Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions
Abstract
:1. Introduction
2. Tissue Distribution and Physiological Function of Transporters
2.1. Intestinal Transporters
2.2. Liver Transporters
2.3. Renal Transporters
2.4. Barrier Transporters
Classification | Common Transporters | Main Distribution in Human | Function | References | |
---|---|---|---|---|---|
SLC superfamily | OCTs | OCT1 | liver, brain | Mediate the uptake of hydrophilic or charged molecules, including endogenous (sugars, amino acids, nucleosides, neurotransmitters) and exogenous (drugs) | [12,24,25,42] |
OCT2 | kidney, brain | ||||
OCT3 | widely distributed in various organs | ||||
OATs | OAT1 | liver, kidney, brain, placenta | [46] | ||
OAT2 | liver, kidney, brain | ||||
OAT3 | liver, kidney, brain, skeletal muscle | ||||
OAT4 | liver, kidney, brain, placenta | [12] | |||
OATPs | OATP1A2 | liver, kidney, brain | [12,26,33,38,46] | ||
OATP2A1 OATP3A1 OATP4A1 | widely distributed in various organs | ||||
OATP1C1 | brain | ||||
OATP4A1 | placenta | ||||
OATP2B1 | liver, placenta, ciliary body | ||||
OATP1B1 OATP1B3 | liver | ||||
OATP4C1 | kidney | ||||
PEPTS | PEPT1 | intestines, brain, placenta | [17] | ||
OCTNs | OCTN1 | liver, placenta | Mediate the secretion of organic cationic drugs | [12] | |
OCTN2 | liver, brain, placenta | ||||
MATE Transporters | MATE2/2-K | kidney | Mediate the elimination of hydrophobic exogenous molecules (drugs, toxins, metabolites, conjugates) | [42] | |
MATE1 | liver, kidney, placenta | ||||
ABC superfamily | P-gp | P-gp | intestines, liver, kidney, placenta | [27,28,39,46,48] | |
BCRP | BCRP | intestines, liver, kidney, brain, placenta | [39,46,49] | ||
MRP | MRP1 MRP5 | intestines, brain | [37,40,41,46,48] | ||
MRP2 | intestines, liver, kidney, brain, placenta | ||||
MRP3 | intestines, liver | ||||
MRP4 | intestines, liver, kidney, brain | ||||
BSEP | BSEP | liver | [39] |
3. Transporter-Mediated HDIs
3.1. HDIs That Improve Therapeutic Efficacy and/or Reduce Toxicity
3.1.1. Securidaca inappendiculata Hassk.
3.1.2. Morinda officinalis F.C. How.
3.1.3. Other Herbal Active Ingredients
Flavonoids
Rutin
Quercetin
Apigenin
Resveratrol
Berberine
3.2. HDIs That Produce Adverse Reactions
Herbs | Chemical Composition/Drugs | Methods | Transporter Effect | Affected Drugs/Herbs | Reactions | References | |
---|---|---|---|---|---|---|---|
Securidaca inappendiculate Hassk. | xanthone-rich fraction | in vivo, rats; in vitro, HEK 293T cells | OAT3 ↑ | methotrexate | Promote methotrexate excretion and reduce proximal tubular edema | [53] | |
Morinda officinalis F.C. How. | bajijiasu | in vivo, mice; in vitro, HepG2 cells | P-gp ↑ | doxorubicin | Promote doxorubicin efflux and reduce cytotoxicity | [60] | |
Herbal active ingredients | flavonoids | rutin | in vivo, rats; | BCRP ↓ | diclofenac | Increase the intestinal permeability of diclofenac and improve the curative effect | [62,63] |
quercetin | in vivo, rats; in vitro, Caco-2 cells (HTB-37) | P-gp ↓ | irinotecan | Increase the blood concentration of irinotecan, reduce the level of irinotecan in bile and improve the diarrhea caused by irinotecan | [67] | ||
apigenin | in vivo, rats; in vitro, MDCK-OAT1 cells | OAT1↓ | adefovir | Reduced cytotoxicity | [69] | ||
resveratrol | in vivo, rats | BCRP ↑ | methotrexate | Promotes the clearance of methotrexate in urine and reduces nephrotoxicity | [70] | ||
in vivo, rats; in vitro, PC3 cells | MRP3↑ | Promote MTX efflux | |||||
in vitro, C3A, SMCC7721 and LO2 cells | ASCT2 ↓ | cisplatin | Glutamine metabolism is inhibited, which promotes the sensitivity of human liver cancer cells to cisplatin chemotherapy | [72] | |||
metformin | in vivo, rats; in vitro, HEK293-OCT1 and -OCT2 cells | OCT1 ↓ | berberine | Increase the plasma concentration of berberine. | [75] | ||
MATE1 ↓ |
3.2.1. Red Ginseng
3.2.2. Radix astragali
3.2.3. St John’s Wort
3.2.4. Polygonum cuspidatum
3.2.5. Rheum palmatum
3.2.6. Dioscorea bulbifera L.
3.2.7. Other Herbal Active Ingredients
Flavonoids
Sinapic acid
Herbs | Chemical Composition | Methods | Transporter Effect | Affected Drugs | Reactions | References |
---|---|---|---|---|---|---|
Red ginseng | red ginseng extract (RGE) | in vivo, rats; in vitro, HEK293 cells | OCT1 ↑ | metformin | Increase the blood concentration of metformin, easy to cause diarrhea | [79] |
in vivo, rats; | MRP2 ↓ | methotrexate | Bile excretion is reduced, methotrexate clearance is reduced, and burst leakage in the body is increased, prone to side effects | [80] | ||
Radix astragali | astragaloside IV | in vivo, rats; in vitro, Caco-2 cell line | P-gp ↑ | omeprazole | Decrease the absorption of omeprazole | [84] |
St John’s wort | - | in vivo, human | P-gp ↑ | digoxin | Reduce the absorption of digoxin in the intestine and reduce the bioavailability of drugs | [89,90] |
in vivo, human | ciclosporin | Reduce the absorption of ciclosporin in the intestine and enhance the first pass effect of drugs, produce acute rejection | [4,5,6] | |||
Polygonum cuspidatum | - | in vivo, rats in vitro, LS 180 and MDCKII–MRP 2 cell lines | MRP2↓ | carbamazepine | Increased systemic exposure to carbamazepine, causing carbamazepine resistance and recurrent seizures | [94] |
Rheum palmatum | - | in vivo, rats; in vitro, LS 180 and MRP-2-overexpressing MDCK II cell lines | P-gp ↑ | phenytoin | Promote the efflux of phenytoin sodium, reduce the bioavailability and reduce the curative effect | [97] |
MRP2 ↓ | drugs with MRP2 as substrate | Increase the amount of drug leakage in the body and increase the toxicity | [97] | |||
in vivo, rats | P-gp ↑ | cyclosporine | Reduce the systemic exposure of CSP and increase the risk of allogeneic rejection | [91] | ||
Dioscorea bulbifera L. | extract from Dioscorea bulbifera L. rhizomes | in vivo, mice | P-gp ↓ MRP2 ↓ | pirarubicin | Reduce pirarubicin exclusion, pirarubicin accumulation in the body and aggravate cardiotoxicity | [98] |
herbal active ingredients | quercetin | in vivo, rats; in vitro, Caco-2 cells | P-gp ↓ | paracetamol | Increase blood drug concentration of paracetamol and aggravate liver toxicity | [99] |
Sinapic acid | in vivo, rats | P-gp ↓ | carbamazepine | Inhibit the excretion of drugs in the intestine and metabolism in the liver, increase the absorption of carbamazepine and enhance liver injury | [97,103,104] |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette |
ASCT2 | glutamine membrane transporter |
BBB | blood-brain barrier |
BCRP | breast cancer resistance protein |
BCSFB | blood-cerebrospinal fluid barrier |
BECs | brain endothelial cells |
BJJS | bajijiasu |
BSEP | the bile salt export pump |
CAR | constitutive androstane receptor |
CBZ | carbamazepine |
CIA | collagen-induced arthritis |
CP | choroid plexus |
CSF | cerebrospinal fluid |
HDIs | herb–drug interactions |
MATEs | mammal multidrug and toxin extrusion proteins |
MO | Morinda officinalis F.C. How. |
MRPs | multidrug resistance-associated proteins |
MTX | methotrexate |
OATs | organic anion transporters |
OATPs | the organic anion transporting polypeptides |
OCTs | organic cation transporters |
OCTNs | carnitine transporters |
PC | Polygonum cuspidatum |
PEPTs | peptide transporters |
PHT | phenytoin |
P-gp | P-glycoprotein |
PXR | pregnane X receptor |
RGE | red ginseng extract |
RP | rheum palmatum |
SA | sinapic acid |
SLC | solute carrier |
SJW | St. John’s wort |
THP | pirarubicin |
XRF | xanthone rich fraction |
References
- Samlee, P. The use of herbal medicines in primary health care. In Proceedings of the WHO Regional Meeting, Yangon, Myanmar, 10–12 March 2009; pp. 5–6. Available online: https://www.who.int/publications/i/item/SEA-HSD-322 (accessed on 25 June 2022).
- Kj, M. Herb-Drug Interaction in Diabetes: A Bane or a Boon. J. Diabetes Metab. Disord. Control 2014, 1, 00013. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Yang, J.; Yang, Z.; Yang, C.; Jin, H. Research Progress of Herbal Medicines on Drug Metabolizing Enzymes: Consideration Based on Toxicology. Curr. Drug Metab. 2020, 21, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Gary, W.B.; Bill, J.G.; Beverley, L.K.; Meredith, L.L.; Sameh, R.A. Drug interaction between St. John’s Wort and cyclosporine. Ann. Pharmacother. 2000, 34, 1013–1016. [Google Scholar] [CrossRef]
- Ruschitzka, F.; Meier, P.J.; Turina, M.; Lüscher, T.F.; Noll, G. Acute heart transplant rejection due to Saint John’s wort. Lancet 2000, 355, 548–549. [Google Scholar] [CrossRef]
- Moschella, C.; Jaber, B.L. Interaction between cyclosporine and Hypericum perforatum (St. John’s wort) after organ transplantation. Am. J. Kidney Dis. 2001, 38, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Sprouse, A.A.; van Breemen, R.B. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements. Drug Metab. Dispos. 2016, 44, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Chee, S.X.; Wong, W.J.; He, Q.L.; Lau, T.C. Traditional Chinese medicine: Herb-drug interactions with aspirin. Singap. Med. J. 2018, 59, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, S.; Zhang, Z.; Lau, B.S.; Fung, K.P.; Leung, P.C.; Zuo, Z. Pharmacokinetic and pharmacodynamic interaction of Danshen–Gegen extract with warfarin and aspirin. J. Ethnopharmacol. 2012, 143, 648–655. [Google Scholar] [CrossRef]
- El-Kattan, A.F.; Varma, M.V.S. Navigating Transporter Sciences in Pharmacokinetics Characterization Using the Extended Clearance Classification System. Drug Metab. Dispos. 2018, 46, 729–739. [Google Scholar] [CrossRef]
- Lin, L.; Yee, S.W.; Kim, R.B.; Giacomini, K.M. SLC transporters as therapeutic targets: Emerging opportunities. Nat. Rev. Drug Discov. 2015, 14, 543–560. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.C.; Johnson, E.; Lewinson, O. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 2009, 10, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Dolberg, A.M.; Reichl, S. Expression analysis of human solute carrier (SLC) family transporters in nasal mucosa and RPMI 2650 cells. Eur. J. Pharm. Sci. 2018, 123, 277–294. [Google Scholar] [CrossRef] [PubMed]
- DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug Transporters in Drug Efficacy and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 249–273. [Google Scholar] [CrossRef]
- Rives, M.-L.; Javitch, J.A.; Wickenden, A.D. Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem. Pharmacol. 2017, 135, 1–11. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Aleksunes, L.M. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation. Pharmacol. Rev. 2010, 62, 1–96. [Google Scholar] [CrossRef] [PubMed]
- Spanier, B.; Rohm, F. Proton Coupled Oligopeptide Transporter 1 (PepT1) Function, Regulation, and Influence on the Intestinal Homeostasis. Compr. Physiol. 2018, 8, 843–869. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, D.; Nozawa, T.; Imai, K.; Nezu, J.-I.; Tsuji, A.; Tamai, I. Involvement of Human Organic Anion Transporting Polypeptide OATP-B (SLC21A9) in pH-Dependent Transport across Intestinal Apical Membrane. J. Pharmacol. Exp. Ther. 2003, 306, 703–708. [Google Scholar] [CrossRef]
- Telbisz, M.; Homolya, L. Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function. Expert Opin. Ther. Targets 2016, 20, 501–514. [Google Scholar] [CrossRef]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef]
- Wang, R.; Liu, L.; Sheps, J.A.; Forrest, D.; Hofmann, A.F.; Hagey, L.R.; Ling, V. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11−/− mouse: Transport and gene expression studies. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G286–G294. [Google Scholar] [CrossRef] [Green Version]
- Szakacs, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Ashby, C.R., Jr.; Assaraf, Y.G.; Chen, Z.S.; Liu, H.M. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med. Res. Rev. 2021, 41, 525–555. [Google Scholar] [CrossRef] [PubMed]
- Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov. 2015, 14, 29–44. [Google Scholar] [CrossRef]
- Estudante, M.; Morais, J.G.; Soveral, G.; Benet, L.Z. Intestinal drug transporters: An overview. Adv. Drug Deliv. Rev. 2013, 65, 1340–1356. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Keiser, M.; Drozdzik, M.; Oswald, S. Expression, regulation and function of intestinal drug transporters: An update. Biol. Chem. 2017, 398, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Darwich, A.S.; Neuhoff, S.; Jamei, M.; Rostami-Hodjegan, A. Interplay of Metabolism and Transport in Determining Oral Drug Absorption and Gut Wall Metabolism: A Simulation Assessment Using the “Advanced Dissolution, Absorption, Metabolism (ADAM)” Model. Curr. Drug Metab. 2010, 11, 716–729. [Google Scholar] [CrossRef]
- Rombolà, L.; Scuteri, D.; Marilisa, S.; Watanabe, C.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life 2020, 10, 106. [Google Scholar] [CrossRef]
- Hira, D.; Terada, T. BCRP/ABCG2 and high-alert medications: Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem. Pharmacol. 2018, 147, 201–210. [Google Scholar] [CrossRef]
- de Waart, D.R.; van de Wetering, K.; Kunne, C.; Duijst, S.; Paulusma, C.C.; Elferink, R.P.J.O. Oral Availability of Cefadroxil Depends on ABCC3 and ABCC4. Drug Metab. Dispos. 2012, 40, 515–521. [Google Scholar] [CrossRef]
- Kato, S.; Ito, K.; Kato, Y.; Wakayama, T.; Kubo, Y.; Iseki, S.; Tsuji, A. Involvement of Multidrug Resistance-Associated Protein 1 in Intestinal Toxicity of Methotrexate. Pharm. Res. 2009, 26, 1467–1476. [Google Scholar] [CrossRef] [Green Version]
- Brandsch, M. Drug transport via the intestinal peptide transporter PepT1. Curr. Opin. Pharmacol. 2013, 13, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ma, J.; Ye, Y.; Lin, G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb–drug interactions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1026, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Sai, Y.; Kaneko, Y.; Ito, S.; Mitsuoka, K.; Kato, Y.; Tamai, I.; Artursson, P.; Tsuji, A. Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells. Drug Metab. Dispos. 2006, 34, 1423–1431. [Google Scholar] [CrossRef]
- Mooij, M.G.; De Koning, B.E.A.; Lindenbergh-Kortleve, D.J.; Simons-Oosterhuis, Y.; Van Groen, B.D.; Tibboel, D.; Samsom, J.N.; De Wildt, S.N. Human Intestinal PEPT1 Transporter Expression and Localization in Preterm and Term Infants. Drug Metab. Dispos. 2016, 44, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Zhu, Q.; Zhu, A.; Gemski, C.; Ma, B.; Guan, E.; Li, A.P.; Xiao, G.; Xia, C.Q. Comparison of uptake transporter functions in hepatocytes in different species to determine the optimal model for evaluating drug transporter activities in humans. Xenobiotica 2019, 49, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-Y.; Weber, E.J.; Van Ness, K.P.; Eaton, D.L.; Kelly, E.J. Liver and Kidney on Chips: Microphysiological Models to Understand Transporter Function. Clin. Pharmacol. Ther. 2016, 100, 464–478. [Google Scholar] [CrossRef]
- Riley, R.J.; Foley, S.A.; Barton, P.; Soars, M.G.; Williamson, B. Hepatic drug transporters: The journey so far. Expert Opin. Drug Metab. Toxicol. 2016, 12, 201–216. [Google Scholar] [CrossRef]
- Wlcek, K.; Stieger, B. ATP-binding cassette transporters in liver. BioFactors 2014, 40, 188–198. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, Y.; Zhang, S.; Zhai, J.; Gao, H.; Tao, L.; Song, Y. Dysregulation of BSEP and MRP2 May Play an Important Role in Isoniazid-Induced Liver Injury via the SIRT1/FXR Pathway in Rats and HepG2 Cells. Biol. Pharm. Bull. 2018, 41, 1211–1218. [Google Scholar] [CrossRef]
- Lepist, E.-I.; Ray, A.S. Renal Transporter-Mediated Drug-Drug Interactions: Are They Clinically Relevant? J. Clin. Pharmacol. 2016, 56, S73–S81. [Google Scholar] [CrossRef] [Green Version]
- Ivanyuk, A.; Livio, F.; Biollaz, J.; Buclin, T. Renal Drug Transporters and Drug Interactions. Clin. Pharmacokinet. 2017, 56, 825–892. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Duan, H.; Wang, J. Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation. J. Pharmacol. Exp. Ther. 2016, 359, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Lepist, E.-I.; Ray, A.S. Beyond drug-drug interactions: Effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, K.M.; Stocker, S.L.; Wittwer, M.B.; Xu, L.; Giacomini, K.M. Renal Transporters in Drug Development. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 503–529. [Google Scholar] [CrossRef] [PubMed]
- Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: Similarities and differences. Fluids Barriers CNS 2011, 8, 3. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Du, K.; Wu, Y.; Liu, L.; Cui, S.; Zhang, Y.; Gao, J.; Keep, R.F.; Xiang, J. Involvement of human and canine MRP1 and MRP4 in benzylpenicillin transport. PLoS ONE 2019, 14, e0225702. [Google Scholar] [CrossRef]
- Han, L.W.; Gao, C.; Mao, Q. An update on expression and function of P-gp/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin. Drug Metab. Toxicol. 2018, 14, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Reznicek, J.; Ceckova, M.; Tupova, L.; Staud, F. Etravirine inhibits ABCG2 drug transporter and affects transplacental passage of tenofovir disoproxil fumarate. Placenta 2016, 47, 124–129. [Google Scholar] [CrossRef]
- Zuo, J.; Xia, Y.; Li, X.; Chen, J.-W. Therapeutic effects of dichloromethane fraction of Securidaca inappendiculata on adjuvant-induced arthritis in rat. J. Ethnopharmacol. 2014, 153, 352–358. [Google Scholar] [CrossRef]
- Olatunji, O.J.; Zuo, J.; Olatunde, O.O. Securidaca inappendiculata stem extract confers robust antioxidant and antidiabetic effects against high fructose/streptozotocin induced type 2 diabetes in rats. Exploration of bioactive compounds using UHPLC-ESI-QTOF-MS. Arch. Physiol. Biochem. 2021, 1–13. [Google Scholar] [CrossRef]
- Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-D.; Li, Y.; Wu, Y.-J.; Wu, Y.L.; Han, J.; Olatunji, O.J.; Wang, L.; Zuo, J. Xanthones from Securidaca inappendiculata antagonized the antirheumatic effects of methotrexate in vivo by promoting its secretion into urine. Expert Opin. Drug Metab. Toxicol. 2021, 17, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Wang, F.; Wang, W. Effect of Aqueous Extract from Morinda officinalis F. C. How on Microwave-Induced Hypothalamic-Pituitary-Testis Axis Impairment in Male Sprague-Dawley Rats. Evid.-Based Complement. Altern. Med. 2015, 2015, 360730. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Qin, L.-P.; Han, T.; Wu, Y.-B.; Zhang, Q.-Y.; Zhang, H. Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats. Molecules 2009, 14, 2049–2061. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Hao, H.; Lin, H.; Wang, P.; Wu, Y.; Jiang, X.; Fu, C.; Li, Q.; Ding, P.; Liu, H.; et al. The Extracts of Morinda officinalis and Its Hairy Roots Attenuate Dextran Sodium Sulfate-Induced Chronic Ulcerative Colitis in Mice by Regulating Inflammation and Lymphocyte Apoptosis. Front. Immunol. 2017, 8, 905. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Lu, H.; Chi, H.; Wang, Y.; Li, X.; Ye, H. Neuroprotective Effects of OMO within the Hippocampus and Cortex in a D-Galactose and Aβ25–35-Induced Rat Model of Alzheimer’s Disease. Evid.-Based Complement. Altern. Med. 2020, 2020, 1067541. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Wang, Y.; He, J.; Cai, T.; Wu, J.; Fang, J.; Zhang, R.; Guo, Z.; Guan, L.; Zhan, Q.; et al. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice. Oncotarget 2017, 8, 92621–92634. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Xin, H.-L.; Xu, Y.-M.; Shen, Y.; He, Y.-Q.; Yeh, H.; Lin, B.; Song, H.-T.; Liu, J.; Yang, H.-Y.; et al. Morinda officinalis How—A comprehensive review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 213, 230–255. [Google Scholar] [CrossRef]
- Yang, X.; Hu, G.; Lv, L.; Liu, T.; Qi, L.; Huang, G.; You, D.; Zhao, J. Regulation of P-glycoprotein by Bajijiasu in vitro and in vivo by activating the Nrf2-mediated signalling pathway. Pharm. Biol. 2019, 57, 184–192. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Y.; Chen, H.; Cai, X. Protective effect of flavonoids from Rosa roxburghii Tratt on myocardial cells via autophagy. Biotech 2020, 10, 58. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Dogra, A.; Gour, A.; Bhatt, S.; Sharma, P.; Sharma, A.; Kotwal, P.; Wazir, P.; Mishra, P.; Singh, G.; Nandi, U. Effect of rutin on pharmacokinetic modulation of diclofenac in rats. Xenobiotica 2020, 50, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.-S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhao, S.; Fan, X.; Chen, Y.; Zou, X.; Hu, M.; Wang, B.; Jin, J.; Wang, X.; Hu, J.; et al. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure-activity relationships. Toxicol. Appl. Pharmacol. 2019, 369, 49–59. [Google Scholar] [CrossRef]
- Wongrattanakamon, P.; Nimmanpipug, P.; Sirithunyalug, B.; Chansakaow, S.; Jiranusornkul, S. A significant mechanism of molecular recognition between bioflavonoids and P-glycoprotein leading to herb-drug interactions. Toxicol. Mech. Methods 2018, 28, 1–11. [Google Scholar] [CrossRef]
- Bansal, T.; Awasthi, A.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Pre-clinical evidence for altered absorption and biliary excretion of irinotecan (CPT-11) in combination with quercetin: Possible contribution of P-glycoprotein. Life Sci. 2008, 83, 250–259. [Google Scholar] [CrossRef]
- Fan, X.; Bai, J.; Hu, M.; Xu, Y.; Zhao, S.; Sun, Y.; Wang, B.; Hu, J.; Li, Y. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology 2020, 437, 152445. [Google Scholar] [CrossRef]
- Wu, T.; Li, H.; Chen, J.; Cao, Y.; Fu, W.; Zhou, P.; Pang, J. Apigenin, a novel candidate involving herb-drug interaction (HDI), interacts with organic anion transporter 1 (OAT1). Pharmacol. Rep. 2017, 69, 1254–1262. [Google Scholar] [CrossRef]
- El-Sheikh, A.A.; Morsy, M.A.; Al-Taher, A.Y. Protective mechanisms of resveratrol against methotrexate-induced renal damage may involve BCRP/ABCG2. Fundam. Clin. Pharmacol. 2016, 30, 406–418. [Google Scholar] [CrossRef]
- El-Sheikh, A.A.; Morsy, M.A.; Al-Taher, A.Y. Multi-drug resistance protein (Mrp) 3 may be involved in resveratrol protection against methotrexate-induced testicular damage. Life Sci. 2014, 119, 40–46. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, Q.; Li, Y.; Gao, Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep. 2018, 51, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Imenshahidi, M.; Hosseinzadeh, H. Berberis Vulgaris and Berberine: An Update Review. Phytotherapy Res. 2016, 30, 1745–1764. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Xu, Z.; Xu, X.; Jin, J.; Zhao, Y.; Wang, T.; Li, Y.; Ma, Y. Organic cation transporter and multidrug and toxin extrusion 1 co-mediated interaction between metformin and berberine. Eur. J. Pharm. Sci. 2019, 127, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Choi, Y.A.; Choi, M.-K.; Song, I.-S. Organic cation transporter-mediated drug-drug interaction potential between berberine and metformin. Arch. Pharmacal Res. 2015, 38, 849–856. [Google Scholar] [CrossRef]
- Irfan, M.; Kwak, Y.-S.; Han, C.-K.; Hyun, S.H.; Rhee, M.H. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J. Ginseng Res. 2020, 44, 538–543. [Google Scholar] [CrossRef]
- Kawase, A.; Yamada, A.; Gamou, Y.; Tahara, C.; Takeshita, F.; Murata, K.; Matsuda, H.; Samukawa, K.; Iwaki, M. Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J. Nat. Med. 2014, 68, 395–401. [Google Scholar] [CrossRef]
- Park, J.-K.; Shim, J.; Cho, A.-R.; Cho, M.-R.; Lee, Y.-J. Korean Red Ginseng Protects Against Mitochondrial Damage and Intracellular Inflammation in an Animal Model of Type 2 Diabetes Mellitus. J. Med. Food 2018, 21, 544–550. [Google Scholar] [CrossRef]
- Jin, S.; Lee, S.; Jeon, J.-H.; Kim, H.; Choi, M.-K.; Song, I.-S. Enhanced Intestinal Permeability and Plasma Concentration of Metformin in Rats by the Repeated Administration of Red Ginseng Extract. Pharmaceutics 2019, 11, 189. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, M.; Choi, M.-K.; Song, I.-S. Effects of Red Ginseng Extract on the Pharmacokinetics and Elimination of Methotrexate via Mrp2 Regulation. Molecules 2018, 23, 2948. [Google Scholar] [CrossRef]
- Lin, S.-P.; Yu, C.-P.; Hou, Y.-C.; Huang, C.-Y.; Ho, L.-C.; Chan, S.-L. Transporter-mediated interaction of indican and methotrexate in rats. J. Food Drug Anal. 2018, 26, S133–S140. [Google Scholar] [CrossRef]
- Ma, X.Q.; Shi, Q.; Duan, J.A.; Dong, T.T.X.; Tsim, K.W.K. Chemical Analysis of Radix Astragali (Huangqi) in China: A Comparison with Its Adulterants and Seasonal Variations. J. Agric. Food Chem. 2002, 50, 4861–4866. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Guo, Z.; Zhu, Y.; Zhang, G.; Wang, Y.; Qi, X.; Lu, L.; Liu, Z.; Wu, J. Astragali radix and its main bioactive compounds activate the Nrf2-mediated signaling pathway to induce P-glycoprotein and breast cancer resistance protein. J. Ethnopharmacol. 2019, 228, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, G.; Liu, J. Effects of astragaloside IV on the pharmacokinetics of omeprazole in rats. Pharm. Biol. 2019, 57, 449–452. [Google Scholar] [CrossRef]
- Liu, L.; Li, P.; Qiao, L.; Li, X. Effects of astragaloside IV on the pharmacokinetics of puerarin in rats. Xenobiotica 2019, 49, 1173–1177. [Google Scholar] [CrossRef]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001, 53, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hamman, M.A.; Huang, S.-M.; Lesko, L.J.; Hall, S.D. Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin. Pharmacol. Ther. 2002, 71, 414–420. [Google Scholar] [CrossRef]
- Hennessy, M.; Kelleher, D.; Spiers, J.P.; Barry, M.; Kavanagh, P.; Back, D.; Mulcahy, F.; Feely, J. St John’s Wort increases expression of P-glycoprotein: Implications for drug interactions. Br. J. Clin. Pharmacol. 2002, 53, 75–82. [Google Scholar] [CrossRef]
- Gurley, B.J.; Swain, A.; Williams, D.K.; Barone, G.; Battu, S.K. Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: Comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol. Nutr. Food Res. 2008, 52, 772–779. [Google Scholar] [CrossRef]
- Johne, A.; Brockmöller, J.; Bauer, S.; Maurer, A.; Langheinrich, M.; Roots, I. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clin. Pharmacol. Ther. 1999, 66, 338–345. [Google Scholar] [CrossRef]
- Yu, C.-P.; Lin, H.-J.; Lin, S.-P.; Shia, C.-S.; Chang, P.-H.; Hou, Y.-C.; Hsieh, Y.-W. Rhubarb decreased the systemic exposure of cyclosporine, a probe substrate of P-glycoprotein and CYP 3A. Xenobiotica 2016, 46, 677–682. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Zheng, Y.; Zhou, C.; Huang, P.; Xiao, X.; Zhao, Y.; Hao, X.; Hu, Z.; Chen, Q.; et al. Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum. Front. Plant Sci. 2019, 10, 1274. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Shi, X.; Ding, T.; Liu, L. Unraveling the action mechanism of polygonum cuspidatum by a network pharmacology approach. Am. J. Transl. Res. 2019, 11, 6790–6811. [Google Scholar]
- Chi, Y.-C.; Lin, S.-P.; Hou, Y.-C. A new herb-drug interaction of Polygonum cuspidatum, a resveratrol-rich nutraceutical, with carbamazepine in rats. Toxicol. Appl. Pharmacol. 2012, 263, 315–322. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Wang, J.-S.; Yang, M.-H.; Luo, J.-G.; Kong, L.-Y. Developmental Changes in the Composition of Five Anthraquinones from Rheum palmatum as Quantified by (1) H-NMR. Phytochem. Anal. 2013, 24, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Sweet, D.H. The anthraquinone drug rhein potently interferes with organic anion transporter-mediated renal elimination. Biochem. Pharmacol. 2013, 86, 991–996. [Google Scholar] [CrossRef]
- Chi, Y.-C.; Juang, S.-H.; Chui, W.K.; Hou, Y.-C.; Chao, P.-D.L. Acute and Chronic Administrations ofRheum palmatumReduced the Bioavailability of Phenytoin in Rats: A New Herb-Drug Interaction. Evid.-Based Complement. Altern. Med. 2012, 2012, 701205. [Google Scholar] [CrossRef]
- Sun, L.-R.; Guo, Q.-S.; Zhou, W.; Li, M. Extract from Dioscorea bulbifera L. rhizomes aggravate pirarubicin-induced cardiotoxicity by inhibiting the expression of P-glycoprotein and multidrug resistance-associated protein 2 in the mouse liver. Sci. Rep. 2021, 11, 19720. [Google Scholar] [CrossRef] [PubMed]
- Pingili, R.B.; Pawar, A.K.; Challa, S.R. Systemic exposure of Paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model: Risk of liver toxicity. Drug Dev. Ind. Pharm. 2015, 41, 1793–1800. [Google Scholar] [CrossRef]
- Okomolo, F.C.M.; Mbafor, J.T.; Bum, E.N.; Kouemou, N.; Kandeda, A.K.; Talla, E.; Dimo, T.; Rakotonirira, A.; Rakotonirira, S.V. Evaluation of the Sedative and Anticonvulsant Properties of Three Cameroonian Plants. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 181–190. [Google Scholar] [CrossRef]
- Gupta, G.; Kazmi, I.; Afzal, M.; Rahman, M.; Saleem, S.; Ashraf, M.S.; Khusroo, M.J.; Nazeer, K.; Ahmed, S.; Mujeeb, M.; et al. Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J. Ethnopharmacol. 2012, 141, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Von Schoen-Angerer, T.; Madeleyn, R.; Kienle, G.; Kiene, H.; Vagedes, J. Viscum Album in the Treatment of a Girl with Refractory Childhood Absence Epilepsy. J. Child Neurol. 2015, 30, 1048–1052. [Google Scholar] [CrossRef]
- Raish, M.; Ahmad, A.; Alkharfy, K.M.; Jan, B.L.; Mohsin, K.; Ahad, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Effects of Paeonia emodi on hepatic cytochrome P450 (CYP3A2 and CYP2C11) expression and pharmacokinetics of carbamazepine in rats. Biomed. Pharmacother. 2017, 90, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Raish, M.; Ahmad, A.; Ansari, M.A.; Alkharfy, K.M.; Ahad, A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M.; Khan, A.; Ali, N. Effects of sinapic acid on hepatic cytochrome P450 3A2, 2C11, and intestinal P-glycoprotein on the pharmacokinetics of oral carbamazepine in rats: Potential food/herb-drug interaction. Epilepsy Res. 2019, 153, 14–18. [Google Scholar] [CrossRef]
- Nyeko, R.; Tumwesigye, N.M.; Halage, A.A. Prevalence and factors associated with use of herbal medicines during pregnancy among women attending postnatal clinics in Gulu district, Northern Uganda. BMC Pregnancy Childbirth 2016, 16, 296. [Google Scholar] [CrossRef] [PubMed]
- Amaeze, O.; Marques, E.S.; Wei, W.; Lazzaro, S.; Johnson, N.; Varma, M.V.; Slitt, A. Evaluation of Nigerian Medicinal Plants Extract on Human P-glycoprotein and Cytochrome P450 Enzyme Induction: Implications for Herb-drug Interaction. Curr. Drug Metab. 2021, 22, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D.D. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug-Drug Interaction Studies. Clin. Pharmacokinet. 2020, 59, 699–714. [Google Scholar] [CrossRef]
- Yu, C.-P.; Wu, P.-P.; Hou, Y.-C.; Lin, S.-P.; Tsai, S.-Y.; Chen, C.-T.; Chao, P.-D.L. Quercetin and Rutin Reduced the Bioavailability of Cyclosporine from Neoral, an Immunosuppressant, through Activating P-Glycoprotein and CYP 3A4. J. Agric. Food Chem. 2011, 59, 4644–4648. [Google Scholar] [CrossRef]
- Hsu, P.-W.; Shia, C.-S.; Lin, S.-P.; Chao, P.-D.L.; Juang, S.-H.; Hou, Y.-C. Potential Risk of Mulberry–Drug Interaction: Modulation on P-Glycoprotein and Cytochrome P450 3A. J. Agric. Food Chem. 2013, 61, 4464–4469. [Google Scholar] [CrossRef]
- Ma, B.-L.; Ma, Y.-M. Pharmacokinetic herb-drug interactions with traditional Chinese medicine: Progress, causes of conflicting results and suggestions for future research. Drug Metab. Rev. 2016, 48, 1–26. [Google Scholar] [CrossRef]
- Mohutsky, M.A.; Anderson, G.D.; Miller, J.W.; Elmer, G.W. Ginkgo biloba: Evaluation of CYP2C9 Drug Interactions In Vitro and In Vivo. Am. J. Ther. 2006, 13, 24–31. [Google Scholar] [CrossRef]
- Umegaki, K.; Saito, K.; Kubota, Y.; Sanada, H.; Yamada, K.; Shinozuka, K. Ginkgo biloba Extract Markedly Induces Pentoxyresorufin O-Dealkylase Activity in Rats. Jpn. J. Pharmacol. 2002, 90, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, S.; Tian, F.; Zhang, S.-Q.; Jin, H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals 2022, 15, 1126. https://doi.org/10.3390/ph15091126
Li J, Wang S, Tian F, Zhang S-Q, Jin H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals. 2022; 15(9):1126. https://doi.org/10.3390/ph15091126
Chicago/Turabian StyleLi, Jie, Shuting Wang, Fengjie Tian, Shuang-Qing Zhang, and Hongtao Jin. 2022. "Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions" Pharmaceuticals 15, no. 9: 1126. https://doi.org/10.3390/ph15091126
APA StyleLi, J., Wang, S., Tian, F., Zhang, S. -Q., & Jin, H. (2022). Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals, 15(9), 1126. https://doi.org/10.3390/ph15091126