Sweet Cherry Extract as Permeation Enhancer of Tyrosine Kinase Inhibitors: A Promising Prospective for Future Oral Anticancer Therapies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sweet Cherry Extract: Yield and HPLC-UV/MS Characterization
2.2. Total Phenolic Content (TPC), Antioxidant Activity and Total Anthocyanins Content (TAC)
2.3. Cell Viability Studies
2.4. Permeability Studies
3. Materials and Methods
3.1. Compounds and Chemicals
3.2. Fruit Material
3.3. Preparation of Extracts
3.4. Sweet Cherry Extract Characterization via HPLC-UV/MS Method
3.5. Quantification of Total Phenolic Content (TPC)
3.6. In Vitro Antioxidant Activity
3.6.1. DPPH Assay
3.6.2. ABTS Method
3.7. Quantification of Total Anthocyanins Content (TAC)
3.8. Caco-2 Cell Culture for Viability Studies
3.9. Cell Viability Assay
3.10. Caco-2 Cell Colture for Permeability Studies
3.11. Measurement of Cell Monolayer Integrity with Lucifer Yellow
3.12. Permeability Studies in the Presence and Absence of SCE
3.13. Caco-2 Monolayer Permeability to Albumin
3.14. HPLC-UV/MS Method for Quantification of Tested Compounds
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamson, N.G.; Fein, K.C.; Gleeson, J.P.; Newby, A.N.; Xian, S.; Cochran, K.; Chaudhary, N.; Melamed, J.R.; Ball, R.L.; Suri, K.; et al. The Strawberry-Derived Permeation Enhancer Pelargonidin Enables Oral Protein Delivery. Proc. Natl. Acad. Sci. USA 2022, 119, e2207829119. [Google Scholar] [CrossRef]
- Eisenmann, E.D.; Talebi, Z.; Sparreboom, A.; Baker, S.D. Boosting the Oral Bioavailability of Anticancer Drugs through Intentional Drug—Drug Interactions. Basic Clin. Pharmacol. Toxicol. 2022, 130, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Rawal, S.; Patel, B.; Patel, M. Oral Delivery of Anticancer Agents Using Nanoparticulate Drug Delivery System. Curr. Drug Metab. 2019, 20, 1132–1140. [Google Scholar] [CrossRef]
- Kim, J.C.; Park, E.J.; Na, D.H. Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals. Pharmaceuticals 2022, 15, 1585. [Google Scholar] [CrossRef]
- Fein, K.C.; Lamson, N.G.; Whitehead, K.A. Structure-Function Analysis of Phenylpiperazine Derivatives as Intestinal Permeation Enhancers. Pharm. Res. 2017, 34, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Calvani, M.; Pasha, A.; Favre, C. Nutraceutical Boom in Cancer: Inside the Labyrinth of Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 1936. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Rodrigues, M.; Flores-Félix, J.D.; Campos, G.; Nunes, A.R.; Ribeiro, A.B.; Silva, L.R.; Alves, G. Sweet Cherry Phenolics Revealed to Be Promising Agents in Inhibiting P-Glycoprotein Activity and Increasing Cellular Viability under Oxidative Stress Conditions: In Vitro and in Silico Study. J. Food Sci. 2022, 87, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Poggialini, F.; Vagaggini, C.; Brai, A.; Pasqualini, C.; Crespan, E.; Maga, G.; Perini, C.; Cabella, N.; Botta, L.; Musumeci, F.; et al. Biological Evaluation and In Vitro Characterization of ADME Profile of In-House Pyrazolo[3,4-d]Pyrimidines as Dual Tyrosine Kinase Inhibitors Active against Glioblastoma Multiforme. Pharmaceutics 2023, 15, 453. [Google Scholar] [CrossRef]
- Molinari, A.; Fallacara, A.L.; Di Maria, S.; Zamperini, C.; Poggialini, F.; Musumeci, F.; Schenone, S.; Angelucci, A.; Colapietro, A.; Crespan, E.; et al. Efficient Optimization of Pyrazolo[3,4-d]Pyrimidines Derivatives as c-Src Kinase Inhibitors in Neuroblastoma Treatment. Bioorganic Med. Chem. Lett. 2018, 28, 3454–3457. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, S.; Picarazzi, F.; Mori, M.; Cianciusi, A.; Carbone, A.; Crespan, E.; Perini, C.; Sabetta, S.; Deplano, S.; Poggialini, F.; et al. Novel Pyrazolo[3,4-d]Pyrimidines as Dual Src/Bcr-Abl Kinase Inhibitors: Synthesis and Biological Evaluation for Chronic Myeloid Leukemia Treatment. Bioorg Chem. 2022, 128, 106071. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Campos, D.A.; Nunes, C.; Ribeiro, S.; Nunes, J.; Oliveira, A.; Pintado, M. Polyphenol Extraction by Different Techniques for Valorisation of Non-Compliant Portuguese Sweet Cherries towards a Novel Antioxidant Extract. Sustainability 2020, 12, 5556. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Muraglia, M.; Naeem, M.Y.; Tardugno, R.; Limongelli, F.; Corbo, F. The Main Phenolic Compounds Responsible for the Antioxidant Capacity of Sweet Cherry (Prunus Avium L.) Pulp. LWT 2023, 185, 115085. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, H.A.S.; Aly, S.H.; Ahmadi, A.; El-Shazly, M. The Impact of Polyphenolics in the Management of Breast Cancer: Mechanistic Aspects and Recent Patents. Recent. Pat. Anticancer. Drug Discov. 2021, 17, 358–379. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies 1–3. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Gonçalves, A.; Bento, C.; Jesus, F.; Alves, G.; Silva, L. Chapter 2—Sweet Cherry Phenolic Compounds: Identification, Characterization, and Health Benefits. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 59, pp. 31–78. ISBN 9780444641793. [Google Scholar]
- Özen, M.; Özdemir, N.; Ertekin Filiz, B.; Budak, N.H.; Kök-Taş, T. Sour Cherry (Prunus Cerasus L.) Vinegars Produced from Fresh Fruit or Juice Concentrate: Bioactive Compounds, Volatile Aroma Compounds and Antioxidant Capacities. Food Chem. 2020, 309, 125664. [Google Scholar] [CrossRef]
- Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol Antioxidant Quantity and Quality in Foods: Fruits. J. Agric. Food Chem. 2001, 49, 5315–5321. [Google Scholar] [CrossRef] [PubMed]
- Sokół-Łe̜towska, A.; Kucharska, A.Z.; Hodun, G.; Gołba, M. Chemical Composition of 21 Cultivars of Sour Cherry (Prunus Cerasus) Fruit Cultivated in Poland. Molecules 2020, 25, 4587. [Google Scholar] [CrossRef]
- Serrano, M.; Díaz-Mula, H.M.; Zapata, P.J.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Valverde, J.M.; Valero, D. Maturity Stage at Harvest Determines the Fruit Quality and Antioxidant Potential after Storage of Sweet Cherry Cultivars. J. Agric. Food Chem. 2009, 57, 3240–3246. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry Antioxidants: From Farm to Table. Molecules 2010, 15, 6993–7005. [Google Scholar] [CrossRef]
- Blando, F.; Gerardi, C.; Nicoletti, I. Sour Cherry (Prunus Cerasus L) Anthocyanins as Ingredients for Functional Foods. J. Biomed. Biotechnol. 2004, 5, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Yazdanian, M.; Glynn, L.S.; Wright, L.J.; Hawi, A. Correlating Partitioning and Caco-2 Cell Permeability of Structurally Diverse Small Molecular Weight Compounds. Pharm. Res. 1998, 15, 1490–1494. [Google Scholar] [CrossRef] [PubMed]
- Honeywell, R.J.; Hitzerd, S.; Kathmann, I.; Peters, G.J. Transport of Six Tyrosine Kinase Inhibitors: Active or Passive ? ADMET DMPK 2016, 4, 23–34. [Google Scholar] [CrossRef]
- European Union. European Medicines Agency. Available online: https://www.ema.europa.eu/en (accessed on 1 September 2023).
- Chen, Y.; Agarwal, S.; Shaik, N.M.; Chen, C.; Yang, Z.; Elmquist, W.F. P-Glycoprotein and Breast Cancer Resistance Protein Influence Brain Distribution of Dasatinib. J. Pharmacol. Exp. Ther. 2009, 330, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Cunha, R.D.; Bae, S.; Murry, D.J.; An, G. TKI Combination Therapy: Strategy to Enhance Dasatinib Uptake through Inhibiting Pgp- And BCRP- Mediated Efflux. Biopharm. Drug Dispos. 2016, 37, 397–408. [Google Scholar] [CrossRef]
- Chen, X.; Slättengren, T.; Lange, E.C.M.; Smith, D.E.; Hammarlund-Udenaes, M. Revisiting Atenolol as a Low Passive Permeability Marker. Fluids Barriers CNS 2017, 14, 30. [Google Scholar] [CrossRef]
- Yin, J.; Duan, H.; Shirasaka, Y.; Prasad, B.; Wang, J. Atenolol Renal Secretion Is Mediated by Human Organic Cation Transporter 2 and Multidrug and Toxin Extrusion Proteins. Drug Metab. Dispos. 2015, 43, 1872–1881. [Google Scholar] [CrossRef]
- Hayeshi, R.; Hilgendorf, C.; Artursson, P.; Augustijns, P.; Brodin, B.; Dehertogh, P.; Fisher, K.; Fossati, L.; Hovenkamp, E.; Korjamo, T.; et al. Comparison of Drug Transporter Gene Expression and Functionality in Caco-2 Cells from 10 Different Laboratories. Eur. J. Pharm. Sci. 2008, 35, 383–396. [Google Scholar] [CrossRef]
- Uchida, M.; Fukazawa, T.; Yamazaki, Y.; Hashimoto, H.; Miyamoto, Y. A Modified Fast (4 Day) 96-Well Plate Caco-2 Permeability Assay. J. Pharmacol. Toxicol. Methods 2009, 59, 39–43. [Google Scholar] [CrossRef]
- Honeywell, R.J.; Kathmann, I.; Giovannetti, E.; Tibaldi, C.; Smit, E.F.; Rovithi, M.N.; Verheul, H.M.W.; Peters, G.J. Epithelial Transfer of the Tyrosine Kinase Inhibitors Erlotinib, Gefitinib, Afatinib, Crizotinib, Sorafenib, Sunitinib, and Dasatinib: Implications for Clinical Resistance. Cancers 2020, 12, 3322. [Google Scholar] [CrossRef]
- The International Trasporter Consortium. Membrane Transporters in Drug Development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Jiang, C.; Kim, J.Y.; Park, J.H.; Kim, H.R.; Lee, S.H.; Kim, H.S.; Yoon, S. Low-Dose Crizotinib, a Tyrosine Kinase Inhibitor, Highly and Specifically Sensitizes Chemoresistant Cancer Cells Through Induction of Late Apoptosis In Vivo and In Vitro. Front. Oncol. 2020, 10, 696. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Chen, Z.-S.; Ambudkar, S.V. Tyrosine Kinase Inhibitors as Modulators of ABC- Transporter Mediated Drug Resistance. Drug Resist. Updates 2012, 15, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, A.L.; Zamperini, C.; Podolski-Renic, A.; Dinic, J.; Stankovic, T.; Stepanovic, M.; Arianna, M.; Rango, E.; Iovenitti, G.; Molinari, A.; et al. A New Strategy for Glioblastoma Treatment: In Vitroand In Vivo Preclinical Characterization of Si306,a Pyrazolo[3,4-d]Pyrimidine DualSrc/P-Glycoprotein Inhibitor. Cancers 2019, 11, 848. [Google Scholar] [CrossRef] [PubMed]
- Brai, A.; Poggialini, F.; Trivisani, C.; Tarchi, F.; Francardi, V.; Dreassi, E. Efficient Use of Agricultural Waste to Naturally Fortify Tenebrio Molitor Mealworms and evaluation of Their Nutraceutical Properties. J. Insects Food Feed 2023, 9, 599–610. [Google Scholar] [CrossRef]
- Brai, A.; Vagaggini, C.; Pasqualini, C.; Poggialini, F.; Tarchi, F.; Francardi, V.; Dreassi, E. Use of Distillery By-Products as Tenebrio Molitor Mealworm Feed Supplement. J. Insects Food Feed 2023, 9, 611–623. [Google Scholar] [CrossRef]
- Chiaino, E.; Micucci, M.; Budriesi, R.; Mattioli, L.B.; Marzetti, C.; Corsini, M.; Frosini, M. Hibiscus Flower and Olive Leaf Extracts Activate Apoptosis in SH-SY5Y Cells. Antioxidants 2021, 10, 1962. [Google Scholar] [CrossRef]
ADME Data | |||||||
Compounds | R | A | R1 | R2 | Water Solubility (µg/mL) | PAMPA Papp 10−6 cm/s (MR %) d | Metabolic Stability (%) |
1 a | F | CH2CH(Cl) | CH2C6H5 | H | - | 10.7 (9.2) | 84.2 |
2 a | H | CH2CH(Cl) | CH2CH2C6H5 | SCH3 | - | 3.2 (42.7) | 96.6 |
3 b | H | CH2CH(Cl) | C6H3-oCl-mOH | H | 0.053 | 4.3 (-) | 86.3 |
4 c | H | CH2CH(CH3) | C6H4-mOH | NHCH2CH2OH | 134.2 | 0.2 (1) | 99.4 |
5 b | H | CH2CH(CH3) | C6H3-oCl-mOH | SCH2CH2-4- morpholino | 0.031 | 11.2 (6.6) | 97.9 |
6 b | H | CH2CH(CH3) | C6H3-oCl-mOH | NHCH2CH2OH | 0.103 | 0.1 (4.0) | 97.9 |
7 c | H | CH=CH | C6H3-oCl-mOH | SCH2CH2-4- morpholino | 0.036 | 5.5 (5.4) | 97.6 |
Peak | Compound | RT a (min) | λmax b (nm) | [M]+ c (m/z) | [M-H]− c (m/z) |
---|---|---|---|---|---|
1 | Procyanidin B1 | 16.01 | 280 | - | 577 |
2 | Cyanidin-3-O-rutinoside | 16.89 | 520 | 595 | - |
3 | Pelargonidin-3-O-rutinoside | 17.33 | 520 | 579 | - |
4 | trans-3-O-caffeoylquinic acid | 17.58 | 330 | - | 353 |
5 | Peonidin-3-O-rutinoside | 18.04 | 520 | 609 | - |
6 | trans-5-O-caffeoylquinic acid | 18.55 | 330 | - | 353 |
7 | trans-4-O-caffeoylquinic acid | 18.74 | 330 | - | 353 |
8 | cis-5-O-caffeoylquinic acid | 18.95 | 320 | - | 353 |
9 | Quercetin-3-O-rutinoside-7-O-glucoside | 19.07 | 340 | - | 771 |
10 | Quercetin-3-O-galactosyl-rhamnoside | 20.04 | - | - | 609 |
11 | Quercetin-3-O-rutinoside | 20.18 | 360 | - | 609 |
12 | trans,trans-3,5-di-O-caffeoylquinic acid | 21.14 | 330 | - | 515 |
13 | Kaempferol-3-O-rutinoside | 21.62 | 360 | - | 593 |
TPC | TAC | Antioxidant Activity | ||
---|---|---|---|---|
ABTS | DPPH | |||
Sweet cherry extract | 8.44 ± 0.16 | 1.80 ± 0.09 | 211.74 ± 3.90 | 48.65 ± 2.44 |
Cpd | Papp A-B a | Papp B-A a | ||
---|---|---|---|---|
Free | +SCE [1 mg/mL] | Free | +SCE [1 mg/mL] | |
Atenolol | 0.284 ± 0.011 | 9.112 ± 0.572 | 1.023 ± 0.104 | 7.273 ± 0.932 |
Propranolol | 41.320 ± 4.280 | 93.071 ± 3.844 | 33.591 ± 0.967 | 37.156 ± 4.734 |
Dasatinib | 2.023 ± 0.103 | 2.411 ± 0.120 | 36.858 ± 2.954 | 31.113 ± 0.342 |
Reference Compounds | |||
---|---|---|---|
Atenolol | Propranolol | Dasatinib | |
Free | 3.595 ± 0.231 | 0.819 ± 0.108 | 18.207 ± 0.529 |
+SCE [1 mg/mL] | 0.803 ± 0.153 | 0.399 ± 0.034 | 12.926 ± 0.786 |
Cpd | Papp A-B a | Papp B-A a | ||
---|---|---|---|---|
Free | +SCE [1 mg/mL] | Free | +SCE [1 mg/mL] | |
1 | 4.943 ± 0.044 | 16.167 ± 0.014 | 15.111 ± 1.569 | 26.782 ± 3.681 |
2 | 0.110 ± 0.004 | 0.224 ± 0.009 | 10.412 ± 0.363 | 2.297 ± 0.279 |
3 | 1.680 ± 0.061 | 16.252 ± 0.537 | 4.744 ± 0.097 | 32.461 ± 0.784 |
4 | 5.108 ± 0.385 | 16.903 ± 0.743 | 34.513 ± 0.817 | 53.285 ± 1.802 |
5 | 1.249 ± 0.122 | 1.543 ± 0.095 | 8.041 ± 0.183 | 5.985 ± 0.286 |
6 | 3.323 ± 0.041 | 14.882 ± 1.864 | 18.980 ± 2.153 | 51.453 ± 0.118 |
7 | 0.477 ± 0.048 | 1.172 ± 0.120 | 0.229 ± 0.023 | 0.457 ± 0.108 |
Pyrazolo[3,4-d]pyrimidine Compounds | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Free | 3.056 ± 0.290 | 97.256 ± 4.489 | 2.826 ± 0.160 | 6.769 ± 0.351 | 6.462 ± 0.486 | 5.708 ± 0.578 | 0.481 ± 0.049 |
+SCE [1 mg/mL] | 1.656 ± 0.226 | 10.216 ± 0.837 | 1.999 ± 0.114 | 3.158 ± 0.245 | 3.879 ± 0.054 | 3.485 ± 0.445 | 0.387 ± 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poggialini, F.; Vagaggini, C.; Brai, A.; Pasqualini, C.; Carbone, A.; Musumeci, F.; Schenone, S.; Dreassi, E. Sweet Cherry Extract as Permeation Enhancer of Tyrosine Kinase Inhibitors: A Promising Prospective for Future Oral Anticancer Therapies. Pharmaceuticals 2023, 16, 1527. https://doi.org/10.3390/ph16111527
Poggialini F, Vagaggini C, Brai A, Pasqualini C, Carbone A, Musumeci F, Schenone S, Dreassi E. Sweet Cherry Extract as Permeation Enhancer of Tyrosine Kinase Inhibitors: A Promising Prospective for Future Oral Anticancer Therapies. Pharmaceuticals. 2023; 16(11):1527. https://doi.org/10.3390/ph16111527
Chicago/Turabian StylePoggialini, Federica, Chiara Vagaggini, Annalaura Brai, Claudia Pasqualini, Anna Carbone, Francesca Musumeci, Silvia Schenone, and Elena Dreassi. 2023. "Sweet Cherry Extract as Permeation Enhancer of Tyrosine Kinase Inhibitors: A Promising Prospective for Future Oral Anticancer Therapies" Pharmaceuticals 16, no. 11: 1527. https://doi.org/10.3390/ph16111527
APA StylePoggialini, F., Vagaggini, C., Brai, A., Pasqualini, C., Carbone, A., Musumeci, F., Schenone, S., & Dreassi, E. (2023). Sweet Cherry Extract as Permeation Enhancer of Tyrosine Kinase Inhibitors: A Promising Prospective for Future Oral Anticancer Therapies. Pharmaceuticals, 16(11), 1527. https://doi.org/10.3390/ph16111527