Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Biological Results
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. General Procedure for the Synthesis of Diphenyl-pyrazolo[4,3-f]quinolines 1
4.3. General Procedure for the Synthesis of Chromeno-pyrazolo[4,3-f]quinolines 2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem. 2019, 171, 129–168. [Google Scholar] [CrossRef]
- Oh, C.-M.; Lee, D.; Kong, H.-J.; Lee, S.; Won, Y.-J.; Jung, K.-W.; Cho, H. Causes of death among cancer patients in the era of cancer survivorship in Korea: Attention to the suicide and cardiovascular mortality. Cancer Med. 2020, 9, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Matias-Barrios, V.M.; Radaeva, M.; Song, Y.; Alperstein, Z.; Lee, A.R.; Schmitt, V.; Lee, J.; Ban, F.; Xie, N.; Qi, J.; et al. Discovery of New Catalytic Topoisomerase II Inhibitors for Anticancer Therapeutics. Front. Oncol. 2020, 10, 633142. [Google Scholar] [CrossRef]
- Magalhaes, L.G.; Ferreira, L.L.G.; Andricopulo, A.D. Recent Advances and Perspectives in Cancer Drug Design. An. Acad. Bras. Ciênc. 2018, 90 (Suppl. S2), 1233–1250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Dou, Z.; Xiong, Z.; Wang, N.; He, S.; Yan, X.; Jin, H. Design, synthesis and biological research of novel N-phenylbenzamide-4-methylamine acridine derivatives as potential topoisomerase I/II and apoptosis-inducing agents. Bioorg. Med. Chem. Lett. 2019, 29, 126714. [Google Scholar] [CrossRef]
- Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering Anti-Cancer Drugs via Computational Methods. Front. Pharmacol. 2020, 11, 733. [Google Scholar] [CrossRef]
- Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer. 2009, 9, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Jeon, K.H.; Park, S.; Jang, H.J.; Hwang, S.Y.; Shrestha, A.; Lee, E.S.; Kwon, Y. AK-I-190, a New Catalytic Inhibitor of Topoisomerase II with Anti-Proliferative and Pro-Apoptotic Activity on Androgen-Negative Prostate Cancer Cells. Int. J. Mol. Sci. 2021, 22, 11246. [Google Scholar] [CrossRef]
- Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J. 2018, 475, 373–398. [Google Scholar] [CrossRef]
- Hanke, A.; Ziraldo, R.; Levene, S.D. DNA-Topology Simplification by Topoisomerases. Molecules 2021, 26, 3375. [Google Scholar] [CrossRef]
- Kunwar, S.; Hwang, S.-Y.; Katila, P.; Park, S.; Jeon, K.-H.; Kim, D.; Kadayat, T.M.; Kwon, Y.; Lee, E.-S. Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison. Eur. J. Med. Chem. 2021, 226, 113860. [Google Scholar] [CrossRef]
- Kunwar, S.; Hwang, S.-Y.; Katila, P.; Man Kadayat, T.; Jung, A.-R.; Kwon, Y.; Lee, E.-S. Topoisomerase IIα inhibitory and antiproliferative activity of dihydroxylated 2,6-diphenyl-4-fluorophenylpyridines: Design, synthesis, and structure-activity relationships. Bioorg. Med. Chem. Lett. 2022, 60, 128606. [Google Scholar] [CrossRef]
- Pommier, Y. Drugging topoisomerases: Lessons and challenges. ACS Chem. Biol. 2013, 8, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Dalvie, E.D.; Gopas, J.; Golan-Goldhirsh, A.; Osheroff, N. 6,6′-Dihydroxythiobinupharidine as a poison of human type II topoisomerases. Bioorg. Med. Chem. Lett. 2019, 29, 1881–1885. [Google Scholar] [CrossRef]
- Wang, W.; Tse-Dinh, Y.C. Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy. Curr. Top. Med. Chem. 2019, 19, 730–740. [Google Scholar] [CrossRef]
- Fuertes, M.; Selas, A.; Trejo, A.; Knudsen, B.R.; Palacios, F.; Alonso, C. Synthesis of hybrid phosphorated indenoquinolines and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorg. Med. Chem. Lett. 2022, 57, 128517. [Google Scholar] [CrossRef]
- Chen, G.; Guo, M. Screening for Natural Inhibitors of Topoisomerases I from Rhamnus davurica by Affinity Ultrafiltration and High-Performance Liquid Chromatography–Mass Spectrometry. Front. Plant Sci. 2017, 8, 1521. [Google Scholar] [CrossRef] [Green Version]
- Martín-Encinas, E.; Selas, A.; Tesauro, C.; Rubiales, G.; Knudsen, B.R.; Palacios, F.; Alonso, C. Synthesis of novel hybrid quinolino[4,3-b][1,5]naphthyridines and quinolino[4,3-b][1,5]naphthyridin-6(5H)-one derivatives and biological evaluation as topoisomerase I inhibitors and antiproliferatives. Eur. J. Med. Chem. 2020, 195, 112292. [Google Scholar] [CrossRef]
- Arepalli, S.K.; Park, B.; Jung, J.-K.; Lee, K.; Lee, H. A facile one-pot regioselective synthesis of functionalized novel benzo[f]chromeno[4,3-b][1,7]naphthyridines and benzo[f][1,7]naphthyridines via an imino Diels-Alder reaction. Tetrahedron Lett. 2017, 58, 449–454. [Google Scholar] [CrossRef]
- Arepalli, S.K.; Park, B.; Lee, K.; Jo, H.; Jun, K.Y.; Kwon, Y.; Kang, J.S.; Jung, J.K.; Lee, H. Design, synthesis and biological evaluation of 1,3-diphenylbenzo[f][1,7]naphthyrdines. Bioorg. Med. Chem. 2017, 25, 5586–5597. [Google Scholar] [CrossRef]
- Arepalli, S.K.; Lee, C.; Sim, S.; Lee, K.; Jo, H.; Jun, K.Y.; Kwon, Y.; Kang, J.S.; Jung, J.K.; Lee, H. Development of 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and their salts as potent cytotoxic agents and topoisomerase I/IIα inhibitors. Bioorg. Med. Chem. 2018, 26, 5181–5193. [Google Scholar] [CrossRef]
- Tu, S.-J.; Wu, S.-S.; Zhang, X.-H.; Han, Z.-G.; Cao, X.-D.; Hao, W.-J. One-Step Efficient Synthesis of Pyrazolo[3,4-f]quinoline Derivatives Under Microwave Irradiation. Synth. Commun. 2010, 40, 1057–1064. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, S.; Wu, S.-S.; Gao, Y.; Tu, S.-J. A diversity-oriented synthesis of pyrazolo[4,3-f]quinoline derivatives with potential bioactivities via microwave-assisted multi-component reactions. Mol. Divers. 2011, 15, 497–505. [Google Scholar] [CrossRef]
- Kasaboina, S.; Ramineni, V.; Banu, S.; Bandi, Y.; Nagarapu, L.; Dumala, N.; Grover, P. Iodine mediated pyrazolo-quinoline derivatives as potent anti-proliferative agents. Bioorg. Med. Chem. Lett. 2018, 28, 664–667. [Google Scholar] [CrossRef]
- Razavi, R.; Kaya, S.; Zahedifar, M.; Ahmadi, S.A. Simulation and surface topology of activity of pyrazoloquinoline derivatives as corrosion inhibitor on the copper surfaces. Sci. Rep. 2021, 11, 12223. [Google Scholar] [CrossRef]
- Patani, G.A.; LaVoie, E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev. 1996, 96, 3147–3176. [Google Scholar] [CrossRef]
- Karmacharya, U.; Guragain, D.; Chaudhary, P.; Jee, J.-G.; Kim, J.-A.; Jeong, B.-S. Novel Pyridine Bioisostere of Cabozantinib as a Potent c-Met Kinase Inhibitor: Synthesis and Anti-Tumor Activity against Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 9685. [Google Scholar] [CrossRef]
- Bera, K.; Sarkar, S.; Biswas, S.; Maiti, S.; Jana, U. Iron-Catalyzed Synthesis of Functionalized 2H-Chromenes via Intramolecular Alkyne−Carbonyl Metathesis. J. Org. Chem. 2011, 76, 3539–3544. [Google Scholar] [CrossRef]
- Kusakabe, K.-i.; Ide, N.; Daigo, Y.; Tachibana, Y.; Itoh, T.; Yamamoto, T.; Hashizume, H.; Hato, Y.; Higashino, K.; Okano, Y.; et al. Indazole-Based Potent and Cell-Active Mps1 Kinase Inhibitors: Rational Design from Pan-Kinase Inhibitor Anthrapyrazolone (SP600125). J. Med. Chem. 2013, 56, 4343–4356. [Google Scholar] [CrossRef]
- Gai, R.M.; Prochnow, T.; Back, D.F.; Zeni, G.R.J.T. Base-mediated intramolecular cyclization of (2-propargyl ether) arylimines: An approach to 3-amino-benzofurans. Tetrahedron 2014, 70, 3751–3756. [Google Scholar] [CrossRef]
- Lu, Y.; Cole, K.P.; Fennell, J.W.; Maloney, T.D.; Mitchell, D.; Subbiah, R.; Ramadas, B. An Alternative Indazole Synthesis for Merestinib. Org. Process Res. Dev. 2018, 22, 409–419. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, X.; Xing, Z.; Chen, X.; Zou, X.; Lu, X. Highly Active and Chemoselective Reduction of Halogenated Nitroarenes Catalyzed by Ordered Mesoporous Carbon Supported Platinum Nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 8908–8916. [Google Scholar] [CrossRef]
- Hou, D.-F.; Jiao, Z.-F.; Liang, Z.-P.; Wang, Y.-W.; Guo, X.-N.; Guo, X.-Y. Selectivity control of Pt/SiC catalysts for photothermocatalytic hydrogenation of 3-nitrostyrene. Appl. Surf. Sci. 2020, 526, 146616. [Google Scholar] [CrossRef]
- Gaddam, V.; Ramesh, S.; Nagarajan, R. CuI/La(OTf)3 catalyzed, one-pot synthesis of isomeric ellipticine derivatives in ionic liquid. Tetrahedron 2010, 66, 4218–4222. [Google Scholar] [CrossRef]
- Thombal, R.S.; Lee, Y.R. Synergistic Indium and Silver Dual Catalysis: A Regioselective [2 + 2 + 1]-Oxidative N-Annulation Approach for the Diverse and Polyfunctionalized N-Arylpyrazoles. Org. Lett. 2018, 20, 4681–4685. [Google Scholar] [CrossRef]
- Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.-W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKβ Links Inflammation and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer. Cell 2004, 118, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Hwang, S.-Y.; Shin, J.; Jo, H.; Na, Y.; Kwon, Y. A chromenone analog as an ATP-competitive, DNA non-intercalative topoisomerase II catalytic inhibitor with preferences toward the alpha isoform. Chem. Commun. 2019, 55, 12857–12860. [Google Scholar] [CrossRef]
- Dick, A.; Cocklin, S. Bioisosteric Replacement as a Tool in Anti-HIV Drug Design. Pharmaceuticals 2020, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- Arabi, A.A. Routes to drug design via bioisosterism of carboxyl and sulfonamide groups. Future Med. Chem. 2017, 9, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
Entry | Conditions | ||||
---|---|---|---|---|---|
Catalyst | Additive | Solvent | Time (h) | Yield e | |
1 | Yb(OTf)3/CuI b | - | MeCN | 19 | <5% |
2 | Yb(OTf)3/CuI | - | Xylene | 19 | 18% |
3 | La(OTf)3/CuI | - | Xylene | 19 | 42% |
4 | Sc(OTf)3/CuI | - | Xylene | 19 | 18% |
5 | Yb(OTf)3/CuI | - | Toluene | 19 | 16% |
6 | La(OTf)3/CuI | - | Toluene | 19 | 21% |
7 | Sc(OTf)3/CuI | - | Toluene | 19 | 17% |
8 | Yb(OTf)3/CuI | - | DMF | 19 | 29% |
9 | La(OTf)3/CuI | - | DMF | 19 | 43% |
10 | Sc(OTf)3/CuI | - | DMF | 19 | 21% |
11 | Yb(OTf)3/CuI | - | MeCN | 19 | <5% |
12 | La(OTf)3/CuI | - | MeCN | 19 | <5% |
13 | Sc(OTf)3/CuI | - | MeCN | 19 | <5% |
14 | La(OTf)3/CuI c | - | DMF | 3.5 | 46% |
15 | CuI c | - | Xylene | 3.5 | 15% |
16 | La(OTf)3 c | AgSbF6 | Xylene | 3.5 | 37% |
17 | La(OTf)3/CuI c | AgSbF6 | Xylene | 3.5 | 19% |
18 | La(OTf)3/CuI c | AgSbF6 d | Xylene | 3.5 | 3% |
Cpd. | Substituents | Cell Proliferation (% Control) a | Cpd. | Substituents | Cell Proliferation (% Control) a |
---|---|---|---|---|---|
R1 = Me | R1′ = H | ||||
1A | R2, R3, R4, R5, R6 = H | 78.40 ± 4.95 | 2A | R2′, R3′, R4′, R5′ = H | 19.41 ± 6.67 |
1B | Pyridin-3-yl | 22.89 ± 4.49 | 2B | R2′, R4′, R5′ = H; R3′ = OMe | 86.51 ± 2.72 |
1C | R2, R3, R4, R6 = H; R5 = CN | 9.80 ± 5.89 | 2C | R2′, R3′, R5′ = H; R4′ = OMe | 77.36 ± 6.80 |
1D | R2, R3, R5, R6 = H; R4 = CF3 | 81.29 ± 7.33 | 2D | R3′, R4′, R5′ = H; R2′ = Me | 27.68 ± 3.06 |
1E | R2, R3, R5, R6 = H; R4 = NO2 | 88.89 ± 4.20 | 2E | R2′, R3′, R4′ = H; R5′ = F | −17.83 ± 1.63 |
1F | R3, R4, R5, R6 = H; R2 = Cl | 82.79 ± 3.63 | 2F | R2′, R3′, R5′ = H; R4′ = F | 14.67 ± 6.46 |
1G | R2, R3, R4, R6 = H; R5 = Cl | 76.66 ± 8.59 | 2G | R2′, R4′, R5′ = H; R3′ = F | 76.07 ± 2.78 |
1H | R2, R3, R5, R6 = H; R4 = Cl | 86.35 ± 8.70 | 2H | R3′, R4′, R5′ = H; R2′ = F | 85.39 ± 4.24 |
1I | R2, R3, R5, R6 = H; R4 = Br | 80.57 ± 2.74 | 2I | R2′, R3′, R4′ = H; R5′ = Cl | 69.54 ± 4.23 |
1J | R2, R3, R5, R6 = H; R4 = N(CH3)2 | 74.52 ± 7.91 | 2J | R2′, R3′, R5′ = H; R4′ = Cl | 86.56 ± 5.28 |
R1 = OMe | 2K | R2′, R4′, R5′ = H; R3′ = Cl | 77.49 ± 7.38 | ||
1K | R2, R3, R4, R5, R6 = H | 74.57 ± 7.34 | 2L | R3′, R4′, R5′ = H; R2′ = Cl | 82.07 ± 10.94 |
1L | Pyridin-3-yl | 79.68 ± 4.00 | 2M | R3′, R5′ = H; R2′, R4′ = Cl | 64.13 ± 2.78 |
1M | R2, R3, R4, R6 = H; R5 = CN | −29.01 ± 0.84 | 2N | R2′, R3′, R5′ = H; R4′ = Br | 83.43 ± 6.92 |
1N | R2, R3, R5, R6 = H; R4 = CF3 | 84.37 ± 7.71 | 2O | R2′, R4′, R5′ = H; R3′ = Br | 86.72 ± 4.67 |
1O | R2, R3, R5, R6 = H; R4 = NO2 | 90.20 ± 5.89 | 2P | R3′, R4′, R5′ = H; R2′ = Br | −22.67 ± 4.55 |
1P | Thiophen-2-yl | 86.43 ± 7.19 | 2Q = 81.99 ± 7.50 | ||
1Q | R3, R4, R5, R6 = H; R2 = Cl | 72.54 ± 4.79 | 2R = 11.16 ± 6.95 | ||
1R | R2, R3, R5, R6 = H; R4 = Cl | 81.53 ± 7.85 | 2S | R2′, R6′ = H; R1′ = OMe; R4′ = prop-1-ene | 74.09 ± 8.60 |
1S | R2, R3, R5, R6 = H; R4 = Br | 84.34 ± 3.56 | R1′ = Me | ||
1T | R2, R3, R5, R6 = H; R4 = N(CH3)2 | 88.12 ± 5.80 | 83.99 ± 5.38 | ||
Doxorubicin (ADR), −17.38 ± 2.68% at 3 µM. |
Cpd. | Human Cancer Cell Lines, GI50 (µM) a | |||||
---|---|---|---|---|---|---|
ACHN | HCT-15 | MM231 | NCI-H23 | NUGC-3 | PC-3 | |
ADR | 0.400 ± 0.456 | 0.088 ± 0.005 | 0.085 ± 0.002 | 0.069 ± 0.001 | 0.081 ± 0.005 | 0.417 ± 0.481 |
1B | 8.412 ± 0.396 | 9.402 ± 0.888 | 7.935 ± 0.485 | 7.862 ± 0.235 | 7.946 ± 0.086 | 7.262 ± 1.339 |
1C | 6.762 ± 0.706 | 7.872 ± 0.607 | 4.514 ± 0.170 | 4.794 ± 0.518 | 6.521 ± 0.116 | 6.068 ± 1.101 |
1M | 4.305 ± 0.378 | 6.569 ± 0.193 | 5.894 ± 0.164 | 4.391 ± 0.540 | 5.321 ± 0.579 | 7.236 ± 0.466 |
2A | 9.163 ± 1.382 | 11.970 ± 1.867 | 13.555 ± 1.648 | 11.670 ± 0.580 | 8.010 ± 0.885 | 12.125 ± 1.039 |
2D | 11.476 ± 2.424 | 11.310 ± 0.594 | 15.655 ± 1.266 | 10.352 ± 1.539 | 7.628 ± 0.640 | 13.760 ± 4.073 |
2E | 5.020 ± 0.390 | 5.201 ± 0.449 | 5.989 ± 0.730 | 4.359 ± 0.139 | 3.279 ± 0.609 | 4.666 ± 0.189 |
2F | 14.025 ± 1.082 | 11.615 ± 1.096 | 11.670 ± 1.754 | 13.355 ± 0.771 | 8.355 ± 0.109 | 9.757 ± 2.140 |
2P | 3.843 ± 0.031 | 6.443 ± 1.705 | 5.234 ± 0.260 | 6.494 ± 0.981 | 3.930 ± 0.133 | 5.901 ± 0.281 |
2R | 13.760 ± 2.121 | 12.000 ± 0.735 | 13.965 ± 0.502 | 7.580 ± 0.617 | 8.866 ± 0.211 | 7.726 ± 1.540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, C.L.; Ko, S.; Lee, C.; Kim, Y.; Jung, C.; Hyun, S.; Kwon, Y.; Kang, J.-S.; Jung, J.-K.; Lee, H. Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives. Pharmaceuticals 2022, 15, 399. https://doi.org/10.3390/ph15040399
Chaudhary CL, Ko S, Lee C, Kim Y, Jung C, Hyun S, Kwon Y, Kang J-S, Jung J-K, Lee H. Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives. Pharmaceuticals. 2022; 15(4):399. https://doi.org/10.3390/ph15040399
Chicago/Turabian StyleChaudhary, Chhabi Lal, Seungyun Ko, Chaerim Lee, Yerin Kim, Chanhyun Jung, Soonsil Hyun, Youngjoo Kwon, Jong-Soon Kang, Jae-Kyung Jung, and Heesoon Lee. 2022. "Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives" Pharmaceuticals 15, no. 4: 399. https://doi.org/10.3390/ph15040399
APA StyleChaudhary, C. L., Ko, S., Lee, C., Kim, Y., Jung, C., Hyun, S., Kwon, Y., Kang, J. -S., Jung, J. -K., & Lee, H. (2022). Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives. Pharmaceuticals, 15(4), 399. https://doi.org/10.3390/ph15040399