The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats
Abstract
:1. Introduction
2. Results
2.1. GC-MS Results of Olive and Palm Oils
2.2. Effect of Palm and Olive Oils on Body Weight, Blood Glucose Level, and Liver Function Enzymes
2.3. Effect of Palm and Olive Oils on Lipid Profile
2.4. Effect of Palm and Olive Oils on Atherogenic Index and Fatty Acid Synthase (FAS) Expression
2.5. Effect of Palm and Olive Oils on Hepatic Oxidative/Antioxidant Status
2.6. Effect of Palm and Olive OILS on Hepatic Inflammatory Biomarkers
3. Discussion
4. Materials and Methods
4.1. GC-MS Analysis
4.2. Animals and Ethical Statement
4.3. Experimental Design
4.4. Sampling and Tissue Preparation
4.5. Serum Biochemical Parameters
4.6. Atherogenic Index
4.7. Oxidative Stress Markers
4.8. Antioxidant Enzymatic Activities
4.9. Determination of Inflammatory Markers
4.10. RNA Extraction, cDNA Synthesis and Quantitative RT-PCR Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Almubark, R.A.; BinDhim, N.F.; Alkhamaali, Z.; Alqahtani, S.A. Obesity in Saudi Arabia in 2020: Prevalence, Distribution, and Its Current Association with Various Health Conditions. Healthcare 2021, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Al-Kaabba, A.F.; Al-Hamdan, N.A.; Tahir, A.E.; Abdalla, A.M.; Saeed, A.A.; Hamza, M.A. Prevalence and Correlates of Dyslipidemia among Adults in Saudi Arabia: Results from a National Survey. Open J. Endocr. Metab. Dis. 2012, 2, 89–97. [Google Scholar] [CrossRef]
- Djohan, Y.F.; Badia, E.; Bonafos, B.; Fouret, G.; Lauret, C.; Dupuy, A.M.; Pinot, E.; Sutra, T.; Gaillet, S.; Lambert, K.; et al. High dietary intake of palm oils compromises glucose tolerance whereas high dietary intake of olive oil compromises liver lipid metabolism and integrity. Eur. J. Nutr. 2019, 58, 3091–3107. [Google Scholar] [CrossRef]
- WHO. WHO|Cardiovascular Diseases (CVDs). 2017. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 19 December 2017).
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry–A review. Food Biosci. 2015, 10, 26–41. [Google Scholar] [CrossRef]
- Mokhtari, T.; Hussein Osman, H.-E.; El-Meghawry El-Kenawy, A.; Dashti, N. Ameliorative effect of virgin olive oil against nephrotoxicity following sub-chronic administration of ethephon in male rats. J. Tradit. Complementary Med. 2020, 10, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Piroddi, M.; Albini, A.; Fabiani, R.; Giovannelli, L.; Luceri, C.; Natella, F.; Rosignoli, P.; Rossi, T.; Taticchi, A.; Servili, M.; et al. Nutrigenomics of extra-virgin olive oil: A review. Biofactors 2017, 43, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Ichipi-Ifukor, P.C.; Asagba, S.O.; Nwose, C.; Mordi, J.C.; Oyem, J.C. Palm oil extracts protected against cadmium chloride poisoning via inhibition of oxidative stress in rats. Bull. Natl. Res. Cent. 2022, 46, 5. [Google Scholar] [CrossRef]
- Nocella, C.; Cammisotto, V.; Fianchini, L.; D’Amico, A.; Novo, M.; Castellani, V.; Stefanini, L.; Violi, F.; Carnevale, R. Extra Virgin Olive Oil and Cardiovascular Diseases: Benefits for Human Health. Endocr Metab. Immune Disord. Drug Targets 2018, 18, 4–13. [Google Scholar] [CrossRef]
- Ismail, S.R.; Maarof, S.K.; Siedar Ali, S.; Ali, A. Systematic review of palm oil consumption and the risk of cardiovascular disease. PLoS ONE 2018, 13, e0193533. [Google Scholar] [CrossRef]
- Odia, O.J.; Ofori, S.; Maduka, O. Palm oil and the heart: A review. World J. Cardiol. 2015, 7, 144–149. [Google Scholar] [CrossRef]
- Kruger, M.J.; Engelbrecht, A.M.; Esterhuyse, J.; du Toit, E.F.; van Rooyen, J. Dietary red palm oil reduces ischaemia-reperfusion injury in rats fed a hypercholesterolaemic diet. Br. J. Nutr. 2007, 97, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, J.; Yi, Q.; Wang, X.; Ju, X. Protective effect of polyphenols extract of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on hypercholesterolemia-induced oxidative stress in rats. Molecules 2012, 17, 8886–8897. [Google Scholar] [CrossRef] [PubMed]
- Bin-Jumah, M.N. Monolluma quadrangula Protects against Oxidative Stress and Modulates LDL Receptor and Fatty Acid Synthase Gene Expression in Hypercholesterolemic Rats. Oxidative Med. Cell. Longev. 2018, 2018, 3914384. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Chun, S.Y.; Kwon, Y.S.; Kim, S.; Nam, K.S. Deep sea water improves hypercholesterolemia and hepatic lipid accumulation through the regulation of hepatic lipid metabolic gene expression. Mol. Med. Rep. 2017, 15, 2814–2822. [Google Scholar] [CrossRef] [PubMed]
- Hernaez, A.; Remaley, A.T.; Farras, M.; Fernandez-Castillejo, S.; Subirana, I.; Schroder, H.; Fernandez-Mampel, M.; Munoz-Aguayo, D.; Sampson, M.; Sola, R.; et al. Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity in Men in a Randomized Controlled Trial. J. Nutr. 2015, 145, 1692–1697. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; de la Torre, R.; Fito, M. Virgin olive oil: A key food for cardiovascular risk protection. Br. J. Nutr. 2015, 113 (Suppl. S2), S19–S28. [Google Scholar] [CrossRef]
- Wilson, T.A.; Nicolosi, R.J.; Kotyla, T.; Sundram, K.; Kritchevsky, D. Different palm oil preparations reduce plasma cholesterol concentrations and aortic cholesterol accumulation compared to coconut oil in hypercholesterolemic hamsters. J. Nutr. Biochem. 2005, 16, 633–640. [Google Scholar] [CrossRef]
- Amini, S.A.; Ghatreh-Samani, K.; Habibi-Kohi, A.; Jafari, L. Comparison of Pure Palm Olein Oil, Hydrogenated Oil-Containing Palm, and Canola on Serum Lipids and Lipid Oxidation Rate in Rats Fed with these Oils. Arch. Iran. Med. 2017, 20, 96–100. [Google Scholar] [CrossRef]
- Rezq, A.A.; Labib, F.A.; Attia, A. Effect of some dietary oils and fats on serum lipid profile, calcium absorption and bone mineralization in mice. Pak. J. Nutr. 2010, 9, 643–650. [Google Scholar] [CrossRef]
- Khatun, J.; Loh, T.C.; Akit, H.; Foo, H.L.; Mohamad, R. Fatty acid composition, fat deposition, lipogenic gene expression and performance of broiler fed diet supplemented with different sources of oil. Anim. Sci. J. 2017, 88, 1406–1413. [Google Scholar] [CrossRef]
- Priore, P.; Siculella, L.; Gnoni, G.V. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes. J. Nutr. Biochem. 2014, 25, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Priore, P.; Caruso, D.; Siculella, L.; Gnoni, G.V. Rapid down-regulation of hepatic lipid metabolism by phenolic fraction from extra virgin olive oil. Eur. J. Nutr. 2015, 54, 823–833. [Google Scholar] [CrossRef]
- Al-Rejaie, S.S.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A.; Abuohashish, H.M.; Ahmed, M.M.; Al-Hosaini, K.A.; Hafez, M.M. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat. BMC Complementary Altern. Med. 2013, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Huisamen, B.; Dietrich, D.; Bezuidenhout, N.; Lopes, J.; Flepisi, B.; Blackhurst, D.; Lochner, A. Early cardiovascular changes occurring in diet-induced, obese insulin-resistant rats. Mol. Cell. Biochem. 2012, 368, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.S.; Khaled, A.M.; Aleid, G.M.; Fareid, M.A.; Hameed, R.A.; Abdelfattah, M.S.; Aldin, D.E.; Moneim, A.E.A. Evaluation of antiobesity and hepatorenal protective activities of Salvia officinalis extracts pre-treatment in high-fat diet-induced obese rats. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef]
- Yucel, I.; Akar, Y.; Yucel, G.; Ciftcioglu, M.A.; Keles, N.; Aslan, M. Effect of hypercholesterolemia on inducible nitric oxide synthase expression in a rat model of elevated intraocular pressure. Vis. Res. 2005, 45, 1107–1114. [Google Scholar] [CrossRef]
- Twumasi, P.; Nsiah, K.; Osei, E.Y. Treatment of lead-poisoned rats through oral administration of palm oil extracts. Afr. J. Biochem. Res. 2014, 8, 43–51. [Google Scholar]
- van Rooyen, J.; Esterhuyse, A.J.; Engelbrecht, A.M.; du Toit, E.F. Health benefits of a natural carotenoid rich oil: A proposed mechanism of protection against ischaemia/ reperfusion injury. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. S1), 316–319. [Google Scholar]
- Asagba, S.O.; Eriyamremu, G.E. Oral Cadmium Exposure and Levels of Superoxide Dismutase, Catalase, Lipid Peroxidation and ATPases in the Eye. Res. J. Environ. Toxicol. 2007, 1, 204–209. [Google Scholar] [CrossRef]
- Djohan, Y.F.; Monde, A.A.; Camara-Cisse, M.; Badia, E.; Bonafos, B.; Fouret, G.; Lauret, C.; Dupuy, A.M.; Pinot, E.; Koffi, G.; et al. Effects of high-fat diets on inflammation and antioxidant status in rats: Comparison between palm olein and olive oil. Acta. Biochim. Pol. 2021, 68, 739–744. [Google Scholar] [CrossRef]
- Vasanthi, H.R.; Parameswari, R.P.; Das, D.K. Multifaceted role of tocotrienols in cardioprotection supports their structure: Function relation. Genes Nutr. 2012, 7, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front. Physiol. 2017, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative Study on Beneficial Effects of Hydroxytyrosol- and Oleuropein-Rich Olive Leaf Extracts on High-Fat Diet-Induced Lipid Metabolism Disturbance and Liver Injury in Rats. Biomed Res. Int. 2020, 2020, 1315202. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Jiang, K.; Zhang, T.; Zhao, G.; Deng, G. Hydroxytyrosol exerts an anti-inflammatory effect by suppressing Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice. J. Funct. Foods 2017, 35, 595–604. [Google Scholar] [CrossRef]
- Casas, R.; Sacanella, E.; Urpi-Sarda, M.; Chiva-Blanch, G.; Ros, E.; Martinez-Gonzalez, M.A.; Covas, M.I.; Salas-Salvado, J.; Fiol, M.; Aros, F.; et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE 2014, 9, e100084. [Google Scholar] [CrossRef]
- Casas, R.; Urpi-Sarda, M.; Sacanella, E.; Arranz, S.; Corella, D.; Castaner, O.; Lamuela-Raventos, R.M.; Salas-Salvado, J.; Lapetra, J.; Portillo, M.P.; et al. Anti-Inflammatory Effects of the Mediterranean Diet in the Early and Late Stages of Atheroma Plaque Development. Mediat. Inflamm. 2017, 2017, 3674390. [Google Scholar] [CrossRef]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gomez-Gracia, E.; Lopez-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Al-Quraishy, S.; Othman, M.S.; Dkhil, M.A.; Abdel Moneim, A.E. Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities. Biomed. Pharm. 2017, 91, 338–349. [Google Scholar] [CrossRef]
- Yin, M.; Jiang, N.; Guo, L.; Ni, Z.; Al-Brakati, A.Y.; Othman, M.S.; Abdel Moneim, A.E.; Kassab, R.B. Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats. Life Sci. 2019, 232, 116634. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, Q. Vitamin E delta-tocotrienol inhibits TNF-alpha-stimulated NF-kappaB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J. Nutr. Biochem. 2019, 64, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.-T.; Ko, H.-J. Comparative effects of tocotrienol-rich fraction, α-tocopherol and α-tocopheryl acetate on inflammatory mediators and nuclear factor kappa B expression in mouse peritoneal macrophages. Food Chem. 2012, 134, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Trinder, P. Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor. Ann. Clin. Biochem. Int. J. Biochem. Med. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Sampson, M.; Ling, C.; Sun, Q.; Harb, R.; Ashmaig, M.; Warnick, R.; Sethi, A.; Fleming, J.K.; Otvos, J.D.; Meeusen, J.W.; et al. A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. JAMA Cardiol. 2020, 5, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, T.; Hajihosseini, M.; Moossavi, M.; Hemmati, M.; Ziaee, M. Cardiovascular Risk Factors and Atherogenic Indices in an Iranian Population: Birjand East of Iran. Clin. Med. Insights. Cardiol. 2018, 12, 1179546818759286. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Emmerie, A.; Engel, C. Colorimetric determination of α-tocopherol (vitamin E). Recl. Trav. Chim. Pays-Bas 1938, 57, 1351–1355. [Google Scholar] [CrossRef]
- Nishikimi, M.; Rao, N.A.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- De Vega, L.; Fernandez, R.P.; Mateo, M.C.; Bustamante, J.B.; Herrero, A.M.; Munguira, E.B. Glutathione determination and a study of the activity of glutathione-peroxidase, glutathione-transferase, and glutathione-reductase in renal transplants. Ren. Fail. 2002, 24, 421–432. [Google Scholar] [CrossRef] [Green Version]
Peak Number | Compounds | Molecular Formula | RT | Area % |
---|---|---|---|---|
1 | Hexadecane | C17H36 | 8.18 | 1.19 |
2 | Tetradecane, 2,6,10-trimethyl- | C21H44 | 12.57 | 2.63 |
3 | Docosane | C22H46 | 13.46 | 3.90 |
4 | 9,12,15-Octadecatrienoic acid (alpha-Linolenic acid) | C₁₈H₃₀O₂ | 15.86 | 7.31 |
5 | Dotriacontane | C32H66 | 17.36 | 1.52 |
6 | Hexadecanoic acid, methyl ester | C17H34O2 | 20.20 | 6.09 |
7 | Pentadecanoic acid, 14-methyl-, methyl ester | C17H34O2 | 20.90 | 1.17 |
8 | Hexadecanoic acid (Palmitic acid) | C16H32O2 | 22.20 | 13.05 |
9 | 9-Octadecenoic acid (Z)-, methyl ester | C19H36O2 | 23.20 | 27.33 |
10 | 2,2-Dideutero octadecanal | C19H26O6 | 24.12 | 0.83 |
11 | 9-Octadecenoic acid (Oleic acid) | C18H34O2 | 24.67 | 11.25 |
12 | 2,6,10,14,18,22-Tetracosahexaene | C30H50 | 32.56 | 7.81 |
13 | Ethyl iso-allocholate | C26H44O5 | 33.68 | 5.26 |
14 | Vitamin E | C29H50O2 | 34.56 | 5.15 |
15 | β-sitosterol | C29H50O | 35.43 | 5.51 |
Peak Number | Compounds | Molecular Formula | RT | Area % |
---|---|---|---|---|
1 | Benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dime thyl-5-isopropenyl-, trans | C15H20O | 12.64 | 3.66 |
2 | 4,4′-Dimethyl-2,2′-dimethylenebicyclohexyl-3,3′-diene | C16H22 | 15.16 | 8.43 |
3 | Hexadecanoic acid, methyl ester | C17H₃₀O₂ | 20.74 | 50.73 |
4 | 9-Octadecenoic acid (Z)-, methyl ester | C19H36O2 | 23.21 | 27.17 |
5 | Squalene | C30H50 | 32.56 | 9.13 |
6 | Glycine, N-[(3à,5á)-24-oxo-3-[(trimethylsilyl)oxy]cholan-24-yl]-, methyl ester | C30H53NO4Si | 33.68 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrahim, T.; Alotaibi, M.H.M.; Altamimi, N.M.M.; Albariqi, A.M.A.; Alqarni, L.A.O.; Alassaf, S.N.A.; Aloudah, H.S.; Alahmed, M.; Almnaizel, A.T.; Aldraihem, M.R.; et al. The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats. Pharmaceuticals 2022, 15, 1103. https://doi.org/10.3390/ph15091103
Albrahim T, Alotaibi MHM, Altamimi NMM, Albariqi AMA, Alqarni LAO, Alassaf SNA, Aloudah HS, Alahmed M, Almnaizel AT, Aldraihem MR, et al. The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats. Pharmaceuticals. 2022; 15(9):1103. https://doi.org/10.3390/ph15091103
Chicago/Turabian StyleAlbrahim, Tarfa, Maram H. M. Alotaibi, Norah M. M. Altamimi, Atheer M. A. Albariqi, Lamees A. O. Alqarni, Sara N. A. Alassaf, Hisham S. Aloudah, Mohammed Alahmed, Ahmad T. Almnaizel, Maha R. Aldraihem, and et al. 2022. "The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats" Pharmaceuticals 15, no. 9: 1103. https://doi.org/10.3390/ph15091103
APA StyleAlbrahim, T., Alotaibi, M. H. M., Altamimi, N. M. M., Albariqi, A. M. A., Alqarni, L. A. O., Alassaf, S. N. A., Aloudah, H. S., Alahmed, M., Almnaizel, A. T., Aldraihem, M. R., & Alonazi, M. (2022). The Impact of Dietary Consumption of Palm Oil and Olive Oil on Lipid Profile and Hepatocyte Injury in Hypercholesterolemic Rats. Pharmaceuticals, 15(9), 1103. https://doi.org/10.3390/ph15091103