Antioxidant Activity of Pharmaceuticals: Predictive QSAR Modeling for Potential Therapeutic Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Verification
2.2. The Antioxidative Activity of Selected Pharmaceuticals
2.3. Development of QSAR Model for the Prediction of Antioxidative Activity of Drugs
2.4. Structural Characteristics Determining the Antioxidative Value of Selected Compounds
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. HPLC-DPPH Method
3.3. Statistical Procedure
3.3.1. Data Set and Calculation of Descriptors
3.3.2. Statistical Correlation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karunakar, N.; Prabhakar, M.C.; Krishna, D.R. Determination of antioxidant activity of some drugs using high-pressure liquid chromatography. Arzneimittel-Forschung/Drug Res. 2003, 53, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Kładna, A.; Michalska, T.; Berczyński, P.; Kruk, I.; Aboul-Enein, H.Y. Evaluation of the antioxidant activity of tetracycline antibiotics in vitro. Luminescence 2012, 27, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Bae, H.; Jo, J.; Yoon, S. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform. 2019, 20, 521. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Garit, J.A.; Abad, C.; Rodríguez-Borges, J.E.; Marrero-Ponce, Y.; Torrens, F. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis. Curr. Top. Med. Chem. 2012, 12, 852–865. [Google Scholar] [CrossRef]
- Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-based virtual screening: Advances and applications in drug discovery. Front. Pharmacol. 2018, 9, 1275. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.B.; Braga, F.S.; Lobato, C.C.; Santos, C.F.; Costa, J.S.; Bittencourt, J.A.H.M.; Brasil, D.S.B.; Silva, J.O.; Hage-Melim, L.I.S.; Macêdo, W.J.C.; et al. A QSAR, pharmacokinetic and toxicological study of new artemisinin compounds with anticancer activity. Molecules 2014, 19, 10670–10697. [Google Scholar] [CrossRef] [Green Version]
- Duchowicz, P.R.; Szewczuk, N.A.; Pomilio, A.B. QSAR studies of the antioxidant activity of anthocyanins. J. Food Sci. Technol. 2019, 56, 5518–5530. [Google Scholar] [CrossRef]
- Razo-Hernández, R.S.; Pineda-Urbina, K.; Velazco-Medel, M.A.; Villanueva-García, M.; Sumaya-Martínez, M.T.; Martínez-Martínez, F.J.; Gómez-Sandoval, Z. QSAR study of the DPPH• radical scavenging activity of coumarin derivatives and xanthine oxidase inhibition by molecular docking. Cent. Eur. J. Chem. 2014, 12, 1067–1080. [Google Scholar] [CrossRef]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Queiroz, M.J.R.P. QSAR model for predicting radical scavenging activity of di (hetero) arylamines derivatives of benzo [b] thiophenes. Eur. J. Med. Chem. 2009, 44, 1952–1958. [Google Scholar] [CrossRef]
- Tran, T.T.N.; Tran, D.P.; Nguyen, V.C.; Tran, T.D.T.; Bui, T.T.T.; Bowie, J.H. Antioxidant activities of major tryptophyllin L peptides: A joint investigation of Gaussian-based 3D-QSAR and radical scavenging experiments. J. Pept. Sci. 2021, 27, e3295. [Google Scholar] [CrossRef]
- Martínez-Martínez, F.J.; Razo-Hernández, R.S.; Peraza-Campos, A.L.; Villanueva-García, M.; Sumaya-Martínez, M.T.; Cano, D.J.; Gómez-Sandoval, Z. Synthesis and in vitro antioxidant activity evaluation of 3-carboxycoumarin derivatives and QSAR study of their DPPH• radical scavenging activity. Molecules 2012, 17, 14882–14898. [Google Scholar] [CrossRef] [PubMed]
- Amidžić Klarić, D.; Mornar, A.; Kovačić, J.; Jeličić, M.-L.; Brusač, E.; Brletić, I.; Klarić, I. Polyphenol content and antioxidant activity of phytoestrogen containing food and dietary supplements: DPPH free radical scavenging activity by HPLC. Acta Pharm. 2022, 72, 375–388. [Google Scholar] [CrossRef]
- Franzoni, F.; Quiñones-Galvan, A.; Regoli, F.; Ferrannini, E.; Galetta, F. A comparative study of the in vitro antioxidant activity of statins. Int. J. Cardiol. 2003, 90, 317–321. [Google Scholar] [CrossRef]
- Umeda, R.; Takanari, H.; Ogata, K.; Matsumoto, S.; Kitano, T.; Ono, K.; Tokumaru, O. Direct free radical scavenging effects of watersoluble HMGCoA reductase inhibitors. J. Clin. Biochem. Nutr. 2019, 64, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalpana, T.; Karunakar, N.; Reddy, M.S.; Prabhakar, M.C.; Krishna, D.R. Assessment of antioxidant activity of some antileprotic drugs. Arzneimittel-Forschung/Drug Res. 2001, 51, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Garg, P.K.; Maulik, S.K.; Saraya, A.; Tandon, R.K.; Acharya, S.K. A Randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterology 2009, 136, 149–159.e2. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Park, S.K.; Zhou, J.L.; Taglialatela, G.; Chung, K.; Coggeshall, R.E.; Chung, J.M. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 2004, 111, 116–124. [Google Scholar] [CrossRef]
- Borges, R.S.; Barros, T.G.; Pereira, G.A.N.; Batista, J., Jr.; Beleza Filho, R.F.G.P.; Veiga, A.A.S.; Hamoy, M.; Mello, V.J.; da Silva, A.B.F.; Barros, C.A.L. A Structure and antioxidant activity study of paracetamol and salicylic acid. Pharmacol. Pharm. 2014, 5, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Rafael, J.A.; Jabor, J.R.; Casagrande, R.; Georgetti, S.R.; Borin, M.D.F.; Fonseca, M.J.V. Validation of HPLC, DPPH• and nitrosation methods for mesalamine determination in pharmaceutical dosage forms. Rev. Bras. Cienc. Farm. J. Pharm. Sci. 2007, 43, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Dinis, C.P.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Selva, P.; Srinivasan, V. Antioxidant activities of ropinirole and pramipexole novel drugs used in treatment of parkinsonism: An in vitro approach. Asian J. Pharm. Clin. Res. 2016, 9, 105–107. [Google Scholar] [CrossRef]
- Sigurnjak Bureš, M.; Ukić, Š.; Cvetnić, M.; Prevarić, V.; Markić, M.; Rogošić, M.; Kušić, H.; Bolanča, T. Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships. Environ. Pollut. 2021, 275, 115885. [Google Scholar] [CrossRef] [PubMed]
- Rastija, V.; Molnar, M.; Siladi, T.; Masand, V.H. QSAR analysis for antioxidant activity of dipicolinic acid derivatives. Comb. Chem. High Throughput Screen. 2018, 21, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Descriptors from molecular geometry. Handb. Chemoinform. 2008, 3, 1004–1033. [Google Scholar]
- Van Trang, N.; Van Trang, N.; Son, N.T. Antioxidation of 2-phenylbenzofuran derivatives: Structural-electronic effects and mechanisms. RSC Adv. 2020, 10, 6315–6332. [Google Scholar]
- Om, A.S.; Kim, J.H. An Approach to QSAR modeling on the radical scavenging activity of flavonoid compounds. Cancer Prev. Res. 2007, 12, 154–162. [Google Scholar]
- Hajimahdi, Z.; Safizadeh, F.; Zarghi, A. QSAR analysis for some 1, 2-benzisothiazol-3-one derivatives as caspase-3 inhibitors by stepwise mlr method. Iran. J. Pharm. Res. 2016, 15, 439–448. [Google Scholar]
- Lötsch, J.; Ultsch, A.; Hähner, A.; Willgeroth, V.; Bensafi, M.; Zaliani, A.; Hummel, T. Data-science based analysis of perceptual spaces of odors in olfactory loss. Sci. Rep. 2021, 11, 10595. [Google Scholar] [CrossRef]
Name | CAS | Molecular Formula | Pharmacologic Class | ATC * | TEAC (mM) |
---|---|---|---|---|---|
Acetazolamide | 59-66-5 | C4H6N4O3S2 | Mitotic | S | 0.009 |
Amoxicillin | 26787-78-0 | C16H19N3O5S | Antibiotic | J | 0.085 |
Antipyrine (Phenazone) | 60-80-0 | C11H12N2O | Analgetic | N | 0.013 |
Atenolol | 29122-68-7 | C14H22N2O3 | Beta blocker | C | 0.037 |
Atorvastatin | 134523-00-5 | C33H35FN2O5 | Hypolipemic | C | 0.059 |
Atropine sulphate | 5908-99-6 | C34H50N2O11S | Spasmolytic | A, S | 0.010 |
Azathioprine | 446-86-6 | C9H7N7O2S | Immunosuppressive | L | 0.001 |
Azithromycin | 83905-01-5 | C38H72N2O12 | Antibiotic | J | 0.037 |
Balsalazide | 80573-04-2 | C17H15N3O6 | Aminosalicylate | A | 0.008 |
Barbital | 57-44-3 | C8H12N2O3 | Sedative | N | 0.001 |
Benzocaine (4-aminobenzoate) | 94-09-7 | C9H11NO2 | Anaesthetic | N | 0.004 |
Bisoprolol | 66722-44-9 | C18H31NO4 | Beta blocker | C | 0.008 |
Caffeine | 58-08-2 | C8H10N4O2 | Analeptic | N | 0.013 |
Carvedilol | 72956-09-3 | C24H26N2O4 | Beta blocker | C | 0.028 |
Cefalexin | 15686-71-2 | C16H17N3O4S | Antibiotic | J | 0.170 |
Cefradine | 38821-53-3 | C16H19N3O4S | Antibiotic | J | 0.152 |
Chloramphenicol | 56-75-7 | C11H12Cl2N2O5 | Antibiotic | J | 0.041 |
Cimetidine | 51481-61-9 | C10H16N6S | H2-receptor antagonist | A | 0.018 |
Ciprofloxacin | 85721-33-1 | C17H18FN3O3 | Antibiotic | J | 0.155 |
Clarithromycin | 81103-11-9 | C38H69NO13 | Antibiotic | J | 0.044 |
Codeine phosphate | 41444-62-6 | C18H24NO7P | Analgetic | N | 0.017 |
Diazepam | 439-14-5 | C16H13ClN2O | Sedative | N | 0.00001 |
Digoxin | 20830-75-5 | C41H64O14 | Cardiotonic | C | 0.00001 |
Docetaxel | 148408-66-6 | C43H59NO17 | Cytostatic | L | 0.001 |
Doxycycline | 564-25-0 | C22H24N2O8 | Antibiotic | J | 0.302 |
Dopamine | 62-31-7 | C8H12ClNO2 | Dopamine | C | 0.274 |
Ephedrine | 299-42-3 | C10H15NO | Adrenergic | C | 0.002 |
Erythromycin | 114-07-8 | C37H67NO13 | Antibiotic | J | 0.080 |
Febuxostat | 144060-53-7 | C16H16N2O3S | Non-purine xanthine oxidase inhibitor | M | 0.00001 |
Fluvastatin | 93957-55-2 | C24H25FNNaO4 | Hypolipemic | C | 0.138 |
Folic acid | 59-30-3 | C19H19N7O6 | Vitamin | A | 0.230 |
Furosemide | 54-31-9 | C12H11ClN2O5S | Diuretic | C | 0.055 |
Gemcitabine | 122111-03-9 | C9H12ClF2N3O4 | Cytostatic | L | 0.060 |
Hydrochlorothiazide | 58-93-5 | C7H8ClN3O4S2 | Diuretic | C | 0.018 |
Ibuprofen | 15687-27-1 | C13H18O2 | NSAID ** | M | 0.005 |
Ketoprofen | 22071-15-4 | C16H14O3 | NSAID | M | 0.006 |
L-Ascorbic acid sodium salt | 134-03-2 | C6H8O6 | Vitamin | A | 0.267 |
6-Mercaptopurine | 50-44-2 | C5H4N4S | Immunosuppressive | L | 0.292 |
Mesalazine | 89-57-6 | C7H7NO3 | Aminosalicylate | A | 0.296 |
Metronidazole | 443-48-1 | C6H9N3O3 | Antibiotic | J | 0.015 |
Nebivolol | 99200-09-6 | C22H25F2NO4 | Beta blocker | C | 0.017 |
Nifedipine | 21829-25-4 | C17H18N2O6 | Calcium channel blocker | C | 0.029 |
Nicotinamide | 98-92-0 | C6H6N2O | Vitamin | A | 0.048 |
O-Acetylsalicylic acid | 50-78-2 | C9H8O4 | NSAID | B, N | 0.012 |
Oxazepam | 604-75-1 | C15H11N2O2Cl | Sedative | M | 0.007 |
Oxytetracycline | 79-57-2 | C22H24N2O9 | Antibiotic | J | 0.299 |
Olsalazine | 6054-98-4 | C14H8N2Na2O6 | Aminosalicylate | A | 0.002 |
Pantoprazole | 102625-70-7 | C16H14F2N3NaO4S | Proton-pump inhibitor | A | 0.030 |
Calcium pantothenate | 443753 | C18H32CaN2O10 | Vitamin | A | 0.002 |
Papaverine | 61-25-6 | C20H22ClNO4 | Spasmolytic | A | 0.012 |
Paracetamol | 103-90-2 | C8H9NO2 | Analgetic | N | 0.236 |
Phenobarbitone | 50-06-6 | C12H12N2O3 | Sedative | N | 0.038 |
Physostigmine salicylate | 57-64-7 | C22H27N3O5 | Parasympathomimetic | S | 0.063 |
Piperazine | 142-63-2 | C4H22N2O6 | Anthelmintic | P | 0.132 |
Piracetam | 7491-74-9 | C6H10N2O2 | Antidepressant | N | 0.025 |
Pirfenidone | 53179-13-8 | C12H11NO | Anti-inflammatory, antifibrotic | L | 0.00001 |
Pravastatin sodium | 81131-70-6 | C23H35NaO7 | Hypolipemic | C | 0.097 |
Procaine | 51-05-8 | C13H21ClN2O2 | Anaesthetic | N | 0.024 |
Propyphenazone | 479-92-5 | C14H18N2O | Analgetic | N | 0.003 |
Propranolol | 525-66-6 | C16H21NO2 | Beta blocker | C | 0.00001 |
Quetiapine fumarate | 111974-72-2 | C46H54N6O8S | Antipsychotic | N | 0.030 |
Quinidine | 56-54-2 | C20H24N2O2 | Antiarrhythmic agent | C | 0.029 |
Quinin sulphate | 207671-44-1 | C40H50N4O8S | Antimalaria | P | 0.017 |
Rifampicin | 13292-46-1 | C43H58N4O12 | Antibiotic | J | 0.292 |
Risperidone | 106266-06-2 | C23H27FN4O2 | Antipsychotic | N | 0.010 |
Ropinirole | 91374-20-8 | C16H25ClN2O | Anti-Parkinson’s drug | N | 0.285 |
Salicylic acid | 69-72-7 | C7H6O3 | Anti-inflammatory, antibacterial | D | 0.024 |
Sildenafil citrate | 171599-83-0 | C22H30N6O4S | PDE 5 inhibitor | G | 0.003 |
Simvastatin | 79902-63-9 | C25H38O5 | Hypolipemic | C | 0.141 |
Sulfacetamide sodium | 6209-17-2 | C8H11N2NaO4S | Antibiotic | J | 0.015 |
Sulfadiazine | 68-35-9 | C10H10N4O2S | Antibiotic | J | 0.015 |
Sulfamethoxazole | 723-46-6 | C10H11N3O3S | Antibiotic | J | 0.077 |
Sulfasalazine | 599-79-1 | C18H14N4O5S | Aminosalicylate | A | 0.076 |
Sulfathiazole | 72-14-0 | C9H9N3O2S2 | Antibiotic | J | 0.035 |
Sulphamic acid | 5329-14-6 | NH2SO3H | Antibiotic | J | 0.104 |
Sulphanilamide | 63-74-1 | C6H8N2O2S | Antibiotic | J | 0.023 |
6-Thioguanine | 154-42-7 | C5H5N5S | Immunosuppressive | L | 0.288 |
Theobromine | 83-67-0 | C7H8N4O2 | Antiasthmatic | R | 0.011 |
Theophylline | 58-55-9 | C7H8N4O2 | Antiasthmatic | R | 0.004 |
Thiamine | 67-03-8 | C12H18Cl2N4OS | Vitamin | A | 0.115 |
Warfarin | 81-81-2 | C19H16O4 | Anticoagulant | B, N | 0.077 |
Zopiclone | 43200-80-2 | C17H17ClN6O3 | Sedative | N | 0.018 |
Variable No. | Equation | |
---|---|---|
1 | TEAC | = 0.1739(±0.0687) × C-018 + 0.0500(±0.0156) |
2 | TEAC | = 0.1760(±0.0595) × C-018 + 0.1487(±0.0673) × H7s + 0.0287(±0.0166) |
3 | TEAC | = 0.1835(±0.0529) × C-018 + 0.1464(±0.0580) × CATS2D_06_AL − 0.1050(±0.0487) × Mor24e + 0.0458(±0.0157) |
4 | TEAC | = −0.0851(±0.0533) × Mor16e − 0.1511(±0.0964) × RDF145p + 0.1489(±0.0526) × C-018 + 0.1991(±0.0694) × CATS2D_06_AL + 0.0396(±0.0156) |
5 | TEAC | = −0.1657(±0.0819) × RCI − 0.1458(±0.0848) × RDF145p − 0.0847(±0.0469) Mor16e + 0.1484(±0.0463) × C-018 + 0.2113(±0.0613) × CATS2D_06_AL + 0.1292(±0.0463) |
6 | TEAC | = −0.1686(±0.0768) × RCI − 0.1695(±0.0811) × RDF145p − 0.0801(±0.0456) × Mor16e + 0.1388(±0.0788) × H7s + 0.1579(±0.0435) × C-018 + 0.1061(±0.0712) × CATS2D_04_AL + 0.1175(±0.0439) |
7 | TEAC | = −0.1700(±0.0728) × RCI − 0.1717(±0.0764) × RDF145p − 0.0965(±0.0481) × Mor16u + 0.1412(±0.0745) × H7s + 0.2087(±0.0625) × C-018 + 0.1086(±0.0682) × CATS2D_04_AL − 0.1046(±0.0952) × F03[N-F] + 0.1194(±0.0416) |
8 | TEAC | = −0.1880(±0.0673) × RCI − 0.1821(±0.0703) × RDF145p − 0.0861(±0.0442) × Mor16u + 0.0811(±0.0753) × H7s + 0.0606(±0.0386) × nR = Ct + 0.1483(±0.0383) × C-018 + 0.1236(±0.0622) × CATS2D_04_AL + 0.0764(±0.0529) × F06[N-F] + 0.1241(±0.0384) |
Model No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Ntr | 58 | 58 | 58 | 58 | 58 | 58 | 58 | 58 |
Nex | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
Fitting Criteria | ||||||||
R2 | 0.316 | 0.496 | 0.599 | 0.643 | 0.729 | 0.767 | 0.794 | 0.835 |
R2adj | 0.304 | 0.478 | 0.578 | 0.616 | 0.703 | 0.739 | 0.766 | 0.808 |
s | 0.0576 | 0.0499 | 0.0499 | 0.0428 | 0.0377 | 0.0353 | 0.0334 | 0.0302 |
F | 25.885 | 27.109 | 26.986 | 27.846 | 27.974 | 27.977 | 27.629 | 31.059 |
p | <0.0000 | <0.0000 | <0.0000 | <0.0000 | <0.0000 | <0.0000 | <0.0000 | <0.0000 |
Kxx | 0.000 | 0.016 | 0.034 | 0.232 | 0.187 | 0.318 | 0.359 | 0.309 |
ΔK | 0.562 | 0.337 | 0.238 | 0.154 | 0.135 | 0.073 | 0.053 | 0.060 |
RMSEtr | 0.056 | 0.49 | 0.043 | 0.041 | 0.036 | 0.033 | 0.031 | 0.028 |
MAEtr | 0.042 | 0.037 | 0.034 | 0.033 | 0.028 | 0.025 | 0.023 | 0.021 |
CCCtr | 0.480 | 0.664 | 0.750 | 0.886 | 0.843 | 0.868 | 0.783 | 0.910 |
Internal Validation Criteria | ||||||||
Q2LOO | 0.227 | 0.339 | 0.462 | 0.539 | 0.632 | 0.687 | 0.724 | 0.748 |
RMSEcv | 0.060 | 0.056 | 0.050 | 0.047 | 0.041 | 0.038 | 0.036 | 0.034 |
MAEcv | 0.044 | 0.041 | 0.038 | 0.037 | 0.032 | 0.030 | 0.028 | 0.026 |
PRESScv | 0.210 | 0.180 | 0.146 | 0.126 | 0.100 | 0.085 | 0.075 | 0.068 |
CCCcv | 0.419 | 0.564 | 0.663 | 0.854 | 0.786 | 0.821 | 0.845 | 0.862 |
External Validation Criteria | ||||||||
RMSEext | 0.049 | 0.052 | 0.052 | 0.030 | 0.043 | 0.034 | 0.031 | 0.042 |
MAEext | 0.040 | 0.043 | 0.041 | 0.026 | 0.033 | 0.029 | 0.024 | 0.033 |
PRESSext | 0.033 | 0.038 | 0.038 | 0.013 | 0.026 | 0.015 | 0.013 | 0.025 |
R2ext | 0.657 | 0.618 | 0.639 | 0.859 | 0.759 | 0.822 | 0.839 | 0.784 |
Q2F1 | 0.606 | 0.544 | 0.551 | 0.845 | 0.687 | 0.809 | 0.840 | 0.707 |
Q2F2 | 0.601 | 0.539 | 0.546 | 0.843 | 0.684 | 0.807 | 0.839 | 0.704 |
Q2F3 | 0.498 | 0.419 | 0.429 | 0.803 | 0.601 | 0.756 | 0.797 | 0.627 |
CCCext | 0.703 | 0.784 | 0.792 | 0.913 | 0.777 | 0.883 | 0.907 | 0.805 |
4-Variable Model | |||||||
Mor16e | RDF145p | C-018 | CATS2D_06_AL | ||||
Mor16e | 1 | 0.154 | 0.247 | 0.005 | |||
RDF145p | 1 | 0.058 | 0.586 | ||||
C-018 | 1 | 0.011 | |||||
CATS2D_06_AL | 1 | ||||||
7-Variable Model | |||||||
RCI | RDF145p | Mor16u | H7s | C-018 | CATS2_04_AL | F03[N-F] | |
RCI | 1 | 0.110 | 0.007 | 0.157 | 0.010 | 0.115 | 0.008 |
RDF145p | 1 | 0.155 | 0.558 | 0.058 | 0.585 | 0.045 | |
Mor16u | 1 | 0.056 | 0.247 | 0.150 | 0.219 | ||
H7s | 1 | 0.016 | 0.759 * | 0.008 | |||
C-018 | 1 | 0.091 | 0.766 * | ||||
CATS2D_04_AL | 1 | 0.092 | |||||
F03[N-F] | 1 |
Descriptor Name | Model | Descriptor Definition | Descriptor Type |
---|---|---|---|
C-018 | 1-, 2-, 3-, 4-, 5-, 6-, 7- and 8-variable | =CHX | Atom-centred fragments |
H7s | 2-, 6-, 7- and 8-variable | H autocorrelation of lag 7/weighted by I-state | GETAWAY descriptors |
CATS2D_06_AL | 3-, 4- and 5-variable | CATS2D Acceptor-Lipophilic at lag 06 | CATS 2D |
Mor24e | 3-variable | signal 24/weighted by Sanderson electronegativity | 3D-MoRSE descriptors |
Mor16e | 4-, 5- and 6-variable | signal 16/weighted by Sanderson electronegativity | 3D-MoRSE descriptors |
RDF145p | 4-, 5-, 6-, 7- and 8-variable | Radial Distribution Function—145/weighted by polarizability | RDF descriptors |
RCI | 5-, 6-, 7- and 8-variable | ring complexity index | Ring descriptors |
CATS2D_04_AL | 6-, 7- and 8-variable | CATS2D Acceptor-Lipophilic at lag 04 | CATS 2D |
Mor16u | 7- and 8-variable | signal 16/unweighted | 3D-MoRSE descriptors |
F03[N-F] | 7-variable | Frequency of N—F at topological distance 3 | 2D Atom Pairs |
nR = Ct | 8-variable | number of aliphatic tertiary C(sp2) | Functional group counts |
F06[N-S] | 8-variable | Frequency of N—S at topological distance 6 | 2D Atom Pairs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeličić, M.-L.; Kovačić, J.; Cvetnić, M.; Mornar, A.; Amidžić Klarić, D. Antioxidant Activity of Pharmaceuticals: Predictive QSAR Modeling for Potential Therapeutic Strategy. Pharmaceuticals 2022, 15, 791. https://doi.org/10.3390/ph15070791
Jeličić M-L, Kovačić J, Cvetnić M, Mornar A, Amidžić Klarić D. Antioxidant Activity of Pharmaceuticals: Predictive QSAR Modeling for Potential Therapeutic Strategy. Pharmaceuticals. 2022; 15(7):791. https://doi.org/10.3390/ph15070791
Chicago/Turabian StyleJeličić, Mario-Livio, Jelena Kovačić, Matija Cvetnić, Ana Mornar, and Daniela Amidžić Klarić. 2022. "Antioxidant Activity of Pharmaceuticals: Predictive QSAR Modeling for Potential Therapeutic Strategy" Pharmaceuticals 15, no. 7: 791. https://doi.org/10.3390/ph15070791
APA StyleJeličić, M. -L., Kovačić, J., Cvetnić, M., Mornar, A., & Amidžić Klarić, D. (2022). Antioxidant Activity of Pharmaceuticals: Predictive QSAR Modeling for Potential Therapeutic Strategy. Pharmaceuticals, 15(7), 791. https://doi.org/10.3390/ph15070791