Hepatitis B Therapeutic Vaccine: A Patent Review
Abstract
:1. Introduction
2. Patent Search
3. Analysis
Future Perspective
4. Conclusions
5. Expert Therapeutic Opinion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, J.K.-T.; Jeevan-Raj, B.; Netter, H.-J. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020, 12, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd-Ljunggren, K.; Miyakawa, Y.; Kidd, A.H. Genetic variability in hepatitis B viruses. J. Gen. Virol. 2002, 83, 1267–1280. [Google Scholar] [CrossRef] [PubMed]
- Sunbul, M. Hepatitis B virus genotypes: Global distribution and clinical importance. World J. Gastroenterol. 2014, 20. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Xu, M.; Li, X.; Zhang, Z. Distribution of hepatitis B virus genotypes and subgenotypes: A meta-analysis. Medicine 2021, 100, e27941. [Google Scholar] [CrossRef] [PubMed]
- Tatematsu, K.; Tanaka, Y.; Kurbanov, F.; Sugauchi, F.; Mano, S.; Maeshiro, T.; Nakayoshi, T.; Wakuta, M.; Miyakawa, Y.; Mizokami, M. A Genetic Variant of Hepatitis B Virus Divergent from Known Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally Assigned to New Genotype J. J. Virol. 2009, 83, 10538–10547. [Google Scholar] [CrossRef] [Green Version]
- Thuy, P.T.B.; Alestig, E.; Liem, N.T.; Hannoun, C.; Lindh, M. Genotype X/C recombinant (putative genotype I) of hepatitis B virus is rare in Hanoi, Vietnam-genotypes B4 and C1 predominate. J. Med. Virol. 2010, 82, 1327–1333. [Google Scholar] [CrossRef]
- Ginzberg, D.; Wong, R.J.; Gish, R. Global HBV burden: Guesstimates and facts. Hepatol. Int. 2018, 12, 315–329. [Google Scholar] [CrossRef]
- Shen, G.; Sun, S.; Huang, J.; Deng, H.; Xu, Y.; Wang, Z.; Tang, X.; Gong, X. Dynamic changes of T cell receptor repertoires in patients with hepatitis B virus-related acute-on-chronic liver failure. Hepatol. Int. 2019, 14, 47–56. [Google Scholar] [CrossRef]
- Khanam, A.; Chua, J.V.; Kottilil, S. Immunopathology of chronic hepatitis B infection: Role of innate and adaptive immune response in disease progression. Int. J. Mol. Sci. 2021, 22, 5497. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Dijkstra, S.; Bartsch, L.M.; Drescher, H.; Aneja, J.; Robidoux, M.P.; Cheney, J.A.; Timm, J.; Gehring, A.; de Sousa, P.S.F.; et al. Hepatitis B virus-specific CD4 T-cell responses differentiate functional cure from chronic surface antigen+ infection. J. Hepatol. 2022, 77, 1276–1286. [Google Scholar] [CrossRef]
- Wang, W.-T.; Zhao, X.-Q.; Li, G.-P.; Chen, Y.-Z.; Wang, L.; Han, M.-F.; Li, W.-N.; Chen, T.; Chen, G.; Xu, N.; et al. Immune response pattern varies with the natural history of chronic hepatitis B. World J. Gastroenterol. 2019, 25, 1950–1963. [Google Scholar] [CrossRef]
- Iannacone, M.; Guidotti, L.G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat. Rev. Immunol. 2022, 22, 19–32. [Google Scholar] [CrossRef]
- Gane, E. The roadmap towards cure of chronic hepatitis B virus infection. J. R. Soc. N. Z. 2022, 52, 129–148. [Google Scholar] [CrossRef]
- Hathorn, E.; Mutimer, D.J. Management of acute hepatitis B infection: When should we offer antiviral therapy? In Clinical Dilemmas in Viral Liver Disease; Foster, G.R., Reddy, K.R., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 143–149. [Google Scholar] [CrossRef]
- Ribeiro, C.R.D.A.; Beghini, D.G.; Lemos, A.S.; Martinelli, K.G.; de Mello, V.D.; de Almeida, N.A.A.; Lewis-Ximenez, L.L.; de Paula, V.S. Cytokines profile in patients with acute and chronic hepatitis B infection. Microbiol. Immunol. 2022, 66, 31–39. [Google Scholar] [CrossRef]
- Yardeni, D.; Ghany, M.G. Hepatitis B—Current and emerging therapies. Aliment. Pharmacol. Ther. 2022, 55, 805–819. [Google Scholar] [CrossRef]
- Ohsaki, E.; Suwanmanee, Y.; Ueda, K. Chronic Hepatitis B Treatment Strategies Using Polymerase Inhibitor-Based Combination Therapy. Viruses 2021, 13, 1691. [Google Scholar] [CrossRef]
- Almeida, P.H.; Matielo, C.E.L.; Curvelo, L.; Rocco, R.; Felga, G.; Della Guardia, B.; Boteon, Y.L. Update on the management and treatment of viral hepatitis. World J. Gastroenterol. 2021, 27, 3249–3261. [Google Scholar] [CrossRef]
- Dolman, G.E.; Koffas, A.; Mason, W.S.; Kennedy, P.T.F. Why, who and when to start treatment for chronic hepatitis B infection. Curr. Opin. Virol. 2018, 30, 39–47. [Google Scholar] [CrossRef]
- Colombatto, P.; Coco, B.; Bonino, F.; Brunetto, M.R. Management and Treatment of Patients with Chronic Hepatitis B: Towards Personalized Medicine. Viruses 2022, 14, 701. [Google Scholar] [CrossRef]
- Prifti, G.-M.; Moianos, D.; Giannakopoulou, E.; Pardali, V.; Tavis, J.; Zoidis, G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals 2021, 14, 417. [Google Scholar] [CrossRef]
- Akbar, S.M.F.; Yoshida, O.; Hiasa, Y. Immune therapies against chronic hepatitis B. J. Gastroenterol. 2022, 57, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Pastuch-Gawołek, G.; Gillner, D.; Król, E.; Walczak, K.; Wandzik, I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur. J. Pharmacol. 2019, 865, 172747. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lee, J.B.; An, J.; Song, G.; Kim, K.M.; Lee, H.C.; Shim, J.H. Extrahepatic carcinogenicity of oral nucleos (t) ide analogues in chronic hepatitis B carriers: A 35,000-Korean outcome study. J. Viral Hepat. 2022, 29, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-L.; Zhao, W.; Lee, C.; Hann, H.-W.; Peng, C.-Y.; Tanwandee, T.; Morozov, V.; Klinker, H.; Sollano, J.D.; Streinu-Cercel, A.; et al. Outcomes of Long-term Treatment of Chronic HBV Infection with Entecavir or Other Agents From a Randomized Trial in 24 Countries. Clin. Gastroenterol. Hepatol. 2019, 18, 457–467.e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jonghe, S.; Herdewijn, P. An Overview of Marketed Nucleoside and Nucleotide Analogs. Curr. Protoc. 2022, 2, e376. [Google Scholar] [CrossRef]
- Broquetas, T.; Carrión, J. Current Perspectives on Nucleos (t) ide Analogue Therapy for the Long-Term Treatment of Hepatitis B Virus. Hepatic Med. Evid. Res. 2022, 14, 87–100. [Google Scholar] [CrossRef]
- Francis, D.P.; Feorino, P.M.; McDougal, S.; Warfield, D.; Getchell, J.; Cabradilla, C.; Tong, M.; Miller, W.J.; Schultz, L.D.; Bailey, F.J.; et al. The safety of the hepatitis B vaccine. JAMA J. Am. Med. Assoc. 1986, 256, 869–872. [Google Scholar] [CrossRef]
- Romano, L.; Zanetti, A.R. Hepatitis B Vaccination: A Historical Overview with a Focus on the Italian Achievements. Viruses 2022, 14, 1515. [Google Scholar] [CrossRef]
- Pattyn, J.; Hendrickx, G.; Vorsters, A.; Van Damme, P. Hepatitis B Vaccines. J. Infect. Dis. 2021, 224 (Suppl. 4), S343–S351. [Google Scholar] [CrossRef]
- Xu, L.; Wei, Y.; Chen, T.; Lu, J.; Zhu, C.-L.; Ni, Z.; Huang, F.; Du, J.; Sun, Z.; Qu, C. Occult HBV infection in anti-HBs-positive young adults after neonatal HB vaccination. Vaccine 2010, 28, 5986–5992. [Google Scholar] [CrossRef]
- Carman, W.F.; Van Deursen, F.J.; Mimms, L.T.; Hardie, D.; Coppola, R.; Decker, R.; Sanders, R. The prevalence of surface antigen variants of hepatitis B virus in Papua New Guinea, South Africa, and Sardinia. Hepatology 1997, 26, 1658–1666. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Chang, M.-H.; Liaw, S.-H.; Ni, Y.-H.; Chen, H.-L. Changes of hepatitis B surface antigen variants in carrier children before and after universal vaccination in taiwan. Hepatology 1999, 30, 1312–1317. [Google Scholar] [CrossRef]
- Jackson, S.; Lentino, J.; Kopp, J.; Murray, L.; Ellison, W.; Rhee, M.; Shockey, G.; Akella, L.; Erby, K.; Heyward, W.L.; et al. Immunogenicity of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed hepatitis B vaccine in adults. Vaccine 2018, 36, 668–674. [Google Scholar] [CrossRef]
- Hyer, R.N.; Janssen, R.S. Immunogenicity and safety of a 2-dose hepatitis B vaccine, HBsAg/CpG 1018, in persons with diabetes mellitus aged 60–70 years. Vaccine 2019, 37, 5854–5861. [Google Scholar] [CrossRef]
- Zoulim, F.; Fournier, C.; Habersetzer, F.; Sprinzl, M.; Pol, S.; Coffin, C.S.; Leroy, V.; Ma, M.; Wedemeyer, H.; Lohse, A.W.; et al. Safety and immunogenicity of the therapeutic vaccine TG1050 in chronic hepatitis B patients: A phase 1b placebo-controlled trial. Hum. Vaccines Immunother. 2019, 16, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Zhang, Z.; Sun, Z.; Zhao, J.; Zhu, D.; Wang, Y.; Fu, S.; Guo, J.; Liu, L.; Su, L.; et al. Vaccines targeting preS1 domain overcome immune tolerance in hepatitis B virus carrier mice. Hepatology 2017, 66, 1067–1082. [Google Scholar] [CrossRef] [Green Version]
- Corsino, M.; Mariani, M.; Torrisi, S. Firm strategic behavior and the measurement of knowledge flows with patent citations. Strat. Manag. J. 2019, 40, 1040–1069. [Google Scholar] [CrossRef]
- Cargill, T.; Barnes, E. Therapeutic vaccination for treatment of chronic hepatitis B. Clin. Exp. Immunol. 2021, 205, 106–118. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, T.; Zhang, J.; Mao, Q.; Gong, G.; Sun, Y.; Chen, Y.; Wang, M.; Tan, D.; Gong, Z.; et al. Efficacy and safety of a nanoparticle therapeutic vaccine in patients with chronic hepatitis B: A randomized clinical trial. Hepatology 2021, 75, 182–195. [Google Scholar] [CrossRef]
- Jansen, D.; Dou, Y.; de Wilde, J.; Woltman, A.M.; Buschow, S.I. Designing the next-generation therapeutic vaccines to cure chronic hepatitis B: Focus on antigen presentation, vaccine properties and effect measures. Clin. Transl. Immunol. 2021, 10, e1232. [Google Scholar] [CrossRef]
- Lok, A.S.; Pan, C.Q.; Han, S.-H.B.; Trinh, H.N.; Fessel, W.J.; Rodell, T.; Massetto, B.; Lin, L.; Gaggar, A.; Subramanian, G.M.; et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 2016, 65, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, H.; Kahi, S.; Chazallon, C.; Bourgine, M.; Varaut, A.; Buffet, C.; Godon, O.; Meritet, J.F.; Saïdi, Y.; Michel, M.L.; et al. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: A randomised trial—ANRS HB02 VAC-ADN. Gut 2015, 64, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.M.F.; Al Mahtab, M.; Khan, S.; Yoshida, O.; Hiasa, Y. Development of Therapeutic Vaccine for Chronic Hepatitis B: Concept, Cellular and Molecular Events, Design, Limitation, and Future Projection. Vaccines 2022, 10, 1644. [Google Scholar] [CrossRef] [PubMed]
- Le Bert, N.; Gill, U.S.; Kunasegaran, K.; Tan, D.Z.; Ahmad, R.; Cheng, Y.; Dutertre, A.; Heinecke, A.; Rivino, L.; Tan, A.; et al. Effects of hepatitis B surface antigen on virus-specific and global T cells in patients with chronic hepatitis B virus infection. Gastroenterology 2020, 159, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Zhu, D.; Liang, B.; Li, M.; Pan, W.; He, J.; Wang, H.; Sutter, K.; Dittmer, U.; Lu, M.; et al. Longitudinal characterization of phenotypic profile of T cells in chronic hepatitis B identifies immune markers associated with HBsAg loss. eBioMedicine 2021, 69, 103464. [Google Scholar] [CrossRef]
- Zhao, H.; Han, Q.; Yang, A.; Wang, Y.; Wang, G.; Lin, A.; Wang, X.; Yin, C.; Zhang, J. CpG-C ODN M362 as an immunoadjuvant for HBV therapeutic vaccine reverses the systemic tolerance against HBV. Int. J. Biol. Sci. 2022, 18, 154. [Google Scholar] [CrossRef]
- Michel, M.-L.; Deng, Q.; Mancini-Bourgine, M. Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: Perspectives and challenges. J. Hepatol. 2011, 54, 1286–1296. [Google Scholar] [CrossRef]
- Papatheodoridis, G.; Vlachogiannakos, I.; Cholongitas, E.; Wursthorn, K.; Thomadakis, C.; Touloumi, G.; Petersen, J. Discontinuation of oral antivirals in chronic hepatitis B: A systematic review. Hepatology 2016, 63, 1481–1492. [Google Scholar] [CrossRef]
- Hirode, G.; Choi, H.S.J.; Chen, C.-H.; Su, T.-H.; Seto, W.-K.; Van Hees, S.; Papatheodoridi, M.; Lens, S.; Wong, G.; Brakenhoff, S.M.; et al. Off-therapy response after nucleos (t) ide analogue withdrawal in patients with chronic hepatitis B: An international, multicenter, multiethnic cohort (RETRACT-B study). Gastroenterology 2022, 162, 757–771.e4. [Google Scholar]
- Bunse, T.; Kosinska, A.D.; Michler, T.; Protzer, U. PD-L1 Silencing in Liver Using siRNAs Enhances Efficacy of Therapeutic Vaccination for Chronic Hepatitis B. Biomolecules 2022, 12, 470. [Google Scholar] [CrossRef]
- Szmuness, W.; Stevens, C.E.; Zang, E.A.; Harley, E.J.; Kellner, A. A controlled clinical trial of the efficacy of the hepatitis B vaccine (heptavax B): A final report. Hepatology 1981, 1, 377–385. [Google Scholar] [CrossRef]
- Berg, T.; Simon, K.-G.; Mauss, S.; Schott, E.; Heyne, R.; Klass, D.; Eisenbach, C.; Welzel, T.; Zachoval, R.; Felten, G.; et al. O119: Stopping tenofovir disoproxil fumarate (TDF) treatment after long term virologic suppression in HBeAg-negative CHB: Week 48 interim results from an ongoing randomized, controlled trial (“finite CHB”). J. Hepatol. 2015, 53, KG141. [Google Scholar] [CrossRef]
- Bin Lee, Y.; Lee, J.-H.; Kim, Y.J.; Yoon, J.-H.; Lee, H.-S. The effect of therapeutic vaccination for the treatment of chronic hepatitis B virus infection. J. Med. Virol. 2015, 87, 575–582. [Google Scholar]
- Lai, M.-W.; Hsu, C.-W.; Lin, C.-L.; Chien, R.-N.; Lin, W.-R.; Chang, C.-S.; Liang, K.-H.; Yeh, C.-T. Multiple doses of hepatitis B recombinant vaccine for chronic hepatitis B patients with low surface antigen levels: A pilot study. Hepatol. Int. 2018, 12, 456–464. [Google Scholar] [CrossRef]
- Al-Mahtab, M.; Bazinet, M.; Vaillant, A. Safety and Efficacy of Nucleic Acid Polymers in Monotherapy and Combined with Immunotherapy in Treatment-Naive Bangladeshi Patients with HBeAg+ Chronic Hepatitis B Infection. PLoS ONE 2016, 11, e0156667. [Google Scholar] [CrossRef] [Green Version]
- Al, M.M.; Akbar, S.; Aguilar, J.; Guillen, G.; Penton, E.; Tuero, A.; Yoshida, O.; Hiasa, Y.; Onji, M. Treatment of chronic hepatitis B naïve patients with a therapeutic vaccine containing HBs and HBc antigens (a randomized, open and treatment controlled phase III clinical trial). PLoS ONE 2018, 13, e0201236. [Google Scholar]
- Wang, X.-Y.; Zhang, X.-X.; Yao, X.; Jiang, J.-H.; Xie, Y.-H.; Yuan, Z.-H.; Wen, Y.-M. Serum HBeAg sero-conversion correlated with decrease of HBsAg and HBV DNA in chronic hepatitis B patients treated with a therapeutic vaccine. Vaccine 2010, 28, 8169–8174. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X.; Shen, X.; Gong, G.Z.; Ren, H.; Guo, L.M.; Sun, A.M.; Xu, M.; Li, L.J.; Guo, X.H.; et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: Experiences and findings. J. Hepatol. 2013, 59, 450–456. [Google Scholar] [CrossRef]
- Cavenaugh, J.S.; Awi, D.; Mendy, M.; Hill, A.V.S.; Whittle, H.; McConkey, S.J. Partially Randomized, Non-Blinded Trial of DNA and MVA Therapeutic Vaccines Based on Hepatitis B Virus Surface Protein for Chronic HBV Infection. PLoS ONE 2011, 6, e14626. [Google Scholar] [CrossRef]
- Yang, F.-Q.; Yu, Y.-Y.; Wang, G.-Q.; Chen, J.; Li, J.-H.; Li, Y.-Q.; Rao, G.-R.; Mo, G.-Y.; Luo, X.-R.; Chen, G.-M. A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J. Viral Hepat. 2012, 19, 581–593. [Google Scholar] [CrossRef]
- Yang, F.; Rao, G.; Wang, G.; Li, Y.Q.; Xie, Y.; Zhang, Z.Q.; Deng, C.L.; Mao, Q.; Li, J.; Zhao, W.; et al. Phase IIb trial of in vivo electroporation mediated dual-plasmid hepatitis B virus DNA vaccine in chronic hepatitis B patients under lamivudine therapy. World J. Gastroenterol. 2017, 23, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.K.; Seo, Y.B.; Im, S.J.; Bae, S.H.; Song, M.J.; You, C.R.; Jang, J.W.; Yang, S.H.; Suh, Y.S.; Song, J.S.; et al. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver Int. 2014, 35, 805–815. [Google Scholar] [CrossRef] [PubMed]
Study Type | Type of Vaccine | Type of HBV Antigen | Intervention | Reference |
---|---|---|---|---|
Non-randomized | Recombinant vaccines | S | Hepavax-Gene TF | [51] |
Non-randomized | Recombinant vaccines | Pre-S2, S | ENGERIX-B | [52] |
Non-randomized | Recombinant vaccines | S, C | HBsAg + HBcAg | [53] |
Randomized | Recombinant vaccines | S, C | NASVAC (HBsAg + HBcAg) | [54] |
Randomized | Immune complex vaccines | S | YIC (HBsAg-HBIG + allum adjuvant) | [55] |
Randomized | Immune complex vaccines | S | YIC (HBsAg-HBIG + allum adjuvant) | [56] |
Randomized | DNA vaccines | Pre-S2, S | CMV-S2.S with NUC | [57] |
Randomized | DNA vaccines | Pre-S2, S | DNA pSG2.HBs and MVA vaccine (MVA.HBs) Vaccination alone or with NUC | [58] |
Randomized | DNA vaccines | Pre-S2, S | ED-DNA.PS2.S with NUC | [59] |
Randomized | DNA vaccines | Pre-S2, S | ED-DNA.PS2.S with NUC | [43] |
Randomized | DNA vaccines | Pre-S2, S, C, P | HB-110 with NUC | [60] |
Randomized | Yeast-derived vaccines | S, C, X | GS-4774 with NUC | [61] |
Non-randomized | Yeast-derived vaccines | S, C, X | GS-4774 with NUC | [62] |
Randomized | Yeast-derived vaccines | S, C, X | GS-4774 with NUC | [63] |
Randomized | Adenoviral vectored vaccines | S, C, P | Human adenoviral type 5 vector (TG1050) with NUC | [42] |
Patent Application Number | The Assignee of the Grant | Claim | Publication Date |
---|---|---|---|
CN114210310A | Wuhan Ruyi Medical Instr Co., Ltd., China | An immunoadsorption material for the hepatitis B virus and HBsAg is provided by the invention, together with a method for its production and use. A hepatitis B virus antibody solution and agarose microspheres are coupled during the coupling reaction process of aldehyde crosslinking, according to the method. To effectively lower the levels of the hepatitis B virus and HBsAg in a patient’s blood, the immunoadsorption material can directly, effectively, and selectively adsorb the hepatitis B virus and HBsAg from plasma. | 22 November 2022 |
EP3710049A4 | University of Washington | HBV PreS1 and/or PreS2, as well as S-HBsAg sections of the HBV envelope protein, are used as a therapeutic vaccine for the disease. | 5 January 2022 |
CN113544148A | Humabs BioMed, Bellinzona, Switzerland | The antibodies and antigen-binding fragments described in the current disclosure bind to the antigenic loop region of the hepatitis B surface antigen (HBsAg) and neutralize both hepatitis B and hepatitis D virus infection (HDV). The disclosure also includes information on the epitopes that these antibodies and their antigen-binding fragments bind to, fusion proteins that contain the antigen-binding fragments, the nucleic acids that code for these antibodies and antibody fragments, and the cells that produce them. | 22 October 2021 |
US10793866B2 | Dr. LifeSciences Group Limited | This invention disclosed a method to create an edible vaccine based on an expression platform for the N-terminal yeast surface display that would protect and treat people against infection with the hepatitis B virus. | 6 October 2020 |
US10653772B2 | Tianjin Hemu Jianmin Biotechnology Co., Ltd. | A hepatitis B therapeutic vaccination based on inactivated entire recombinant Hansenula polymorpha cells producing HBsAg is being developed. The intracellular level of expression of HBsAg in the recombinant Hansenula polymorpha cells is 6–10 g HBsAg per 108 cells. | 19 May 2020 |
CN110898219A | Institute of Biophysics, Chinese Academy of Sciences | The hepatitis B virus surface antigen peptide and ferritin are linked by a linker. The connector is flexible while the ferritin is bacterial, and the hepatitis B virus surface antigen peptide segment comprises a preS1 peptide segment. | 24 March 2020 |
WO2019013361A1 | Beacle Inc., Kagoshima University | This hepatitis B vaccine comprises formed surface antigen particles in which only hepatitis B virus L proteins or mutants of said L proteins are pooled on the lipid membrane. | 17 January 2019 |
US10058606B2 | TheVax Genetics Vaccine Co., Ltd. | In this innovative vaccine, the following components are used: (i) a hepatitis B x antigen mutant with no amino acid domain, (ii) a domain for protein transduction, and (iii) a domain that binds to either CD91 receptors or antigen-presenting cells (APCs). A linker, a translocation peptide, and a T cell sensitivity signal-transducing peptide make up the antigen transduction domain of this fusion polypeptide. | 28 August 2018 |
CN106928372A | Application filed by Peking University Shenzhen Graduate School | This invention relates to a recombinant hepatitis B antigen which is prepared by linking the hepatitis B virus preS region, the influenza virus hemagglutinin signal peptide region, the influenza virus transmembrane region, and the intracellular region and carrying out expression. It has the potential to be transformed into a novel preventative and therapeutic hepatitis B vaccine in medical science. | 7 July 2017 |
CN106701825A | Institute of Biophysics of Chinese Academy of Sciences | This vaccine includes a nucleic acid sequence formed through introducing s-HBsAg and the immune co-stimulator molecule LIGHT to the type-5 adenovirus vector. The vaccine has a significant therapeutic effect on hepatitis B. | 24 May 2017 |
CN106421774A | Institute of Biophysics of Chinese Academy of Sciences | The vaccine comprises a hepatitis B virus envelope protein from the preS1 region and can effectively prevent HBV from infecting the host, and has a therapeutic effect on chronic hepatitis B virus infection; its effect is significantly better than the existing traditional HBV vaccine. | 22 February 2017 |
CN105727280A | Tianjin Jianmin harmony Biotechnology Co., Ltd. | This is a hepatitis B therapeutic vaccine based on heat-inactivated all-recombinant Hansen USA cells capable of expression of HBsAg. The vaccine is based on the Hansenula expression system platform; by releasing IFNγ in liver cells with HBsAg-specific CTLs, it targets cells infected with HBV. | 6 July 2016 |
CN105061591A | Second Military Medical University (SMMU) | This invention provides an anti-hepatitis B virus surface antigen fully humanized antibody, A3D5, and the gene encoding the antibody. The A3D5 antibody is capable of specifically binding to the HBsAg protein, has better HBV-neutralizing activity, and may prevent the process of infection-related hepatitis, cirrhosis, and liver cancer mediated by HBV. | 18 November 2015 |
CN104043120A | Simcere Pharmaceutical pharmaceutical company | The immunogenic activity of hepatitis B core and surface antigens was utilized to treat HBV infection and HBV-mediated illnesses, and a method for treating HBV infection is included in the sulpho-oligodeoxynucleotide. | 17 September 2014 |
CN111363728A | Wuhan University, China | The influenza A virus is taken as a vector, the hepatitis B virus gene is integrated into the genome of the influenza virus through reverse genetics technology, and the recombinant influenza virus can be stably passaged in a host cell or a chicken embryo. | 18 June 2014 |
CN103566369A | Cancer Hospital and Institute, Chinese Academy of Medical Sciences, CAMS, and Peking Union Medical College, PUMC. | This invention reports a hepatitis B vaccine that induces the body to generate specific immunity under a chronic hepatitis B virus infection state. This inventive hepatitis B vaccine contains Toll-like receptor agonists as an immune enhancer. | 12 February 2014 |
CN102949717A | China center for diseases control and prevention, National Institute for Virology, Beijing, China | This is a genetic engineering vaccine that comprises the hepatitis B virus surface antigen, an aluminum hydroxide adjuvant, and a polyinosinic acid-polycytidylic acid adjuvant. The vaccine can be used for treating chronic hepatitis B. | 6 March 2013 |
CN102199217A | Third Military Medical University (TMMU). Chongqing, China. | This fusion protein is obtained by inserting hepatitis B virus multi-epitope fusion peptide formed by serially connecting HBsAg313-321, HBsAg335-343, Pol150-159, Pol455-463, and Padre epitopes through connecting peptide between the amino acid at the 78th position and the amino acid at the 79th position of a hepatitis B virus core. The obtained fusion protein has strong immunogenicity and therapeutic effects on hepatitis B infection. | 28 September 2011 |
CN101942013A | Third Military Medical University (TMMU). Chongqing, China. | This innovation offers fresh approaches and techniques for the creation of a potent therapeutic vaccine against hepatitis B and has the potential to reduce immune tolerance to the disease, restore cell-mediated immune function, and effectively inhibit and eradicate the hepatitis B virus. | 12 January 2011 |
CN101618211A | Zhuhai Lianbang Pharmaceutical Co., Ltd., China | This hepatitis B polypeptide vaccine contains polypeptides that can stimulate a CTL reaction, and has a polypeptide sequence that contains one mutational amino-acid residue with the mutation positioned at an N-terminal end or a C-terminal end of the peptide segment. The vaccine contains one or more types of polypeptides and is used for treating chronic hepatitis B infection. | 6 January 2010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudu, S.A.; Jimoh, A.O.; Ibrahim, K.G.; Alshrari, A.S. Hepatitis B Therapeutic Vaccine: A Patent Review. Pharmaceuticals 2022, 15, 1542. https://doi.org/10.3390/ph15121542
Hudu SA, Jimoh AO, Ibrahim KG, Alshrari AS. Hepatitis B Therapeutic Vaccine: A Patent Review. Pharmaceuticals. 2022; 15(12):1542. https://doi.org/10.3390/ph15121542
Chicago/Turabian StyleHudu, Shuaibu Abdullahi, Abdulgafar Olayiwola Jimoh, Kasimu Ghandi Ibrahim, and Ahmed Subeh Alshrari. 2022. "Hepatitis B Therapeutic Vaccine: A Patent Review" Pharmaceuticals 15, no. 12: 1542. https://doi.org/10.3390/ph15121542
APA StyleHudu, S. A., Jimoh, A. O., Ibrahim, K. G., & Alshrari, A. S. (2022). Hepatitis B Therapeutic Vaccine: A Patent Review. Pharmaceuticals, 15(12), 1542. https://doi.org/10.3390/ph15121542