Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice
Abstract
:1. Introduction
2. Results
2.1. Quality Control of XYS by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
2.2. Effect of Xiao-Yao-San on Depression-like Behaviors in Chronic Unpredictable Mild Stress Mice
2.3. Effect of Prolotherapy on the Inflammatory Response in the Spleen of CUMS Mice
2.4. XYS Improved the Metabolic Profile of the Inflammatory Response in CUMS Mice
2.5. Network Pharmacology Analysis
2.6. Molecular Docking
2.7. The Role of Key Targets of XYS in Treating Inflammatory Responses to Chronic Psychological Stress
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animal Experiment
4.2.1. CUMS Modeling Methods
4.2.2. Behavioral Testing
Sucrose Preference Test (SPT)
Open Field Test (OFT)
Forced Swimming Test (FST)
Tail Suspension Test (TST)
4.3. Preparation and Compound Identification of Xiao-Yao-San (XYS)
4.3.1. Preparation of Xiao-Yao-San
4.3.2. Compound Composition of Xiao-Yao-San
4.4. Metabolomic
4.4.1. Sample Preparation
4.4.2. Chromatography and Mass Spectrometry Conditions
4.4.3. Analysis of Metabolomics Results
4.5. Network Pharmacology Analysis
4.5.1. Drug Composition and Disease Target Screening
4.5.2. PPI Network Construction
4.5.3. GO and KEGG Enrichment Analyses
4.5.4. Molecular Docking
4.6. Integrating Analysis
4.7. Enzyme Linked Immunosorbent Assay (ELISA)
4.8. Immunohistochemistry
4.9. Real Time Quantitative PCR
4.10. Western Blot
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XYS | Xiao-Yao-San |
CUMS | Chronic Unpredictable Mild Stimulation |
SPT | Sucrose Preference Test |
OFT | Open Field Test |
FST | Forced Swimming Test |
TST | Tail Suspension Test |
PCA | Principal component analysis |
OPLS-DA | Orthogonal partial least squares discriminant analysis |
TCM | Traditional Chinese Medicine |
PPI | Protein–protein interaction |
RT-qPCR | Real time quantitative PCR |
MDD | Major depressive disorder |
ANOVA | One-way analysis of variance |
VEGFA | Vascular Endothelial Growth Factor A |
PPARG | Peroxisome Proliferator Activated Receptor γ |
References
- Fried, E.I.; Nesse, R.M. Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Med. 2015, 13, 72. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Colasanto, M.; Madigan, S.; Korczak, D.J. Depression and inflammation among children and adolescents: A meta-analysis. J. Affect. Disord. 2020, 277, 940–948. [Google Scholar] [CrossRef]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef]
- Shelton, R.C.; Miller, A.H. Eating ourselves to death (and despair): The contribution of adiposity and inflammation to depression. Prog. Neurobiol. 2010, 91, 275–299. [Google Scholar] [CrossRef]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef]
- Köhler, C.A.; Freitas, T.H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; de Andrade, N.Q.; Morris, G.; Fernandes, B.S.; Brunoni, A.R.; et al. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Mol. Neurobiol. 2018, 55, 4195–4206. [Google Scholar] [CrossRef]
- Zhu, H.-Z.; Liang, Y.-D.; Ma, Q.-Y.; Hao, W.-Z.; Li, X.-J.; Wu, M.-S.; Deng, L.-J.; Li, Y.-M.; Chen, J.-X. Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota. Biomed. Pharmacother. 2019, 112, 108621. [Google Scholar] [CrossRef]
- Chen, J.; Lei, C.; Li, X.; Wu, Q.; Liu, C.; Ma, Q.; Chen, J. Research progress on classical traditional chinese medicine formula xiaoyaosan in the treatment of depression. Front. Pharmacol. 2022, 13, 925514. [Google Scholar] [CrossRef]
- Shi, B.; Luo, J.; Fang, Y.; Liu, X.; Rao, Z.; Liu, R.; Zeng, N. Xiaoyao Pills Prevent Lipopolysaccharide-Induced Depression by Inhibiting Inflammation and Protecting Nerves. Front. Pharmacol. 2019, 10, 1324. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, T.; Zamboni, N. High-throughput discovery metabolomics. Curr. Opin. Biotechnol. 2015, 31, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Iyengar, R. Systems Pharmacology: Network Analysis to Identify Multiscale Mechanisms of Drug Action. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 505–521. [Google Scholar] [CrossRef]
- Antoniuk, S.; Bijata, M.; Ponimaskin, E.; Wlodarczyk, J. Chronic unpredictable mild stress for modeling depression in rodents: Me-ta-analysis of model reliability. Neurosci. Biobehav. Rev. 2019, 99, 101–116. [Google Scholar] [CrossRef]
- Pace, T.W.; Wingenfeld, K.; Schmidt, I.; Meinlschmidt, G.; Hellhammer, D.H.; Heim, C.M. Increased peripheral NF-κB pathway activity in women with childhood abuse-related posttraumatic stress disorder. Brain Behav. Immun. 2012, 26, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, A.E.K.A.; Poinsignon, V.; Chappell, K.; Bouligand, J.; Becquemont, L.; Verstuyft, C. Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants 2023, 12, 942. [Google Scholar] [CrossRef]
- Lian, G.; Gnanaprakasam, J.R.; Wang, T.; Wu, R.; Chen, X.; Liu, L.; Shen, Y.; Yang, M.; Yang, J.; Chen, Y.; et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 2018, 7, e36158. [Google Scholar] [CrossRef]
- Kofler, M.; Schiefecker, A.J.; Gaasch, M.; Sperner-Unterweger, B.; Fuchs, D.; Beer, R.; Ferger, B.; Rass, V.; Hackl, W.; Rhomberg, P.; et al. A reduced concentration of brain interstitial amino acids is associated with depression in subarachnoid hemorrhage patients. Sci. Rep. 2019, 9, 2811. [Google Scholar] [CrossRef]
- Li, K.; Yan, L.; Zhang, Y.; Yang, Z.; Zhang, C.; Li, Y.; Kalueff, A.V.; Li, W.; Song, C. Seahorse treatment improves depression-like behavior in mice exposed to CUMS through reducing inflammation/oxidants and restoring neurotransmitter and neurotrophin function. J. Ethnopharmacol. 2020, 250, 112487. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Rashidi, N.; Nurgali, K.; Apostolopoulos, V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 9968. [Google Scholar] [CrossRef]
- Gasmi, A.; Nasreen, A.; Menzel, A.; Benahmed, A.G.; Pivina, L.; Noor, S.; Peana, M.; Chirumbolo, S.; Bjørklund, G. Neurotransmitters Regulation and Food Intake: The Role of Dietary Sources in Neurotransmission. Molecules 2022, 28, 210. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Li, L.; Marvar, P.J.; Woolwine, B.J.; Harrison, D.G.; Raison, C.L.; Miller, A.H. Tyrosine metabolism during interferon- alpha ad-ministration: Association with fatigue and CSF dopamine concentrations. Brain Behav. Immun. 2013, 31, 153–160. [Google Scholar] [CrossRef]
- Sperner-Unterweger, B.; Kohl, C.; Fuchs, D. Immune changes and neurotransmitters: Possible interactions in depression? Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 268–276. [Google Scholar] [CrossRef]
- Strasser, B.; Sperner-Unterweger, B.; Fuchs, D.; Gostner, J.M. Mechanisms of Inflammation-Associated Depression: Immune In-fluences on Tryptophan and Phenylalanine Metabolisms. Curr. Top. Behav. Neurosci. 2017, 31, 95–115. [Google Scholar]
- Aguayo-Cerón, K.A.; Sánchez-Muñoz, F.; Gutierrez-Rojas, R.A.; Acevedo-Villavicencio, L.N.; Flores-Zarate, A.V.; Huang, F.; Giacoman-Martinez, A.; Villafaña, S.; Romero-Nava, R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int. J. Mol. Sci. 2023, 24, 11236. [Google Scholar] [CrossRef]
- Marques, B.L.; Oliveira-Lima, O.C.; Carvalho, G.A.; de Almeida Chiarelli, R.; Ribeiro, R.I.; Parreira, R.C.; da Madeira Freitas, E.M.; Resende, R.R.; Klempin, F.; Ulrich, H.; et al. Neurobiology of glycine transporters: From molecules to behavior. Neurosci. Biobehav. Rev. 2020, 118, 97–110. [Google Scholar] [CrossRef]
- Deyama, S.; Bang, E.; Kato, T.; Li, X.-Y.; Duman, R.S. Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor. Biol. Psychiatry 2019, 86, 143–152. [Google Scholar] [CrossRef]
- Carboni, L.; Marchetti, L.; Lauria, M.; Gass, P.; Vollmayr, B.; Redfern, A.; Jones, L.; Razzoli, M.; Malki, K.; Begni, V.; et al. Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology 2018, 43, 2134–2145. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.N.; da Costa e Silva, B.F.; Soares, J.C.; Carvalho, A.F.; Quevedo, J. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies. J. Affect. Disord. 2016, 197, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Chapouly, C.; Argaw, A.T.; Horng, S.; Castro, K.; Zhang, J.; Asp, L.; Loo, H.; Laitman, B.M.; Mariani, J.N.; Farber, R.S.; et al. Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions. Brain 2015, 138 Pt 6, 1548–1567. [Google Scholar] [CrossRef]
- Hempel, B.; Crissman, M.; Pari, S.; Klein, B.; Bi, G.-H.; Alton, H.; Xi, Z.-X. PPARα and PPARγ are expressed in midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice. Mol. Psychiatry, 2023; Online ahead of print. [Google Scholar]
- Sun, C.; Mao, S.; Chen, S.; Zhang, W.; Liu, C. PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 8974. [Google Scholar] [CrossRef]
- Ryan, K.K.; Li, B.; E Grayson, B.; Matter, E.K.; Woods, S.C.; Seeley, R.J. A role for central nervous system PPAR-γ in the regulation of energy balance. Nat. Med. 2011, 17, 623–626. [Google Scholar] [CrossRef]
- Kemp, D.E.; Schinagle, M.; Gao, K.; Conroy, C.; Ganocy, S.J.; Ismail-Beigi, F.; Calabrese, J.R. PPAR-γ Agonism as a Modulator of Mood: Proof-of-Concept for Pioglitazone in Bipolar Depression. CNS Drugs 2014, 28, 571–581. [Google Scholar] [CrossRef]
- Toba-Oluboka, T.; Vochosková, K.; Hajek, T. Are the antidepressant effects of insulin-sensitizing medications related to improve-ments in metabolic markers? Transl. Psychiatry 2022, 12, 469. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, H.; Oshima, S.; Sugiyama, T.; Negishi, A.; Nemoto, T.; Kobayashi, D. Changes in brain metabolites related to stress resilience: Metabolomic analysis of the hippocampus in a rat model of depression. Behav. Brain Res. 2019, 359, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, M.; Zhang, Q.; Zhang, J.; Chen, J.; Chen, Q.; Suo, L. Knockdown of miR-124 Reduces Depression-like Behavior by Tar-geting CREB1 and BDNF. Curr. Neurovasc. Res. 2020, 17, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Ao, H.Q.; Sun, Q.; Fu, W.J. The Effects of Xiaoyao San on The Protein Expression of Intracellular Glucocorticoid Receptor in the Cultured Rat Hippocampal Neurons in the State of Chronic Stress. Acta Chin. Med. Pharmacol. 2010, 38, 58–62. [Google Scholar]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022, 50, D1398–D1407. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable pro-tein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.-X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015, 127, 67–72. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; et al. RCSB Protein Data Bank: Enabling bio-medical research and drug discovery. Protein Sci. 2020, 29, 52–65. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
NO. | Compound Name | Formula | Retention Time | m/z (Da) | OB |
---|---|---|---|---|---|
1 | Paeoniflorin | C23H28O11 | 6.3 | 481.17 | 53.87% |
2 | Liquiritin | C21H22O9 | 8.9 | 419.13 | 29.23% |
3 | Ferulic acid | C10H10O4 | 7.9 | 195.07 | 39.56% |
4 | Atractylenolide I | C15H18O2 | 15.3 | 231.14 | 37.37% |
5 | 2-Atractylenolide | C15H20O2 | 14.9 | 233.15 | 47.50% |
6 | Atractylenolide III | C15H20O3 | 15.3 | 249.15 | 31.15% |
7 | Saikosaponin A | C42H68O13 | 12.8 | 779.46 | 32.39% |
8 | Saikosaponin D | C42H68O13 | 14.8 | 779.46 | 34.39% |
NO. | Name | Formula | ESI Mode | Retention Time | m/z | CUMS vs. Control | XYS vs. CUMS | ||
---|---|---|---|---|---|---|---|---|---|
VIP | Trend | VIP | Trend | ||||||
1 | Nicotinamide | C6H6N2O | [M+H]+ | 1.978 | 123.055 | 2.9031 | ↓ | 3.8747 | ↑ |
2 | Betaine | C5H12NO2 | [M+H]+ | 1.331 | 118.0861 | 4.28352 | ↑ | 3.35698 | ↓ |
3 | L-Glutamic acid | C5H9NO4 | [M+H]+ | 1.324 | 148.0603 | 1.73996 | ↓ | 2.68374 | ↑ |
4 | Creatine | C4H9N3O2 | [M+H]+ | 1.376 | 132.0766 | 2.38651 | ↓ | 2.399 | ↑ |
5 | 5-oxoproline | C5H7NO3 | [M+H]+ | 1.321 | 130.0499 | 1.7047 | ↓ | 2.15806 | ↑ |
6 | Inosine | C10H12N4O5 | [M+H]+ | 3.446 | 269.0882 | 1.85151 | ↑ | 1.57746 | ↓ |
7 | Palmitoylcarnitine | C23H46NO4 | [M+H]+ | 7.901 | 400.3421 | 5.02181 | ↓ | 1.43203 | ↑ |
8 | L-Phenylalanine | C9H11NO2 | [M+H]+ | 5.118 | 166.0859 | 1.32897 | ↓ | 1.40082 | ↑ |
9 | Ergothioneine | C9H15N3O2S | [M+H]+ | 1.397 | 230.0955 | 2.03896 | ↑ | 1.29377 | ↓ |
10 | Docosahexaenoic acid | C22H32O2 | [M-H]− | 9.767 | 327.2324 | 3.33233 | ↑ | 6.97933 | ↓ |
11 | Adrenic acid | C22H36O2 | [M-H]− | 10.518 | 331.2638 | 6.92823 | ↑ | 4.99596 | ↓ |
12 | Docosapentaenoic acid | C22H34O2 | [M-H]− | 10.054 | 329.2479 | 2.73121 | ↑ | 4.28855 | ↓ |
13 | 8Z,11Z,14Z- Eicosatrienoic acid | C20H34O2 | [M-H]− | 10.371 | 305.2482 | 1.78561 | ↑ | 2.09322 | ↓ |
14 | D-Glucose6- phosphate | C6H13O9P | [M-H]− | 1.228 | 259.0227 | 1.62244 | ↑ | 1.40387 | ↓ |
15 | 4-Oxoproline | C5H7NO3 | [M-H]− | 2.245 | 128.0354 | 1.47797 | ↓ | 1.34707 | ↑ |
16 | Stearic acid | C18H36O2 | [M-H]− | 11.152 | 283.2641 | 1.47313 | ↑ | 1.28179 | ↓ |
17 | Uridine | C9H12N2O6 | [M-H]− | 2.285 | 243.0623 | 1.85047 | ↑ | 1.15761 | ↓ |
18 | Elaidic acid | C18H34O2 | [M-H]− | 10.601 | 281.2483 | 2.30575 | ↑ | 1.85233 | ↓ |
19 | Thymidine | C10H14N2O5 | [M-H]− | 4.878 | 241.0832 | 1.98812 | ↑ | 1.37354 | ↓ |
20 | Docosatrienoic acid | C22H38O2 | [M-H]− | 11.038 | 333.28 | 1.85929 | ↑ | 1.3362 | ↓ |
21 | Orotidine | C10H12N2O8 | [M-H]− | 1.347 | 333.0593 | 1.6326 | ↑ | 1.29154 | ↓ |
NO. | Pathway Name | Total | Expected | Hits | p-Value | Impact |
---|---|---|---|---|---|---|
1 | Pyrimidine metabolism | 39 | 0.37742 | 3 | 0.005439 | 0.14535 |
2 | Glutathione metabolism | 28 | 0.27097 | 2 | 0.028584 | 0.02675 |
3 | Phenylalanine, tyrosine and tryptophan biosynthesis | 4 | 0.03871 | 1 | 0.038188 | 0.5 |
4 | Glycine, serine and threonine metabolism | 33 | 0.31935 | 2 | 0.038829 | 0.05034 |
NO. | Gene Name | Degree | Betweenness | Closeness |
---|---|---|---|---|
1 | AKT1 | 53 | 203.9459 | 0.833333 |
2 | VEGFA | 49 | 108.068 | 0.792683 |
3 | IL1β | 48 | 201.6406 | 0.792683 |
4 | TP53 | 48 | 159.9084 | 0.783133 |
5 | CASP3 | 45 | 81.21995 | 0.755814 |
6 | PPARG | 44 | 187.2315 | 0.747126 |
7 | PTGS2 | 44 | 88.78311 | 0.747126 |
NO. | Name | Degree | Betweenness | Closeness |
---|---|---|---|---|
1 | Quercetin | 83 | 4856.966 | 0.521994 |
2 | Kaempferol | 55 | 1488.816 | 0.459948 |
3 | Naringenin | 27 | 747.0437 | 0.450633 |
4 | Beta-sitosterol | 25 | 370.6822 | 0.439506 |
5 | Luteolin | 22 | 525.4311 | 0.469657 |
6 | Isorhamnetin | 21 | 229.8738 | 0.44389 |
7 | Ferulic acid | 19 | 957.7249 | 0.462338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, X.-J.; Wang, X.-R.; Wang, X.; Li, G.-H.; Xue, Q.-Y.; Zhang, M.-J.; Ao, H.-Q. Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice. Pharmaceuticals 2023, 16, 1607. https://doi.org/10.3390/ph16111607
Zhang Y, Li X-J, Wang X-R, Wang X, Li G-H, Xue Q-Y, Zhang M-J, Ao H-Q. Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice. Pharmaceuticals. 2023; 16(11):1607. https://doi.org/10.3390/ph16111607
Chicago/Turabian StyleZhang, Yi, Xiao-Jun Li, Xin-Rong Wang, Xiao Wang, Guo-Hui Li, Qian-Yin Xue, Ming-Jia Zhang, and Hai-Qing Ao. 2023. "Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice" Pharmaceuticals 16, no. 11: 1607. https://doi.org/10.3390/ph16111607
APA StyleZhang, Y., Li, X. -J., Wang, X. -R., Wang, X., Li, G. -H., Xue, Q. -Y., Zhang, M. -J., & Ao, H. -Q. (2023). Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice. Pharmaceuticals, 16(11), 1607. https://doi.org/10.3390/ph16111607