Associations of Plasma Concentration Profiles of Dapagliflozin, a Selective Inhibitor of Sodium–Glucose Co-Transporter Type 2, with Its Effects in Japanese Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Clinical Study Design and Patients
4.2. Determination of the Plasma Concentration of Dapagliflozin
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of Human Sodium Glucose Transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, E.C.; Henry, R.R. SGLT2 Inhibition-A Novel Strategy for Diabetes Treatment. Nat. Rev. Drug Discov. 2010, 9, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Cherney, D.Z.I. The Actions of SGLT2 Inhibitors on Metabolism, Renal Function and Blood Pressure. Diabetologia 2018, 61, 2098–2107. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ropero, A.; Badimon, J.J.; Santos-Gallego, C.G. The Pharmacokinetics and Pharmacodynamics of SGLT2 Inhibitors for Type 2 Diabetes Mellitus: The Latest Developments. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Braunwald, E. Mechanisms of Cardiorenal Effects of Sodium-Glucose cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 422–434. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Braunwald, E. Clinical Benefit of Cardiorenal Effects of Sodium-Glucose cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 435–447. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [Green Version]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Komoroski, B.; Vachharajani, N.; Feng, Y.; Li, L.; Kornhauser, D.; Pfister, M. Dapagliflozin, a Novel, Selective SGLT2 Inhibitor, Improved Glycemic Control Over 2 Weeks in Patients with Type 2 Diabetes Mellitus. Clin. Pharmacol. Ther. 2009, 85, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Kasichayanula, S.; Liu, X.; Lacreta, F.; Griffen, S.C.; Boulton, D.W. Clinical Pharmacokinetics and Pharmacodynamics of Dapagliflozin, a Selective Inhibitor of Sodium-Glucose Co-Transporter type 2. Clin. Pharmacokinet. 2014, 53, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, S.; Seufert, J.; Scheen, A.; Bailey, C.J.; Karup, C.; Langkilde, A.M. Dapagliflozin in Patients with Type 2 Diabetes Mellitus: A Pooled Analysis of Safety Data From phase IIb/III Clinical Trials. Diabetes Obes. Metab. 2018, 20, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Kasichayanula, S.; Chang, M.; Hasegawa, M.; Liu, X.; Yamahira, N.; LaCreta, F.P.; Imai, Y.; Boulton, D.W. Pharmacokinetics and Pharmacodynamics of Dapagliflozin, a Novel Selective Inhibitor of Sodium-Glucose Co-Transporter type 2, in Japanese Subjects without and with Type 2 Diabetes Mellitus. Diabetes Obes. Metab. 2011, 13, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Khunti, K.; Seidu, S.; Kunutsor, S.; Davies, M. Association between Adherence to Pharmacotherapy and Outcomes in type 2 Diabetes: A Meta-Analysis. Diabetes Care. 2017, 40, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.Y.; Lee, J.S.; Kang, H.J.; Park, S.M. Effect of Medication Adherence on Long-Term All-Cause-Mortality and Hospitalization for Cardiovascular Disease in 65,067 Newly Diagnosed type 2 Diabetes Patients. Sci. Rep. 2018, 8, 12190. [Google Scholar] [CrossRef]
- Lane, D.; Patel, P.; Khunti, K.; Gupta, P. Objective Measures of Non-Adherence in Cardiometabolic Diseases: A Review Focused on Urine Biochemical Screening. Patient Prefer. Adherence 2019, 13, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Kohan, D.E.; Fioretto, P.; Tang, W.; List, J.F. Long-Term Study of Patients with type 2 Diabetes and Moderate Renal Impairment Shows That Dapagliflozin Reduces Weight and Blood Pressure but Does Not Improve Glycemic Control. Kidney Int. 2014, 85, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Higgins, P.J.; Bunn, H.F. Kinetic Analysis of the Nonenzymatic Glycosylation of Hemoglobin. J. Biol. Chem. 1981, 256, 5204–5208. [Google Scholar] [CrossRef]
- Lin, H.; Yi, J. Current Status of HbA1C Biosensors. Sensors 2017, 17, 1798. [Google Scholar] [CrossRef] [Green Version]
- Matthaei, S.; Bowering, K.; Rohwedder, K.; Sugg, J.; Parikh, S.; Johnsson, E.; Study 05 Group [Study]. Durability and Tolerability of Dapagliflozin over 52 Weeks as Add-On to Metformin and Sulphonylurea in type 2 Diabetes. Diabetes Obes. Metab. 2015, 17, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Araki, E.; Onishi, Y.; Asano, M.; Kim, H.; Yajima, T. Efficacy and Safety of Dapagliflozin over 1 Year as Add-On to Insulin Therapy in Japanese Patients with type 2 Diabetes: The DAISY (Dapagliflozin Added to Patients under InSulin therapY) Trial. Diabetes Obes. Metab. 2017, 19, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Takaguchi, K.; Tsutsui, A.; Senoh, T.; Yoshikawa, R.; Nakamura, K.; Yoshida, A.; Nagano, T. Effects of Dapagliflozin in type 2 Diabetes Patients with Fatty Liver. Jpn. J. Med. 2018, 2, 316–325. [Google Scholar]
- Kudo, T.; Abe, I.; Minezaki, M.; Sugimoto, K.; Fujii, H.; Ohishi, H.; Nakagawa, M.; Yano, S.; Matsubayashi, S.; Fukudome, M.; et al. Investigation of Metabolic and Circulatory Parameters That Predict Effects of Dapagliflozin, a Sodium-Glucose cotransporter 2 Inhibitor, on Blood Glucose and Body Weight in a Retrospective, Multicenter Study. J. Diabetes Metab. 2018, 9, 11. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Vesa, C.M.; Popa, L.; Popa, A.R.; Rus, M.; Zaha, A.A.; Bungau, S.; Tit, D.M.; Corb Aron, R.A.; Zaha, D.C. Current Data Regarding the Relationship between Type 2 Diabetes Mellitus and Cardiovascular Risk Factors. Diagnostics 2020, 10, 314. [Google Scholar] [CrossRef]
- Moisi, M.I.; Bungau, S.G.; Vesa, C.M.; Diaconu, C.C.; Behl, T.; Stoicescu, M.; Toma, M.M.; Bustea, C.; Sava, C.; Popescu, M.I. Framing Cause-Effect Relationship of Acute Coronary Syndrome in Patients with Chronic Kidney Disease. Diagnostics 2021, 11, 1518. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised Equations for Estimated GFR From Serum Creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Aubry, A.F.; Gu, H.; Magnier, R.; Morgan, L.; Xu, X.; Tirmenstein, M.; Wang, B.; Deng, Y.; Cai, J.; Couerbe, P.; et al. Validated LC-MS/MS Methods for the Determination of Dapagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor in Normal and ZDF Rat Plasma. Bioanalysis 2010, 2, 2001–2009. [Google Scholar] [CrossRef]
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
r | p | B | β | p | ||
Sex, male: female | 52: 20 | 0.064 | 0.593 | |||
Age, years | 58.4 ± 10.6 a | −0.101 | 0.397 | |||
Body weight, kg | 77.9 ± 13.5 a | −0.015 | 0.901 | |||
T2DM duration, years | 10.8 ± 7.7 a | 0.047 | 0.697 | |||
HbA1c level, % | 6.9 ± 0.6 a | −0.545 | <0.001 | −0.384 | −0.456 | <0.001 |
eGFR, mL/min/1.73 m2 | 78.8 ± 20.7 a | 0.034 | 0.780 | |||
Systolic BP, mmHg | 130 ± 16 a | −0.295 | 0.012 | −0.008 | −0.258 | 0.008 |
Diastolic BP, mmHg | 73 ± 12 a | −0.071 | 0.553 | |||
Diabetic nephropathy | 27 of 72 | 0.052 | 0.669 | |||
Hypertension | 53 of 72 | −0.058 | 0.626 | |||
Hypercholesterolemia | 54 of 72 | −0.217 | 0.067 | −0.232 | −0.202 | 0.036 |
Average of Cp b, ng/mL | 4.7 ± 2.3 a | 0.071 | 0.630 | |||
Stable Cp b,c | 13 of 72 | −0.309 | 0.008 | −0.287 | −0.222 | 0.020 |
Group | N | Baseline | After Treatment | After Treatment—Baseline | p |
---|---|---|---|---|---|
HbA1c (%) | |||||
Total | 72 | 6.9 ± 0.6 | 6.7 ± 0.5 | −0.2 ± 0.5 | <0.01 |
Poor | 11 | 6.8 ± 0.5 | 6.7 ± 0.7 | −0.1 ± 0.4 | 0.298 |
Stable | 13 | 7.1 ± 0.7 | 6.5 ± 0.5 | −0.6 ± 0.4 * | <0.01 |
Body weight (kg) | |||||
Total | 72 | 77.9 ± 13.5 | 76.7 ± 13.9 | −1.3 ± 2.6 | <0.01 |
Poor | 11 | 79.9 ± 7.1 | 78.7 ± 7.3 | −1.2 ± 2.0 | 0.070 |
Stable | 13 | 85.7 ± 12.4 | 83.4 ± 13.9 | −2.3 ± 4.0 | 0.060 |
eGFR (mL/min/1.73 m2) | |||||
Total | 72 | 78.8 ± 20.7 | 75.2 ± 22.5 | −3.6 ± 9.4 | <0.01 |
Poor | 11 | 95.5 ± 19.9 | 93.4 ± 19.0 | −2.1 ± 9.9 | 0.524 |
Stable | 13 | 74.1 ± 17.2 | 72.6 ± 18.3 * | −1.5 ± 5.1 | 0.329 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, T.; Kato, K.-I.; Kobuchi, S.; Kataoka, K.; Sakaeda, T. Associations of Plasma Concentration Profiles of Dapagliflozin, a Selective Inhibitor of Sodium–Glucose Co-Transporter Type 2, with Its Effects in Japanese Patients with Type 2 Diabetes Mellitus. Pharmaceuticals 2022, 15, 203. https://doi.org/10.3390/ph15020203
Hayakawa T, Kato K-I, Kobuchi S, Kataoka K, Sakaeda T. Associations of Plasma Concentration Profiles of Dapagliflozin, a Selective Inhibitor of Sodium–Glucose Co-Transporter Type 2, with Its Effects in Japanese Patients with Type 2 Diabetes Mellitus. Pharmaceuticals. 2022; 15(2):203. https://doi.org/10.3390/ph15020203
Chicago/Turabian StyleHayakawa, Tetsuo, Ken-Ichiro Kato, Shinji Kobuchi, Kaede Kataoka, and Toshiyuki Sakaeda. 2022. "Associations of Plasma Concentration Profiles of Dapagliflozin, a Selective Inhibitor of Sodium–Glucose Co-Transporter Type 2, with Its Effects in Japanese Patients with Type 2 Diabetes Mellitus" Pharmaceuticals 15, no. 2: 203. https://doi.org/10.3390/ph15020203
APA StyleHayakawa, T., Kato, K. -I., Kobuchi, S., Kataoka, K., & Sakaeda, T. (2022). Associations of Plasma Concentration Profiles of Dapagliflozin, a Selective Inhibitor of Sodium–Glucose Co-Transporter Type 2, with Its Effects in Japanese Patients with Type 2 Diabetes Mellitus. Pharmaceuticals, 15(2), 203. https://doi.org/10.3390/ph15020203