Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of STO
2.2. Formulation of STO-Loaded Glibenclamide Microspheres
+70.40 + 18.08 A + 3.94 B + 1.00 AB − 10.20 A2 + 0.3000 B2
2.3. Characterization and Evaluation of G-STO-M
2.4. Drug Release Studies
2.5. Cell Viability Analysis by Resazurin Assay
2.6. In Vivo Mucoadhesion Studies
2.7. Glucose Tolerance Test
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of TO
3.3. Synthesis and Characterization of S Protected Thiolated Okra (STO)
3.4. Characterization of S-Protected Thiolated Okra
3.4.1. Fourier Transform Infrared Spectroscopy (FT-IR)
3.4.2. Rheological Investigations
3.4.3. Quantitative Analysis of Thiol/Disulfide/MNA Groups
3.5. Formulation of Microspheres
Optimization Using Response Surface Methodology and Various Statistical Applications
3.6. Evaluation of Trial Batches
3.6.1. EE
3.6.2. In Vitro Mucoadhesion Test for Microspheres
3.7. Preparation, Characterization, and Evaluation of Optimized Formulation
3.7.1. Microscopy (SEM)
3.7.2. Drug Release Studies
3.8. Biological Studies—Cell Culture and Cell Viability
Cell Cultures and Viability Test by Resazurin Assay
3.9. In Vivo Studies
3.9.1. In Vivo Mucoadhesion Study
3.9.2. Oral Glucose Tolerance Test
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, J.; Shahnaz, G.; Dünnhaupt, S.; Müller, C.; Hintzen, F.; Bernkop-Schnürch, A. Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials 2012, 33, 1528–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernkop-Schnürch, A. Thiomers: A new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 2005, 57, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials 2015, 52, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Naveen, N.R.; Gopinath, C.; Rao, D.S. A spotlight on thiolated natural polymers and their relevance in mucoadhesive drug delivery system. Future J. Pharm. Sci. 2018, 4, 47–52. [Google Scholar] [CrossRef]
- Ijaz, M.; Matuszczak, B.; Rahmat, D.; Mahmood, A.; Bonengel, S.; Hussain, S.; Huck, C.W.; Bernkop-Schnürch, A. Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr. Polym. 2015, 132, 187–195. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Krauland, A.H.; Leitner, V.M.; Palmberger, T. Thiomers: Potential excipients for non-invasive peptide delivery systems. Eur. J. Pharm. Biopharm. 2004, 58, 253–263. [Google Scholar] [CrossRef]
- Perrone, M.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Laquintana, V.; Douglas, J.; Franco, M.; Liberati, E.; Russo, V.; Tongiani, S.; et al. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur. J. Pharm. Biopharm. 2017, 119, 161–169. [Google Scholar] [CrossRef]
- Perrone, M.; Lopedota, A.; Liberati, E.; Russo, V.; Cutrignelli, A.; Laquintana, V.; de Sousa, I.P.; Franco, M.; Tongiani, S.; Denora, N.; et al. Natural dendrimers: Synthesis and in vitro characterization of glycogen-cysteamine conjugates. Eur. J. Pharm. Biopharm. 2017, 115, 168–176. [Google Scholar] [CrossRef]
- Netsomboon, K.; Laffleur, F.; Bernkop-Schnürch, A. P-glycoprotein inhibitors: Synthesis and in vitro evaluation of a preactivated thiomer. Drug Dev. Ind. Pharm. 2016, 42, 668–675. [Google Scholar] [CrossRef]
- Ghori, M.U.; Alba, K.; Smith, A.M.; Conway, B.R.; Kontogiorgos, V. Okra extracts in pharmaceutical and food applications. Food Hydrocoll. 2014, 42, 342–347. [Google Scholar] [CrossRef]
- Kontogiorgos, V.; Margelou, I.; Georgiadis, N.; Ritzoulis, C. Rheological characterization of okra pectins. Food Hydrocoll. 2012, 29, 356–362. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A.M.; Concheiro, A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1148–1171. [Google Scholar] [CrossRef] [PubMed]
- Ogaji, I.; Nnoli, O. Film coating potential of okra gum using paracetamol tablets as a model drug. Asian J. Pharm. 2010, 4, 130–134. [Google Scholar] [CrossRef]
- Sinha, P.; Ubaidulla, U.; Nayak, A.K. Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release. Int. J. Biol. Macromol. 2015, 72, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Singh, D.; Brar, V. Bioadhesive okra polymer based buccal patches as platform for controlled drug delivery. Int. J. Biol. Macromol. 2014, 70, 408–419. [Google Scholar] [CrossRef]
- Naveen, N.R.; Gopinath, C.; Rao, D.S. Isolation and assessment of natural mucoadhesive agent isolated from Abelmoschus esculents. J. Pharm. Res. 2017, 11, 438–443. [Google Scholar]
- Rahman, S.A.U.; Sharma, N. Formulation and Evaluation of Matrix Transdermal Patches of Glibenclamide. J. Drug Deliv. Ther. 2018, 8, 366–371. [Google Scholar] [CrossRef]
- Wei, H.; Löbenberg, R. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. 2006, 29, 45–52. [Google Scholar] [CrossRef]
- Löbenberg, R.; Krämer, J.; Shah, V.P.; Amidon, G.L.; Dressman, J.B. Dissolution testing as a prognostic tool for oral drug absorption: Dissolution behavior of glibenclamide. Pharm. Res. 2000, 17, 439–444. [Google Scholar] [CrossRef]
- Laquintana, V.; Asim, M.H.; Lopedota, A.; Cutrignelli, A.; Lopalco, A.; Franco, M.; Bernkop-Schnürch, A.; Denora, N. Thiolated hydroxypropyl-β-cyclodextrin as mucoadhesive excipient for oral delivery of budesonide in liquid paediatric formulation. Int. J. Pharm. 2019, 572, 118820. [Google Scholar] [CrossRef]
- Sakloetsakun, D.; Iqbal, J.; Millotti, G.; Vetter, A.; Bernkop-Schnürch, A. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev. Ind. Pharm. 2011, 37. [Google Scholar] [CrossRef] [PubMed]
- Kafedjiiski, K.; Krauland, A.H.; Hoffer, M.H.; Bernkop-Schnürch, A. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 2005, 26, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Choi, J.P.; Moon, S.K.; Ngo, T.H. A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Addit. Manuf. 2020, 33, 101096. [Google Scholar] [CrossRef]
- Singh, B.; Kapil, R.; Nandi, M.; Ahuja, N. Developing oral drug delivery systems using formulation by design: Vital precepts, retrospect and prospects. Expert Opin. Drug Deliv. 2011, 8, 1341–1360. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.I.; Olaniran, A.O. Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. Biocatal. Agric. Biotechnol. 2020, 24, 101528. [Google Scholar] [CrossRef]
- Naveen, N.R.; Gopinath, C.; Kurakula, M. Okra-thioglycolic acid conjugate-synthesis, characterization, and evaluation as a mucoadhesive polymer. Processes 2020, 8, 316. [Google Scholar] [CrossRef] [Green Version]
- Asim, M.H.; Moghadam, A.; Ijaz, M.; Mahmood, A.; Götz, R.X.; Matuszczak, B.; Bernkop-Schnürch, A. S-protected thiolated cyclodextrins as mucoadhesive oligomers for drug delivery. J. Colloid Interface Sci. 2018, 531, 261–268. [Google Scholar] [CrossRef]
- Naveen, N.R.; Kurakula, M.; Gowthami, B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Mater. Today Proc. 2020, 33, 2716–2724. [Google Scholar] [CrossRef]
- Racaniello, G.F.; Laquintana, V.; Summonte, S.; Lopedota, A.; Cutrignelli, A.; Lopalco, A.; Franco, M.; Bernkop-Schnürch, A.; Denora, N. Spray-dried mucoadhesive microparticles based on S-protected thiolated hydroxypropyl-β-cyclodextrin for budesonide nasal delivery. Int. J. Pharm. 2021, 603, 120728. [Google Scholar] [CrossRef]
- Maltesen, M.J.; Bjerregaard, S.; Hovgaard, L.; Havelund, S.; van de Weert, M. Quality by design—Spray drying of insulin intended for inhalation. Eur. J. Pharm. Biopharm. 2008, 70, 828–838. [Google Scholar] [CrossRef]
- Kurakula, M.; Naveen, N.R.; Patel, B.; Manne, R.; Patel, D.B. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels 2021, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Rizg, W.Y.; Naveen, N.R.; Kurakula, M.; Bukhary, H.A.; Safhi, A.Y.; Alfayez, E.; Sindi, A.M.; Ali, S.; Murshid, S.S.; Hosny, K.M. QbD Supported Optimization of the Alginate-Chitosan Nanoparticles of Simvastatin in Enhancing the Anti-Proliferative Activity against Tongue Carcinoma. Gels 2022, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.; Bhalekar, M.; Shimpi, S. Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative. Int. J. Biol. Macromol. 2014, 69, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, M.; Raghavendra Naveen, N. In Situ Gel Loaded with Chitosan-Coated Simvastatin Nanoparticles: Promising Delivery for Effective Anti-Proliferative Activity against Tongue Carcinoma. Mar. Drugs 2020, 18, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, A.; Bonengel, S.; Laffleur, F.; Ijaz, M.; Leonaviciute, G.; Bernkop-Schnürch, A. An in-vitro exploration of permeation enhancement by novel polysulfonate thiomers. Int. J. Pharm. 2015, 496, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Naveen, N.R.; Gopinath, C.; Rao, D.S. Design expert supported mathematical optimization of repaglinide gastroretentive floating tablets: In vitro and in vivo evaluation. Future J. Pharm. Sci. 2017, 3, 140–1473. [Google Scholar] [CrossRef]
S. No | Property | Okra Gum | STO |
---|---|---|---|
1. | Appearance | Light brown color semi-granular powder | Dark brown color granular powder |
2. | Solubility | In Water—Slightly soluble (forms light gel) Organic solvents—Insoluble | In Water—Slightly soluble (forms thick gel) Organic solvents—Insoluble |
3. | pH (2% w/v solution) | 5.8 | 6.4 |
4. | Moisture content | 16.63% | 15.89% |
5. | Test for foreign matter | <0.1% | <0.1% |
6. | Test for arsenic | <0.1 ppm | <0.1 ppm |
Sample | -SH | -S-S- | MNA |
---|---|---|---|
(µmol/g) | |||
TO | 128.31 ± 6.8 | 102.84 ± 12 | – |
STO | – | – | 119.63 ± 14.5 |
Factor 1 | Factor 2 | Response 1 | Response 2 | |
---|---|---|---|---|
Run | A: STO conc | B: Stirring Speed | EE | In vitro mucoadhesion |
(%) | rpm | % | % | |
2 | −0.0177 (0) * | 400 | 52 | 21 |
4 | 0.5 | 600 | 52 | 48 |
5 | 0.5 | 200 | 47 | 42 |
3 | 1.75 | 400 | 67 | 69 |
7 | 1.75 | 400 | 67 | 71 |
9 | 1.75 | 400 | 69 | 72 |
10 | 1.75 | 117.157 * | 51 | 65 |
11 | 1.75 | 400 | 70 | 70 |
12 | 1.75 | 400 | 67 | 70 |
13 | 1.75 | 682.843 * | 68 | 76 |
1 | 3 | 600 | 81 | 82 |
6 | 3 | 200 | 71 | 72 |
8 | 3.5177 | 400 | 87 | 78 |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | ||
---|---|---|---|---|---|---|
EE | Linear | <0.0001 | 0.0099 | 0.8647 | 0.7782 | |
2FI | 0.5946 | 0.0078 | 0.8546 | 0.7224 | ||
Quadratic | 0.0010 | 0.1595 | 0.9738 | 0.9176 | Suggested | |
Cubic | 0.2201 | 0.1550 | 0.9800 | 0.7613 | Aliased | |
In vitro mucoadhesion | Linear | 0.0006 | 0.0003 | 0.7318 | 0.5625 | |
2FI | 0.8351 | 0.0002 | 0.7035 | 0.5066 | ||
Quadratic | <0.0001 | 0.0779 | 0.9797 | 0.9241 | Suggested | |
Cubic | 0.0124 | 0.2826 | 0.9951 | 0.9614 | Aliased |
Parameter | PS | EE |
---|---|---|
Std. Dev. | 1.92 | 2.44 |
Mean | 65.31 | 64.31 |
C.V. % | 2.94 | 3.80 |
Adeq. Precision | 30.2872 | 35.6278 |
Lack of Fit F-value | 2.98 | 9.36 |
Lack of Fitp-value | 0.1595 | 0.0779 |
Model F-value | 90.29 | 116.97 |
Model p-value | <0.0001 | <0.0001 |
Intercept | A | B | AB | A2 | B2 | |
---|---|---|---|---|---|---|
EE | 68 | 12.8122 | 4.8802 | 1.25 | 0.3125 | −4.6875 |
p-values | <0.0001 | 0.0002 | 0.2347 | 0.6810 | 0.0004 | |
In vitro mucoadhesion | 70.4 | 18.0763 | 3.94454 | 1 | −10.2 | 0.3 |
p-values | <0.0001 | 0.0026 | 0.4396 | <0.0001 | 0.7553 |
Selected Formulation Factors | Levels | Responses/Dependent Variables | Constraints | ||||
---|---|---|---|---|---|---|---|
−1.414 | −1 | 0 | +1 | +1.414 | |||
Concentration of STO (%)-X1 | 0.00 | 0.5 | 1.75 | 3 | 3.5177 | EE (%) | Maximum |
Stirring speed (rpm)-X2 | 117.157 | 200 | 600 | 682.843 | In vitro mucoadhesion (%) | Maximum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizg, W.Y.; Naveen, N.R.; Kurakula, M.; Safhi, A.Y.; Murshid, S.S.; Mushtaq, R.Y.; Abualsunun, W.A.; Alharbi, M.; Bakhaidar, R.B.; Almehmady, A.M.; et al. Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies. Pharmaceuticals 2022, 15, 491. https://doi.org/10.3390/ph15040491
Rizg WY, Naveen NR, Kurakula M, Safhi AY, Murshid SS, Mushtaq RY, Abualsunun WA, Alharbi M, Bakhaidar RB, Almehmady AM, et al. Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies. Pharmaceuticals. 2022; 15(4):491. https://doi.org/10.3390/ph15040491
Chicago/Turabian StyleRizg, Waleed Y., N. Raghavendra Naveen, Mallesh Kurakula, Awaji Y. Safhi, Samar S. Murshid, Rayan Y. Mushtaq, Walaa A. Abualsunun, Majed Alharbi, Rana B. Bakhaidar, Alshaimaa M. Almehmady, and et al. 2022. "Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies" Pharmaceuticals 15, no. 4: 491. https://doi.org/10.3390/ph15040491
APA StyleRizg, W. Y., Naveen, N. R., Kurakula, M., Safhi, A. Y., Murshid, S. S., Mushtaq, R. Y., Abualsunun, W. A., Alharbi, M., Bakhaidar, R. B., Almehmady, A. M., Salawi, A., Al Fatease, A., & Hosny, K. M. (2022). Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies. Pharmaceuticals, 15(4), 491. https://doi.org/10.3390/ph15040491