Spironolactone Eyedrop Favors Restoration of Corneal Integrity after Wound Healing in the Rat
Abstract
:1. Introduction
2. Results
2.1. Eyedrop Formulations Showed Good Physicochemical Stability at 4 °C for 9 Months
2.2. SPL Eyedrops Showed No Sign of Corneal Integrity Disruption
2.3. SPL Eyedrops Did Not Induce Corneal Inflammation, Oxidative Stress, or Apoptotic Cell Death
2.4. SPL Eyedrops Improved Corneal Epithelial Healing and Reduced Corneal Edema in a Rat Model of Corneal Wound Healing
2.5. SPL Eyedrops Restored Epithelial Integrity in the Rat Model of Corneal Wound Healing
2.6. SPL Eyedrops Reduced Corneal Inflammatory Cell Infiltration in the Rat Model of Corneal Wound Healing
2.7. SPL Eyedrops Improved Corneal Reinnervation in the Rat Model of Corneal Wound Healing
3. Discussion
4. Materials and Methods
4.1. Preparation of Eyedrop Formulations
4.2. Physicochemical Stability of Eyedrop Formulations
4.3. Animals
4.4. Ocular Tolerance of Eyedrop Formulations
4.4.1. Treatments
4.4.2. Corneal Histology
4.4.3. Immunofluorescence
4.4.4. TUNEL Assay
4.5. Therapeutic Effects of SPL Eyedrop in a Rat Model of Corneal Wound Healing
4.5.1. Corneal De-Epithelialization and Treatments
4.5.2. In Vivo Optical Coherence Tomography and Slit Lamp Examination
4.5.3. Immunofluorescence on Corneal Sections and on Whole-Mounted Corneas
4.6. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DelMonte, D.W.; Kim, T. Anatomy and Physiology of the Cornea. J. Cataract Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Labetoulle, M.; Baudouin, C.; Calonge, M.; Merayo-Lloves, J.; Boboridis, K.G.; Akova, Y.A.; Aragona, P.; Geerling, G.; Messmer, E.M.; Benítez-del-Castillo, J. Role of Corneal Nerves in Ocular Surface Homeostasis and Disease. Acta Ophthalmol. 2019, 97, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.R.; Kempuraj, D.; D’Souza, S.; Ghosh, A. Corneal Stromal Repair and Regeneration. Prog. Retin. Eye Res. 2022, 91, 101090. [Google Scholar] [CrossRef] [PubMed]
- Jeang, L.; Tuli, S.S. Therapy for Contact Lens-Related Ulcers. Curr. Opin. Ophthalmol. 2022, 33, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Netto, M.V.; Mohan, R.R.; Ambrósio, R.; Hutcheon, A.E.K.; Zieske, J.D.; Wilson, S.E. Wound Healing in the Cornea: A Review of Refractive Surgery Complications and New Prospects for Therapy. Cornea 2005, 24, 509–522. [Google Scholar] [CrossRef]
- NaPier, E.; Camacho, M.; McDevitt, T.F.; Sweeney, A.R. Neurotrophic Keratopathy: Current Challenges and Future Prospects. Ann. Med. 2022, 54, 666–673. [Google Scholar] [CrossRef]
- Gupta, Y.; Kishore, A.; Kumari, P.; Balakrishnan, N.; Lomi, N.; Gupta, N.; Vanathi, M.; Tandon, R. Peripheral Ulcerative Keratitis. Surv. Ophthalmol. 2021, 66, 977–998. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Gelize, E.; Levy, R.; Moulin, A.; Azan, F.; Berdugo, M.; Naud, M.-C.; Guegan, J.; Delaunay, K.; Pussard, E.; et al. Mineralocorticoid Receptor Pathway and Its Antagonism in a Model of Diabetic Retinopathy. Diabetes 2021, 70, db210099. [Google Scholar] [CrossRef]
- Canonica, J.; Zhao, M.; Favez, T.; Gelizé, E.; Jonet, L.; Kowalczuk, L.; Guegan, J.; Le Menuet, D.; Viengchareun, S.; Lombès, M.; et al. Pathogenic Effects of Mineralocorticoid Pathway Activation in Retinal Pigment Epithelium. Int. J. Mol. Sci. 2021, 22, 9618. [Google Scholar] [CrossRef]
- Denniston, A.K.; Kottoor, S.H.; Khan, I.; Oswal, K.; Williams, G.P.; Abbott, J.; Wallace, G.R.; Salmon, M.; Rauz, S.; Murray, P.I.; et al. Endogenous Cortisol and TGF-Beta in Human Aqueous Humor Contribute to Ocular Immune Privilege by Regulating Dendritic Cell Function. J. Immunol. Baltim. Md 1950 2011, 186, 305–311. [Google Scholar] [CrossRef]
- Kasimov, E.M.; Aghaeva, F.A. Cortisol levels in plasma and aqueous humour of patients with steroid induced and other glaucomas. Vestn. Oftalmol. 2017, 133, 39–45. [Google Scholar] [CrossRef]
- Knisely, T.L.; Hosoi, J.; Nazareno, R.; Granstein, R.D. The Presence of Biologically Significant Concentrations of Glucocorticoids but Little or No Cortisol Binding Globulin within Aqueous Humor: Relevance to Immune Privilege in the Anterior Chamber of the Eye. Investig. Ophthalmol. Vis. Sci. 1994, 35, 3711–3723. [Google Scholar]
- Susarla, R.; Liu, L.; Walker, E.A.; Bujalska, I.J.; Alsalem, J.; Williams, G.P.; Sreekantam, S.; Taylor, A.E.; Tallouzi, M.; Southworth, H.S.; et al. Cortisol Biosynthesis in the Human Ocular Surface Innate Immune Response. PLoS ONE 2014, 9, e94913. [Google Scholar] [CrossRef]
- Sharma, B.; Soni, D.; Mohan, R.R.; Sarkar, D.; Gupta, R.; Chauhan, K.; Karkhur, S.; Morya, A.K. Corticosteroids in the Management of Infectious Keratitis: A Concise Review. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2021, 37, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Kadmiel, M.; Janoshazi, A.; Xu, X.; Cidlowski, J.A. Glucocorticoid Action in Human Corneal Epithelial Cells Establishes Roles for Corticosteroids in Wound Healing and Barrier Function of the Eye. Exp. Eye Res. 2016, 152, 10–33. [Google Scholar] [CrossRef]
- Mirshahi, M.; Mirshahi, A.; Sedighian, R.; Hecquet, C.; Faure, J.P.; Agarwal, M.K. Immunochemical Demonstration of the Mineralocorticoid Receptor in Ocular Tissues. Neuroendocrinology 1997, 65, 70–78. [Google Scholar] [CrossRef]
- Jaisser, F.; Farman, N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol. Rev. 2016, 68, 49–75. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Farman, N.; Maubec, E.; Nassar, D.; Desposito, D.; Waeckel, L.; Aractingi, S.; Jaisser, F. Re-Epithelialization of Pathological Cutaneous Wounds Is Improved by Local Mineralocorticoid Receptor Antagonism. J. Investig. Dermatol. 2016, 136, 2080–2089. [Google Scholar] [CrossRef]
- Dahmana, N.; Mugnier, T.; Gabriel, D.; Kaltsatos, V.; Bertaim, T.; Behar-Cohen, F.; Gurny, R.; Kalia, Y.N. Topical Administration of Spironolactone-Loaded Nanomicelles Prevents Glucocorticoid-Induced Delayed Corneal Wound Healing in Rabbits. Mol. Pharm. 2018, 15, 1192–1202. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Farman, N.; Palacios-Ramirez, R.; Sbeih, M.; Behar-Cohen, F.; Aractingi, S.; Jaisser, F. Cutaneous Wound Healing in Diabetic Mice Is Improved by Topical Mineralocorticoid Receptor Blockade. J. Investig. Dermatol. 2020, 140, 223–234.e7. [Google Scholar] [CrossRef]
- Zhao, M.; Mantel, I.; Gelize, E.; Li, X.; Xie, X.; Arboleda, A.; Seminel, M.; Levy-Boukris, R.; Dernigoghossian, M.; Prunotto, A.; et al. Mineralocorticoid Receptor Antagonism Limits Experimental Choroidal Neovascularization and Structural Changes Associated with Neovascular Age-Related Macular Degeneration. Nat. Commun. 2019, 10, 369. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.; Fuchsluger, T.A.; Jurkunas, U.V. Limbal Stem Cell Deficiency and Corneal Neovascularization. Semin. Ophthalmol. 2009, 24, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Shih, K.C.; Kwok, S.S.; Chan, Y.K.; Lo, A.C.-Y.; Chan, T.C.Y.; Jhanji, V.; Tong, L. Experimental Modeling of Cornea Wound Healing in Diabetes: Clinical Applications and Beyond. BMJ Open Diabetes Res. Care 2019, 7, e000779. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Kao, W.W.-Y. Corneal Epithelial Wound Healing. Prog. Mol. Biol. Transl. Sci. 2015, 134, 61–71. [Google Scholar] [CrossRef]
- Zhao, M.; Rodríguez-Villagra, E.; Kowalczuk, L.; Le Normand, M.; Berdugo, M.; Levy-Boukris, R.; El Zaoui, I.; Kaufmann, B.; Gurny, R.; Bravo-Osuna, I.; et al. Tolerance of High and Low Amounts of PLGA Microspheres Loaded with Mineralocorticoid Receptor Antagonist in Retinal Target Site. J. Control. Release Off. J. Control. Release Soc. 2017, 266, 187–197. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022, 14, 1150. [Google Scholar] [CrossRef]
- Senjoti, F.G.; Timmins, P.; Conway, B.R.; Smith, A.M. Optimizing Ophthalmic Delivery of a Poorly Water Soluble Drug from an Aqueous in Situ Gelling System. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2020, 154, 1–7. [Google Scholar] [CrossRef]
- Rodriguez-Aller, M.; Guinchard, S.; Guillarme, D.; Pupier, M.; Jeannerat, D.; Rivara-Minten, E.; Veuthey, J.-L.; Gurny, R. New Prostaglandin Analog Formulation for Glaucoma Treatment Containing Cyclodextrins for Improved Stability, Solubility and Ocular Tolerance. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2015, 95, 203–214. [Google Scholar] [CrossRef]
- Singh, V.; Jaini, R.; Torricelli, A.A.M.; Santhiago, M.R.; Singh, N.; Ambati, B.K.; Wilson, S.E. TGFβ and PDGF-B Signaling Blockade Inhibits Myofibroblast Development from Both Bone Marrow-Derived and Keratocyte-Derived Precursor Cells in Vivo. Exp. Eye Res. 2014, 121, 35–40. [Google Scholar] [CrossRef]
- Torricelli, A.A.M.; Santhanam, A.; Wu, J.; Singh, V.; Wilson, S.E. The Corneal Fibrosis Response to Epithelial-Stromal Injury. Exp. Eye Res. 2016, 142, 110–118. [Google Scholar] [CrossRef]
- Du, L.; Qin, M.; Yi, Y.; Chen, X.; Jiang, W.; Zhou, L.; Zhang, D.; Xu, K.; Yang, Y.; Li, C.; et al. Eplerenone Prevents Atrial Fibrosis via the TGF-β Signaling Pathway. Cardiology 2017, 138, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xi, D.; Liu, J.; Zhao, J.; Chen, S.; Guo, Z. Spirolactone Provides Protection from Renal Fibrosis by Inhibiting the Endothelial-Mesenchymal Transition in Isoprenaline-Induced Heart Failure in Rats. Drug Des. Devel. Ther. 2016, 10, 1581–1588. [Google Scholar] [CrossRef]
- Chen, X.; Cai, J.; Zhou, X.; Chen, L.; Gong, Y.; Gao, Z.; Zhang, H.; Huang, W.; Zhou, H. Protective Effect of Spironolactone on Endothelial-to-Mesenchymal Transition in HUVECs via Notch Pathway. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2015, 36, 191–200. [Google Scholar] [CrossRef]
- Gutiérrez-Tenorio, J.; Marín-Royo, G.; Martínez-Martínez, E.; Martín, R.; Miana, M.; López-Andrés, N.; Jurado-López, R.; Gallardo, I.; Luaces, M.; San Román, J.A.; et al. The Role of Oxidative Stress in the Crosstalk between Leptin and Mineralocorticoid Receptor in the Cardiac Fibrosis Associated with Obesity. Sci. Rep. 2017, 7, 16802. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ngo, Q.T.; Ramirez, R.P.; Nakamura, T.; Farman, N.; Aractingi, S.; Jaisser, F. The Myeloid Mineralocorticoid Receptor Regulates Dermal Angiogenesis and Inflammation in Glucocorticoid-Induced Impaired Wound Healing. Br. J. Pharmacol. 2022, 179, 5222–5232. [Google Scholar] [CrossRef]
- Wu, M.; Hill, L.J.; Downie, L.E.; Chinnery, H.R. Neuroimmune Crosstalk in the Cornea: The Role of Immune Cells in Corneal Nerve Maintenance during Homeostasis and Inflammation. Prog. Retin. Eye Res. 2022, 91, 101105. [Google Scholar] [CrossRef]
- Aghanasir, F.; Aghaei, H.; Imani Fooladi, A.A.; Ebrahimi, M.; Bagherpour, G.; Nourani, M.R. Expression of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Peripheral Nerve Repair. J. Recept. Signal Transduct. Res. 2016, 36, 429–434. [Google Scholar] [CrossRef]
- Al-Aqaba, M.A.; Dhillon, V.K.; Mohammed, I.; Said, D.G.; Dua, H.S. Corneal Nerves in Health and Disease. Prog. Retin. Eye Res. 2019, 73, 100762. [Google Scholar] [CrossRef]
- Wu, M.; Downie, L.E.; Hill, L.J.; Chinnery, H.R. Topical Decorin Reduces Corneal Inflammation and Imparts Neuroprotection in a Mouse Model of Benzalkonium Chloride-Induced Corneal Neuropathy. Investig. Ophthalmol. Vis. Sci. 2023, 64, 20. [Google Scholar] [CrossRef] [PubMed]
- Groyer, G.; Eychenne, B.; Girard, C.; Rajkowski, K.; Schumacher, M.; Cadepond, F. Expression and Functional State of the Corticosteroid Receptors and 11 Beta-Hydroxysteroid Dehydrogenase Type 2 in Schwann Cells. Endocrinology 2006, 147, 4339–4350. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Queralt, M.; Fledrich, R.; Stassart, R.M. Schwann Cell Functions in Peripheral Nerve Development and Repair. Neurobiol. Dis. 2023, 176, 105952. [Google Scholar] [CrossRef]
Compound | Spironolactone | Placebo |
---|---|---|
HP-γ-CD | 3.00 g | 3.00 g |
Spironolactone | 0.10 g | - |
Trometamol | 0.60 g | 0.60 g |
HCl (1 N, q.s) | pH = 7.2 | pH = 7.2 |
NaCl | 0.50 g | 0.50 g |
Distilled water (q.s) | 100.00 mL | 100.00 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues-Braz, D.; Zhu, L.; Gélizé, E.; Clarin, J.-P.; Chatagnon, X.; Benzine, Y.; Rampignon, P.; Thouvenin, A.; Bourges, J.-L.; Behar-Cohen, F.; et al. Spironolactone Eyedrop Favors Restoration of Corneal Integrity after Wound Healing in the Rat. Pharmaceuticals 2023, 16, 1446. https://doi.org/10.3390/ph16101446
Rodrigues-Braz D, Zhu L, Gélizé E, Clarin J-P, Chatagnon X, Benzine Y, Rampignon P, Thouvenin A, Bourges J-L, Behar-Cohen F, et al. Spironolactone Eyedrop Favors Restoration of Corneal Integrity after Wound Healing in the Rat. Pharmaceuticals. 2023; 16(10):1446. https://doi.org/10.3390/ph16101446
Chicago/Turabian StyleRodrigues-Braz, Daniela, Linxin Zhu, Emmanuelle Gélizé, Jean-Pierre Clarin, Xavier Chatagnon, Youcef Benzine, Philippe Rampignon, Agathe Thouvenin, Jean-Louis Bourges, Francine Behar-Cohen, and et al. 2023. "Spironolactone Eyedrop Favors Restoration of Corneal Integrity after Wound Healing in the Rat" Pharmaceuticals 16, no. 10: 1446. https://doi.org/10.3390/ph16101446
APA StyleRodrigues-Braz, D., Zhu, L., Gélizé, E., Clarin, J. -P., Chatagnon, X., Benzine, Y., Rampignon, P., Thouvenin, A., Bourges, J. -L., Behar-Cohen, F., & Zhao, M. (2023). Spironolactone Eyedrop Favors Restoration of Corneal Integrity after Wound Healing in the Rat. Pharmaceuticals, 16(10), 1446. https://doi.org/10.3390/ph16101446