An Insight into Preparatory Methods and Characterization of Orodispersible Film—A Review
Abstract
:1. Introduction
2. Merits and Demerits of ODFs
3. Classification of Orodispersible Films
3.1. Type 1 ODFs
3.2. Type 2 ODFs
3.3. Type 3 ODFs
4. Formulation of Orodispersible Films
4.1. Drugs
4.2. Excipients
5. Techniques for Manufacturing ODFs
5.1. Solvent Casting Method
5.2. Hot-Melt Extrusion Method
5.3. Semi-Solid Casting
5.4. Rolling Method
5.5. 3D Printing
6. Characterization and Evaluation
6.1. Organoleptic Evaluation
6.2. Surface Morphology
6.3. Disintegration Time
6.3.1. Slide Frame Method
6.3.2. Petri Dish Method
6.4. In Vitro Dissolution Test
6.5. Swelling Properties
6.6. Surface pH
6.7. Moisture Content
6.8. Mechanical Properties
6.8.1. Thickness
6.8.2. Dryness
6.8.3. Tensile Strength
6.8.4. Percent Elongation
6.8.5. Young’s Modulus
6.8.6. Folding Endurance
6.9. Content Uniformity
7. Packaging of Films
8. Conclusions and Future Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddiqui, M.; Garg, G.; Sharma, P.K. A short review on “A novel approach in oral fast dissolving drug delivery system and their patents”. Adv. Biol. Res. 2011, 5, 291–303. [Google Scholar]
- Chan, R. Oral thin films–realms of possibility. ONdrugDelivery Mag. 2016, 69, 12–17. [Google Scholar]
- Patel, A.R.; Prajapati, D.S.; Raval, J.A. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int. J. Drug Dev. Res. 2010, 2, 232–234. [Google Scholar]
- Zaman, M.; Hassan, R.; Amjad, M.W.; Khan, S.M.; Raja, M.A.G.; Shah, S.S.; Siddique, W.; Aman, W.; Abid, Z.; Butt, M.H. Formulation of instant disintegrating buccal films without using disintegrant: An in-vitro study. Pak. J. Pharm. Sci. 2021, 34, 2357–2364. [Google Scholar]
- Wright, D.; Tomlin, S. CPD-How to help if a patient can’t swallow. Pharm. J. 2011, 286, 271. [Google Scholar] [CrossRef]
- Bandari, S.; Mittapalli, R.K.; Gannu, R. Orodispersible tablets: An overview. Asian J. Pharm. 2014, 2. [Google Scholar] [CrossRef]
- Mahboob, M.B.H.; Riaz, T.; Jamshaid, M.; Bashir, I.; Zulfiqar, S. Oral films: A comprehensive review. Int. Curr. Pharm. J. 2016, 5, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Committees of the European Parliament. European Pharmacopoeia Ninth Edition (PhEur 9.0); European Directorate for the Quality of Medicines: Strasbourg, France, 2016. [Google Scholar]
- Hussain, W.; Kushwaha, P.; Rahman, A.; Akhtar, J. Development and evaluation of fast dissolving film for oro-buccal drug delivery of chlorpromazine. Indian J. Pharm. Educ. Res. 2017, 51, S539–S547. [Google Scholar] [CrossRef] [Green Version]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef] [Green Version]
- Özakar, R.S.; Özakar, E. A Current Overview of Oral Thin Films. Oral İnce Filmlere Güncel Bir Bakış. Turk. J. Pharm. Sci. 2020, 18, 111–121. [Google Scholar] [CrossRef]
- Gupta, M.S.; Kumar, T.P.; Gowda, D.V. Orodispersible Thin Films: A New Patient Centered Innovation. J. Drug Deliv. Sci. Technol. 2020, 59, 101843. [Google Scholar] [CrossRef]
- Desai, P.P.; Date, A.A.; Patravale, V.B. Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov. Today Technol. 2012, 9, e87–e95. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.D.; Sharma, I.; Sharma, V. A comprehensive review on fast dissolving tablet technology. J. Appl. Pharm. Sci. 2011, 1, 50–58. [Google Scholar]
- Mishra, R.; Amin, A. Formulation and characterization of rapidly dissolving films of cetirizine hydrochloride using pullulan as a film forming agent. Indian J. Pharm. Educ. Res. 2011, 45, 71–77. [Google Scholar]
- Hoffmann, E.M.; Breitenbach, A.; Breitkreutz, J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011, 8, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Breitkreutz, J. Improving drug delivery in paediatric medicine. Pharm. Med. 2008, 22, 41–50. [Google Scholar] [CrossRef]
- Dixit, R.P.; Puthli, S.P. Oral strip technology: Overview and future potential. J. Control. Release 2009, 139, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Preis, M.K. Oromucosal Film Preparations for Pharmaceutical Use-Formulation Development and Analytical Characterization; Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf: Düsseldorf, Germany, 2014. [Google Scholar]
- Wasilewska, K.; Winnicka, K. How to assess orodispersible film quality? A review of applied methods and their modifications. Acta Pharm. 2019, 69, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Kathpalia, H.; Gupte, A. An introduction to fast dissolving oral thin film drug delivery systems: A review. Curr. Drug Deliv. 2013, 10, 667–684. [Google Scholar] [CrossRef]
- Saini, P.; Kumar, A.; Sharma, P.; Visht, S. Fast disintegrating oral films: A recent trend of drug delivery. Int. J. Drug Dev. Res. 2012, 4, 80–94. [Google Scholar]
- Radicioni, M.; Castiglioni, C.; Giori, A.; Cupone, I.; Frangione, V.; Rovati, S. Bioequivalence study of a new sildenafil 100 mg orodispersible film compared to the conventional film-coated 100 mg tablet administered to healthy male volunteers. Drug Des. Dev. Ther. 2017, 11, 1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopi, S.; Amalraj, A.; Kalarikkal, N.; Zhang, J.; Thomas, S.; Guo, Q. Preparation and characterization of nanocomposite films based on gum arabic, maltodextrin and polyethylene glycol reinforced with turmeric nanofiber isolated from turmeric spent. Mater. Sci. Eng. C 2019, 97, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Daud, A.; Bonde, M.; Sapkal, N. Development of Zingiber officinale in oral dissolving films: Effect of polymers on in vitro, in vivo parameters and clinical efficacy. Asian J. Pharm. 2014, 5, 183. [Google Scholar] [CrossRef]
- Gupta, M.S.; Kumar, T.P. The potential of ODFs as carriers for drugs/vaccines against COVID-19. Drug Dev. Ind. Pharm. 2020, 47, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.-H.S.; Leone, R.S.; Kumar, L.D.; Kulkarni, N.; Sorg, A.F. Fast Dissolving Orally Consumable Films. Google Patent 20,010,022,964, 20 September 2001. [Google Scholar]
- Sanvordeker, D.R.; Leung, S.-H.S. Mucoadhesive Carrier for Delivery of Therapeutical Agent. Google Patent 5,047,244, 10 September 1991. [Google Scholar]
- Zerbe, H.G.; Guo, J.-H.; Serino, A. Water Soluble Film for Oral Administration with Instant Wettability. Google Patent 8,865,202, 23 March 2014. [Google Scholar]
- Kizawa, H.; Fujiyama, N.; Kobayashi, J.; Ito, A. Mucous Membrane-Adhering Film Preparation and Process for Its Preparation. Google Patent 4,517,173, 14 May 1985. [Google Scholar]
- Mizobuchi, T.; Ohji, A.; Sakoh, S.; Muguruma, Y. Sheet-Shaped Adhesive Preparation Applicable to Oral Cavity. Google Patent 4,876,092, 30 August 1988. [Google Scholar]
- Siddique, W.; Sarfraz, R.; Zaman, M.; Butt, M.; Hayat, Z.; Gul, M.; Gul, M.; Asghar, F. Impact of polymer and plasticizer on mechanical properties of film: A quality by design approach. Lat. Am. J. Pharm. 2021, 40, 3002–3008. [Google Scholar]
- Allen, E.; Davidson, R.; LaRosa, T.; Reid, D. Oral Dissolvable Film That Includes Plant Extract. Google Patent 10,307,397, 4 June 2019. [Google Scholar]
- Preis, M.; Pein, M.; Breitkreutz, J. Development of a taste-masked orodispersible film containing dimenhydrinate. Pharmaceutics 2012, 4, 551–562. [Google Scholar] [CrossRef]
- Horstmann, M.; Laux, W.; Hungerbach, S. Rapidly Disintegrating Sheet-Like Presentations of Multiple Dosage Units. Google Patent 5,629,003, 13 May 1997. [Google Scholar]
- Garsuch, V.; Breitkreutz, J. Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J. Pharm. Pharmacol. 2010, 62, 539–545. [Google Scholar] [CrossRef]
- Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J. 2016, 24, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Boateng, J.S.; Matthews, K.H.; Auffret, A.D.; Humphrey, M.J.; Stevens, H.N.; Eccleston, G.M. In vitro drug release studies of polymeric freeze-dried wafers and solvent-cast films using paracetamol as a model soluble drug. Int. J. Pharm. 2009, 378, 66–72. [Google Scholar] [CrossRef]
- Boateng, J.S.; Stevens, H.N.; Eccleston, G.M.; Auffret, A.D.; Humphrey, M.J.; Matthews, K.H. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces. Drug Dev. Ind. Pharm. 2009, 35, 986–996. [Google Scholar] [CrossRef]
- Pathare, Y.S.; Hastak, V.S.; Bajaj, A.N. Polymers used for fast disintegrating oral films: A review. Polymer 2013, 14, 169–178. [Google Scholar]
- Sharma, R.; Parikh, R.; Gohel, M.; Soniwala, M. Development of taste masked film of valdecoxib for oral use. Indian J. Pharm. Sci. 2007, 69, 320. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Deokule, H.; Mane, M.; Ghadge, D. Exploration of different polymers for use in the formulation of oral fast dissolving strips. J. Curr. Pharm. Res. 2010, 2, 33–35. [Google Scholar]
- Ali, S.; Quadir, A. High molecular weight povidone polymer-based films for fast dissolving drug delivery applications. Drug Deliv. Technol. 2007, 7, 36–43. [Google Scholar] [CrossRef]
- Cao, N.; Yang, X.; Fu, Y. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll. 2009, 23, 729–735. [Google Scholar] [CrossRef]
- Hanif, M.; Zaman, M.; Chaurasiya, V. Polymers used in buccal film: A review. Des. Monomers Polym. 2015, 18, 105–111. [Google Scholar] [CrossRef]
- Giovino, C.; Ayensu, I.; Tetteh, J.; Boateng, J.S. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf. B Biointerfaces 2013, 112, 9–15. [Google Scholar] [CrossRef]
- Murata, Y.; Isobe, T.; Kofuji, K.; Nishida, N.; Kamaguchi, R. Preparation of fast dissolving films for oral dosage from natural polysaccharides. Materials 2010, 3, 4291–4299. [Google Scholar] [CrossRef] [Green Version]
- Nagar, P.; Chauhan, I.; Yasir, M. Insights into polymers: Film formers in mouth dissolving films. Drug Invent. Today 2011, 3, 280–289. [Google Scholar]
- Arora, L.; Chakraborty, T. A review on new generation orodispersible films and its novel approaches. Indo Am. J. Pharm. Res. 2017, 7, 7451–7470. [Google Scholar]
- Shinkar, D.M.; Dhake, A.S.; Setty, C.M. Drug delivery from the oral cavity: A focus on mucoadhesive. PDA J. Pharm. Sci. Technol. 2012, 66, 466–500. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.; Zaman, M. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films. DARU J. Pharm. Sci. 2017, 25, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, M.; Hanif, M.; Shaheryar, Z.A. Development of Tizanidine HCl-Meloxicam loaded mucoadhesive buccal films: In-vitro and in-vivo evaluation. PLoS ONE 2018, 13, e0194410. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Hanif, M.; Qaiser, A.A. Effect of polymer and plasticizer on thin polymeric buccal films of meloxicam designed by using central composite rotatable design. Acta Pol. Pharm. 2016, 73, 1351–1360. [Google Scholar]
- Mishra, R.; Amin, A. Manufacturing techniques of orally dissolving films. Pharm. Technol. 2011, 35, 70–73. [Google Scholar]
- Zaman, M.; Hanif, M.; Sultana, K. Synthesis of thiolated arabinoxylan and its application as sustained release mucoadhesive film former. Biomed. Mater. 2018, 13, 025019. [Google Scholar] [CrossRef]
- Zaman, M.; Hanif, M.; Khan, M.A. Arabinoxylan-based mucoadhesive oral films of tizanidine HCL designed and optimized using central composite rotatable design. Polym.-Plast. Technol. Eng. 2018, 57, 471–483. [Google Scholar] [CrossRef]
- Zaman, M.; Hassan, R.; Razzaq, S.; Mahmood, A.; Amjad, M.W.; Raja, M.A.G.; Qaisar, A.A.; Majeed, A.; Hanif, M.; Tahir, R.A. Fabrication of polyvinyl alcohol based fast dissolving oral strips of sumatriptan succinate and metoclopramide HCL. Sci. Prog. 2020, 103, 0036850420964302. [Google Scholar] [CrossRef]
- Kathpalia, H.; Patil, A. Formulation and evaluation of orally disintegrating films of levocetirizine dihydrochloride. Indian J. Pharm. Sci. 2017, 79, 204–211. [Google Scholar] [CrossRef]
- Reza, K.H.; Chakraborty, P. Recent industrial development in oral thin film technology: An overview. PharmaTutor 2016, 4, 17–22. [Google Scholar]
- Schruben, D.L.; Gonzalez, P. Dispersity improvement in solvent casting particle/polymer composite. Polym. Eng. Sci. 2000, 40, 139–142. [Google Scholar] [CrossRef]
- Verma, S. A review on conventional and modern techniques to develop orodispersible films. Asian J. Pharm. 2018, 12, S433–S438. [Google Scholar]
- Tsujimoto, T. Solvent Casting Process. Google Patent 7,361,295, 22 April 2008. [Google Scholar]
- Nagaraju, T.; Gowthami, R.; Rajashekar, M.; Sandeep, S.; Mallesham, M.; Sathish, D.; Kumar, Y.S. Comprehensive review on oral disintegrating films. Curr. Drug Deliv. 2013, 10, 96–108. [Google Scholar] [CrossRef]
- Zaman, M.; Hanif, M. In vitro and ex vivo assessment of hydrophilic polymer-and plasticizer-based thin buccal films designed by using central composite rotatable design for the delivery of meloxicam. Adv. Polym. Technol. 2018, 37, 1823–1836. [Google Scholar] [CrossRef]
- Melegari, C. Study of Different Technologies for Film Coating of Drug Layered Pellets Using Ethylcellulose as Functional Polymer; Università di Bologna: Bologna, Italy, 2016. [Google Scholar]
- Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A review of hot-melt extrusion: Process technology to pharmaceutical products. Int. Sch. Res. Not. 2012, 2012, 436763. [Google Scholar] [CrossRef] [Green Version]
- Barnhart, S.D. Thin Film Oral Dosage Forms. In Modified-Release Drug Delivery Technology; CRC Press: Boca Raton, FL, USA, 2008; pp. 235–256. [Google Scholar]
- Palem, C.R.; Battu, S.K.; Maddineni, S.; Gannu, R.; Repka, M.A.; Yamsani, M.R. Oral transmucosal delivery of domperidone from immediate release films produced via hot-melt extrusion technology. Pharm. Dev. Technol. 2013, 18, 186–195. [Google Scholar] [CrossRef]
- McGinity, J.W.; Koleng, J.; Repka, M.; Zhang, F. Hot-melt extrusion technology. Encycl. Pharm. Technol. 2007, 19, 203–226. [Google Scholar]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech 2016, 17, 20–42. [Google Scholar] [CrossRef] [Green Version]
- Simões, M.F.; Pinto, R.M.; Simões, S. Hot-melt extrusion in the pharmaceutical industry: Toward filing a new drug application. Drug Discov. Today 2019, 24, 1749–1768. [Google Scholar] [CrossRef]
- Tumuluri, V.S.; Kemper, M.S.; Lewis, I.R.; Prodduturi, S.; Majumdar, S.; Avery, B.A.; Repka, M.A. Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy. Int. J. Pharm. 2008, 357, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Arya, A.; Chandra, A.; Sharma, V.; Pathak, K. Fast dissolving oral films: An innovative drug delivery system and dosage form. Int. J. ChemTech Res. 2010, 2, 576–583. [Google Scholar]
- Yang, R.K.; Fuisz, R.C.; Myers, G.L.; Fuisz, J.M. Thin Film with Non-Self-Aggregating Uniform Heterogeneity and Drug Delivery Systems Made Therefrom. Google Patent 7,425,292, 16 September 2008. [Google Scholar]
- Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D printing in pharmaceutical and medical applications–recent achievements and challenges. Pharm. Res. 2018, 35, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annaji, M.; Ramesh, S.; Poudel, I.; Govindarajulu, M.; Arnold, R.D.; Dhanasekaran, M.; Babu, R.J. Application of extrusion-based 3D printed dosage forms in the treatment of chronic diseases. J. Pharm. Sci. 2020, 109, 3551–3568. [Google Scholar] [CrossRef] [PubMed]
- Łyszczarz, E.; Brniak, W.; Szafraniec-Szczęsny, J.; Majka, T.M.; Majda, D.; Zych, M.; Pielichowski, K.; Jachowicz, R. The impact of the preparation method on the properties of orodispersible films with aripiprazole: Electrospinning vs. casting and 3D printing methods. Pharmaceutics 2021, 13, 1122. [Google Scholar] [CrossRef]
- Chaudhary, H.; Gauri, S.; Rathee, P.; Kumar, V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box–Behnken statistical design. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Bhyan, B.; Jangra, S.; Kaur, M.; Singh, H. Orally fast dissolving films: Innovations in formulation and technology. Int. J. Pharm. Sci. Rev. Res. 2011, 9, 9–15. [Google Scholar]
- Bai, G.; Armenante, P.M.; Plank, R.V.; Gentzler, M.; Ford, K.; Harmon, P. Hydrodynamic investigation of USP dissolution test apparatus II. J. Pharm. Sci. 2007, 96, 2327–2349. [Google Scholar] [CrossRef]
- Raju, S.; Reddy, P.S.; Kumar, V.A.; Deepthi, A.; Reddy, K.S.; Reddy, P.M. Flash release oral films of metoclopramide hydrochloride for pediatric use: Formulation and in-vitro evaluation. J. Chem. Pharm. Res. 2011, 3, 636–646. [Google Scholar]
- Patel, R.S.; Poddar, S. Development and characterization of mucoadhesive buccal patches of salbutamol sulphate. Curr. Drug Deliv. 2009, 6, 140–144. [Google Scholar] [CrossRef]
- Yellanki, S.; Jagtap, S.; Masareddy, R. Dissofilm: A novel approach for delivery of phenobarbital; design and characterization. J. Young Pharm. 2011, 3, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Gorle, A.P.; Gattani, S.G. Design and evaluation of polymeric ocular drug delivery system. Chem. Pharm. Bull. 2009, 57, 914–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, P.C.; Shrivastava, S.; Vaidehi, S.; Ashwini, P. Oral fast dissolving drug delivery system: A modern approach for patient compliance. Int. J. Drug Regul. Aff. 2014, 2, 49–60. [Google Scholar] [CrossRef]
- Siqueira, W.L., Jr.; Nicolau, J. Stimulated whole saliva components in children with Down syndrome. Spec. Care Dent. 2002, 22, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Pein, M.; Eckert, C.; Preis, M.; Breitkreutz, J. Taste Sensing System αAstree as Analytical Tool—Performance Qualification Using Caffeine Citrate as Model Substance. In Proceedings of the 8th Pharmaceutics & Biopharmaceutics World Meeting, Istanbul, Turkey, 19–22 March 2012. [Google Scholar]
- Zaman, M.; Hanif, M.; Amjad, M.W.; Mahmood, A.; Shah, S.; Raja, M.A.G.; Rasool, S.; Sarfraz, R.M. Development of thiomer based buccal films for the enhancement of bioavailability: An in-vivo analysis. Pak. J. Pharm. Sci. 2019, 32 (Suppl. S2), 759–764. [Google Scholar]
- Zaman, M. Formulation and Evaluation of Tizanidine-Meloxicam Mucoadhesive Buccal Films by Central Composite Rotatable Design and Their Pharmacokinetic Studies; Bahauddin Zakariya University Multan: Multan, Pakistan, 2018. [Google Scholar]
- Zaman, M.; Murtaza, H. Development and validation of RP-HPLC method for simultaneous estimation of tizanidine HCl and meloxicam in bilayer mucoadhesive buccal films. Acta Pol. Pharm. Drug Res. 2018, 75, 851–859. [Google Scholar] [CrossRef]
- El-Setouhy, D.A.; Abd El-Malak, N.S. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech 2010, 11, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.; Zaman, M.; Raja, M.A.G.; Mahmood, A.; Amjad, M.W. Rosuvastatin, Perindopril and Ezetimibe loaded instant release buccal films: Development and in vitro characterization. J. Appl. Biomed. 2020, 18, 115–125. [Google Scholar] [CrossRef]
- Peh, K.K.; Wong, C.F. Polymeric films as vehicle for buccal delivery: Swelling, mechanical, and bioadhesive properties. J. Pharm. Pharm. Sci. 1999, 2, 53–61. [Google Scholar]
- Aburahma, M.H.; Mahmoud, A.A. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech 2011, 12, 1335–1347. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci. World J. 2014, 2014, 861904. [Google Scholar] [CrossRef] [Green Version]
- Eroğlu, H.; Sargon, M.F.; Öner, L. Chitosan formulations for steroid delivery: Effect of formulation variables on in vitro characteristics. Drug Dev. Ind. Pharm. 2007, 33, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Kunte, S.; Tandale, P. Fast dissolving strips: A novel approach for the delivery of verapamil. J. Pharm. Bioallied Sci. 2010, 2, 325. [Google Scholar] [CrossRef]
- Ahmad, A.; Butt, M.H.; Misbah, S.; Saleem, R.T.; Jamshaid, M.; Alvi, M.N. Development and evaluation of orodispersible films by solvent casting method using eletriptan hydrobromide as a model drug. Lat. Am. J. Pharm. 2020, 39, 1951–1956. [Google Scholar]
- Preis, M.; Knop, K.; Breitkreutz, J. Mechanical strength test for orodispersible and buccal films. Int. J. Pharm. 2014, 461, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.O.; McConville, J.T. Manufacture and characterization of mucoadhesive buccal films. Eur. J. Pharm. Biopharm. 2011, 77, 187–199. [Google Scholar] [CrossRef]
- Bhupinder, B.; Sarita, J. Formulation and evaluation of fast dissolving sublingual films of Rizatriptan Benzoate. Int. J. Drug Dev. Res. 2012, 4, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Khalil, Y.I. Preparation and characterization of montelukast sodium (SMLT) as a dual sustained release buccal strips. Iraqi J. Pharm. Sci. 2015, 24, 61–71. [Google Scholar]
- Bonsu, M.A.; Ofori-Kwakye, K.; Kipo, S.L.; Boakye-Gyasi, M.E.; Fosu, M.-A. Development of oral dissolvable films of diclofenac sodium for osteoarthritis using Albizia and Khaya gums as hydrophilic film formers. J. Drug Deliv. 2016, 2016, 6459280. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, H.; Svirskis, D.; Bunt, C.R.; Swift, S.; Rupenthal, I.D. Azithromycin and Dexamethasone Loaded β-Glucan Films for the Treatment of Blepharitis. Drug Deliv. Lett. 2016, 6, 22–29. [Google Scholar] [CrossRef]
- Koland, M.; Sandeep, V.; Charyulu, N. Fast dissolving sublingual films of ondansetron hydrochloride: Effect of additives on in vitro drug release and mucosal permeation. J. Young Pharm. 2010, 2, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Wuzhu, Y.; Shifeng, W.; Jun, L.; Zhufeng, Y. Determination of reduced Young’s modulus of thin films using indentation test. Acta Metall. Sin. 2009, 22, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Dinge, A.; Nagarsenker, M. Formulation and evaluation of fast dissolving films for delivery of triclosan to the oral cavity. AAPS PharmSciTech 2008, 9, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, P.; Malli, R.; Koland, M.; Vijaynarayana, K.; D’Souza, U.; Harish, N.; Shastry, C.; Charyulu, R. Formulation and evaluation of fast dissolving films of levocitirizine di hydrochloride. Int. J. Pharm. Investig. 2011, 1, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Gavaskar, B.; Kumar, S.V.; Sharan, G.; Rao, Y.M. Overview on fast dissolving films. Int. J. Pharm. Pharm. Sci. 2010, 2, 29–33. [Google Scholar]
- Amin, P.M.; Gangurde, A.; Alai, P. Oral film technology: Challenges and future scope for pharmaceutical industry. Int. J. Pharm. Pharm. Res. 2015, 3, 184–203. [Google Scholar]
- Sharma, D.; Kaur, D.; Verma, S.; Singh, D.; Singh, M.; Singh, G.; Garg, R. Fast dissolving oral films technology: A recent trend for an innovative oral drug delivery system. Int. J. Drug Deliv. 2015, 7, 60–75. [Google Scholar]
Brand Name | API | ODF Use | Category | Ref. |
---|---|---|---|---|
Chloraseptic Sore Throat Relief Strips | Benzocaine | For sore throat relief | OTC | [15] |
Orajel Kids Sore Throat Relief Strips | Benzocaine | For children’s sore throat relief | OTC | [16] |
Snoreeze Oral Strips | Peppermint oil, vitamin E | For snoring relief | OTC | [16] |
Benadryl Allergy quick dissolve strip | Diphenhydramine HCL | For allergy | OTC | [16] |
Gas-X Thin Strips | Simethicone | For reducing bloating | OTC | [10] |
Pedia-Lax Quick Dissolve Strip | Sennosides | For treating constipation | OTC | [17] |
Supress Cough Strips | Menthol | For cough | OTC | [18] |
Risperidon hexal | Risperidone | For treating schizophrenia | Rx | [1] |
Suboxone Sublingual Film | Buprenorphine, naloxone | For treating opioid use disorder | Rx | [16] |
Sudafed PE | Phenylephrine HCL | For relief of stuffy nose | OTC | [19] |
Theraflu Thin Strips multi symptom | Diphenhydramine HCL | For the common cold | OTC | [18] |
Theraflu Thin Strips Long Acting Cough | Dextromethorphan HBR | For long-acting cough | OTC | [18] |
Triaminic Thin Strips allergy | Diphenhydramine HCL | For allergy | OTC | [18] |
Triaminic Thin Strips cold with stuffy nose | Phenylephrine HCL | For cold with a stuffy nose | OTC | [18] |
Triaminic Thin Strips Day Time Cold & Cough | Dextromethorphan HBR, phenylephrine HCL | For day-time cold and cough | OTC | [16] |
Triaminic Thin Strips Night Time Cold & Cough | Diphenhydramine, phenylephrine HCL | For night-time cold and cough | OTC | [18] |
Zuplenz | Ondansetron | For nausea and vomiting | Rx | [16] |
NiQuitin | Nicotine | For nicotine withdrawal symptoms | Rx | [19] |
Zolmitriptan oral film | Zolmitriptan | For migraine | Rx | [19] |
Sildenafil Sandoz Orodispersible Film | Sildenafil | For treating erectile dysfunction | Rx | [20] |
IvyFilm | Hedera helix extract (http://ivyfilm.co.za/) | For relief of productive cough | OTC | [20] |
Clobazam OSF | Clobazam | Used to treat seizures | Rx | [20] |
Zuplenz | Ondansetron | For nausea and vomiting | Rx | [19] |
Patent Number | Company | Layers | Ref. |
---|---|---|---|
20,010,022,964 | Johnson and Johnson Consumer Inc. | Monolayer | [27] |
5,047,244 | Actavis Laboratories | Bilayer | [28] |
8,865,202 | LTS Lohmann Therapie-Systeme GmbH and Co. KG | Monolayer | [29] |
4,517,173 | Nippon Soda Co. Ltd. | Bilayer | [30] |
4,876,092 | Teikoku Seiyaku Co. Ltd. | Bilayer | [31] |
Drug | Drug Class | BCS Class | Dose (mg) | Category |
---|---|---|---|---|
Chlorpheniramine | Antihistamine | 1 | 4–12 | OTC |
Loratadine | Antihistamine | 2 | 5–10 | OTC |
Phenylephrine | Antihistamine | 5–10 | OTC | |
Diphenhydramine | Antihistamine | 1 | 12.5–60 | Rx |
Dextromethorphan | Antitussives | 2 | 10–30 | OTC |
Sildenafil | PDE inhibitors | 1 | 25–100 | Rx |
Ketoprofen | NSAID | 2 | 12.5–25 | OTC |
Sumatriptan | SSRA | 3 | 35–70 | Rx |
Zolmitriptan | SSRA | 3 | 2.5 | Rx |
Loperamide | Antidiarrheal | 2 | 2 | OTC |
Famotidine | H2 blockers | 3 | 5–10 | Rx |
Nicotine | NCA | 1 | 1–15 | Rx |
Pseudoephedrine | Nasal decongestants | 1 | 15–60 | OTC |
Atorvastatin | HMG-CoA RI | 2 | 5–80 | Rx |
Valdecoxib | Cox-2 inhibitor | 2 | 5–20 | Rx |
Amlodipine | CCB | 1 | 2.5–10 | Rx |
Rofecoxib | NSAID | 2 | 5–25 | Rx |
Setraline | SSRI | 2 | 10–100 | Rx |
Ziprasidone | Antipsychotics | 2 | 20–80 | Rx |
Eletriptan | SSRI | 1 | 10–40 | Rx |
Nitroglycerin | Vasodilators | 0.3–0.6 | Rx |
Excipient | Conc. | Role of Excipient | Example of Excipient |
---|---|---|---|
Film-forming polymers | 40–50% | They provide shape, elasticity, fast disintegration, and mechanical strength in films | Sodium carboxy methyl cellulose, hydroxyl ethyl cellulose, hydroxyl propyl methyl cellulose, pectin, pullulan, gelatin, sodium alginate, starch, maltodextrin, methacrylic acid, xanthan gum, guar gum, locust bean gum, carrageenan, chitosan, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene oxide, polyvinyl acetate, polyvinyl pyrrolidone |
Plasticizers | 0–20% | They provide elongation, tensile strength, and plasticity; improve absorption and solubility; prevent crushing; and reduce brittleness and glass transition temperature | Mannitol, glycerol, sorbitol, citric acid macrogol, propylene glycol, polyethylene glycols, phthalate derivatives (dibutyl, diethyl, dimethyl), citrate derivatives (triacetin, acetyl citrate, triethyl, tributyl) |
Sweetening agents | 0–10% | They are used to improve the taste of films for patient compliance | Glucose, fructose, sucrose, sucralose, maltose, sorbitol, mannitol, stevioside sodium, ribose, cyclamate salts, aspartame, thaumatin, xylose, ribose, flavored essences, cyclamate, oleoresins |
Saliva stimulants | 0–10% | They increase saliva production | Ascorbic acid, citric acid, tartaric acid, malic acid, lactic acid |
Taste maskers | 0–10% | They are used to mask nauseating and bitter tastes for patient compliance | Hydroxypropyl-β-cyclodextrin, maltodextrin, sulfobutylether-β-cyclodextrin |
Surfactants | 0–10% | They help to disintegrate films in seconds and allow dispersion and solubilization | Poloxamer, sodium lauryl sulfate, polysorbate, laureth-a, sucrose esters, dodecyl maltoside, cetyl trimethylammonium bromide |
Refs. [1,3,16,34,36,37,46,47,48,49,50,51,52,53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salawi, A. An Insight into Preparatory Methods and Characterization of Orodispersible Film—A Review. Pharmaceuticals 2022, 15, 844. https://doi.org/10.3390/ph15070844
Salawi A. An Insight into Preparatory Methods and Characterization of Orodispersible Film—A Review. Pharmaceuticals. 2022; 15(7):844. https://doi.org/10.3390/ph15070844
Chicago/Turabian StyleSalawi, Ahmad. 2022. "An Insight into Preparatory Methods and Characterization of Orodispersible Film—A Review" Pharmaceuticals 15, no. 7: 844. https://doi.org/10.3390/ph15070844
APA StyleSalawi, A. (2022). An Insight into Preparatory Methods and Characterization of Orodispersible Film—A Review. Pharmaceuticals, 15(7), 844. https://doi.org/10.3390/ph15070844