Based Nanosystems 2023. Pharmaceuticals. 2023; 16(12):1700. https://doi.org/10.3390/ph16121700

Chicago/Turabian Style

Silva, Ana Catarina, João Nuno Moreira, and José Manuel Sousa Lobo. 2023. "Current Insights on Lipid-Based Nanosystems 2023" Pharmaceuticals 16, no. 12: 1700. https://doi.org/10.3390/ph16121700

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop