The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Plant Material and Essential Oil Preparation
3.2. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.3. Insecticidal and Acaricidal Experiments
3.3.1. Target Organisms
3.3.2. Insecticidal and Acaricidal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poveda, J. Insect frass in the development of sustainable agriculture. A review. Agron. Sustain. Dev. 2021, 41, 5. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, D.; Li, W.; Yan, X.; Qiao, J.; Caiyin, Q. Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering 2022, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Petrelli, R.; Nzekoue, F.K.; Cappellacci, L.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Sut, S.; Dall’Acqua, S.; et al. Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind. Crops Prod. 2019, 137, 356–366. [Google Scholar] [CrossRef]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable crop and weed management in the era of the EU Green Deal: A survival guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Tian, T.; Sun, B.; Li, H.; Li, Y.; Gao, T.; Li, Y.; Zeng, Q.; Wang, Q. Commercialization and Regulatory Requirements of Biopesticides in China. In Agriculturally Important Microorganisms; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; Springer: Singapore, 2016; Volume 1, pp. 237–254. [Google Scholar] [CrossRef]
- Zoubiri, S.; Baaliouamer, A. Potentiality of plants as source of insecticide principles. J. Saudi Chem. Soc. 2014, 18, 925–938. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Petrelli, R.; Cappellacci, L.; Buccioni, M.; Palmieri, A.; Canale, A.; Benelli, G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020, 136, 111037. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Maggi, F.; Wandjou, J.G.N.; Koné-Bamba, D.; Sagratini, G.; Vittori, S.; Caprioli, G. Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Ind. Crops Prod. 2019, 132, 377–385. [Google Scholar] [CrossRef]
- Giordani, C.; Spinozzi, E.; Baldassarri, C.; Ferrati, M.; Cappellacci, L.; Nieto, D.S.; Pavela, R.; Ricciardi, R.; Benelli, G.; Petrelli, R.; et al. Insecticidal Activity of Four Essential Oils Extracted from Chilean Patagonian Plants as Potential Organic Pesticides. Plants 2022, 11, 2012. [Google Scholar] [CrossRef]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavoir, A.V.; Michel, T.; Poëssel, J.L.; Siegwart, M. Challenges in Developing Botanical Biopesticides for Pest Control. In Extended Biocontrol; Fauvergue, X., Rusch, A., Barret, M., Bardin, M., Jacquin-Joly, M., Malausa, T., Lannou, C., Eds.; Springer: Dordrecht, The Netherlands, 2022; Volume 3, pp. 161–170. [Google Scholar] [CrossRef]
- Millogo-Rasolodimby, J. Myrothamnaceae, Famille 94. In Flore de Madagascar et des Comores; Publications du Museum National d’Historie Naturelle: Paris, France, 1991; pp. 81–85. [Google Scholar]
- Scott, P. Resurrection plants and the secrets of eternal leaves. Ann. Bot. 2000, 85, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Boiteau, P. Sur deux plantes autochtones de Madagascar utilisées à la manière du Chanvre comme stupéfiant. Comptes Rendus Acad. Sci. 1967, 264, 41–42. [Google Scholar]
- Razafindrambao, R. Contribution à l’inventaire des Plantes Médicinales des Hauts Plateaux de Madagascar. In Contribution à L’Inventaire des Plantes Médicinales de Madagascar; Debray, M., Jacquemin, H., Razafindrambao, R., Eds.; ORSTOM: Paris, France, 1971; pp. 49–150. [Google Scholar]
- Nicoletti, M.; Maggi, F.; Papa, F.; Vittori, S.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Ralaibia, E.; et al. In vitro biological activities of the essential oil from the ‘resurrection plant’ Myrothamnus moschatus (Baillon) Niedenzu endemic to Madagascar. Nat. Prod. Res. 2012, 26, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Rasoanaivo, P.; Ralaibia, E.; Maggi, F.; Papa, F.; Vittori, S.; Nicoletti, M. Phytochemical investigation of the essential oil from the ‘resurrection plant’ Myrothamnus moschatus (Baillon) Niedenzu endemic to Madagascar. J. Essent. Oil Res. 2012, 24, 299–304. [Google Scholar] [CrossRef]
- Suarez Rodriguez, M.C.; Edsgärd, D.; Hussain, S.S.; Alquezar, D.; Rasmussen, M.; Gilbert, T.; Nielsen, B.H.; Bartels, D.; Mundy, J. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 2010, 63, 212–228. [Google Scholar] [CrossRef] [PubMed]
- Yobi, A.; Wone, B.W.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J. 2012, 72, 983–999. [Google Scholar] [CrossRef]
- Yobi, A.; Wone, B.W.; Xu, W.; Alexander, D.C.; Guo, L.; Ryals, J.A.; Oliver, M.J.; Cushman, J.C. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol. Plant 2013, 6, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.L.; Ma, S.C.; Yu, J.D.; Yang, S.Y.; Xiao, X.Y.; Hu, J.Y.; Lu, Y.; Shaw, P.C.; But, P.P.H.; Lin, R.C. Selaginellin A and B, two novel natural pigments isolated from Selaginella tamariscina. Chem. Pharm. Bull. 2008, 56, 982–984. [Google Scholar] [CrossRef]
- Gao, L.L.; Yin, S.L.; Li, Z.L.; Sha, Y.; Pei, Y.H.; Shi, G.; Jing, Y.; Hua, H. Three novel sterols isolated from Selaginella tamariscina with antiproliferative activity in leukemia cells. Planta Med. 2007, 73, 1112–1115. [Google Scholar] [CrossRef]
- Kamng’ona, A.; Moore, J.P.; Lindsey, G.; Brandt, W. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia. J. Enzym. Inhib. Med. Chem. 2011, 26, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Randrianarivo, E.; Maggi, F.; Nicoletti, M.; Rasoanaivo, P. Evaluation of the anticonvulsant activity of the essential oil of Myrothamnus moschatus in convulsion induced by pentylenetetrazole and picrotoxin. Asian Pac. J. Trop. Biomed. 2016, 6, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquidpartition chromatography. J. Chromatogr. 1963, 2, 463–471. [Google Scholar] [CrossRef]
- Randrianarivo, E.; Rasoanaivo, P.; Nicoletti, M.; Razafimahefa, S.; Lefebvre, M.; Papa, F.; Vittori, S.; Maggi, F. Essential-Oil Polymorphism in the ‘Resurrection Plant’ Myrothamnus moschatus and Associated Ethnobotanical Knowledge. Chem. Biodivers. 2013, 10, 1987–1998. [Google Scholar] [CrossRef]
- Chagonda, L.S.; Makanda, C.; Chalcat, J.C. Essential oils of four wild and semi-wild plants from Zimbabwe: Colospermum mopane (Kirk ex Benth.) Kirk ex Leonard, Helichrysum splendidum (Thunb.) Less, Myrothamnus flabellifolia (Welw.) and Tagetes minuta L. J. Essent. Oil Res. 1999, 11, 573–578. [Google Scholar] [CrossRef]
- Viljoen, A.M.; Klepser, M.E.; Ernst, E.J.; Keele, D.; Roling, E.; Van Vuuren, S.; Demirci, B.; BaSer, K.H.C.; van Wyk, B.-E.; Jäger, A.K. The composition and antimicrobial activity of the essential oil of the resurrection plant Myrothamnus flabellifolius. S. Afr. J. Bot. 2002, 68, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Haag, J.D.; Gould, M.N. Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chemother. Pharmacol. 1994, 34, 477–483. [Google Scholar] [CrossRef]
- Kerrola, K.; Galambosi, B.; Kallio, H. Volatile components and odor intensity of four phenotypes of Hyssop (Hyssopus officinalis L.). J. Agric. Food Chem. 1994, 42, 776–781. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Ribeiro, L.P.; Akhtar, Y.; Vendramim, J.D.; Isman, M.B. Comparative bioactivity of selected seed extracts from Brazilian Annona species and an acetogenin-based commercial bioinsecticide against Trichoplusia ni and Myzus persicae. Crop Prot. 2014, 62, 100–106. [Google Scholar] [CrossRef]
- de Souza Tavares, W.; Akhtar, Y.; Gonçalves, G.L.P.; Zanuncio, J.C.; Isman, M.B. Turmeric powder and its derivatives from Curcuma longa rhizomes: Insecticidal effects on cabbage looper and the role of synergists. Sci. Rep. 2016, 6, 34093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Seo, S.M.; Kim, J.; Kang, J.; Koh, S.H.; Ahn, Y.J.; Kang, K.S.; Park, I.K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol. 2014, 113, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ulukanli, Z.; Karabörklü, S.; Cenet, M.; Sagdic, O.; Ozturk, I.; Balcilar, M. Essential oil composition, insecticidal and antibacterial activities of Salvia tomentosa Miller. Med. Chem. Res. 2013, 22, 832–840. [Google Scholar] [CrossRef]
- Aref, S.P.; Valizadegan, O. Eucalyptus krueseana Muel essential oil: Chemical composition and insecticidal effects against the lesser grain borer, Rhyzopertha dominica F. (Coleoptera: Bostrichidae). Biharean Biol. 2015, 9, 93–97. [Google Scholar]
- de Andrade Brito, F.; Bacci, L.; da Silva Santana, A.; da Silva, J.E.; de Castro Nizio, D.A.; de Lima Nogueira, P.C.; de Fátima Arrigoni-Blank, M.; Melo, C.R.; de Melo, J.O.; Blank, A.F. Toxicity and behavioral alterations caused by essential oils of Croton tetradenius and their major compounds on Acromyrmex balzani. Crop Prot. 2020, 137, 105259. [Google Scholar] [CrossRef]
- Liang, J.Y.; Wang, W.T.; Zheng, Y.F.; Zhang, D.; Wang, J.L.; Guo, S.S.; Zhang, W.-J.; Du, S.; Zhang, J. Bioactivities and chemical constituents of essential oil extracted from Artemisia anethoides against two stored product insects. J. Oleo Sci. 2017, 66, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Eder, E.; Henschler, D.; Neudecker, T. Mutagenic properties of allylic and α, β-unsaturated compounds: Consideration of alkylating mechanisms. Xenobiotica 1982, 12, 831–848. [Google Scholar] [CrossRef]
- Herrera, J.M.; Zunino, M.P.; Dambolena, J.S.; Pizzolitto, R.P.; Gañan, N.A.; Lucini, E.I.; Zygadlo, J.A. Terpene ketones as natural insecticides against Sitophilus zeamais. Ind. Crops Prod. 2015, 70, 435–442. [Google Scholar] [CrossRef]
- Pavela, R.; Morshedloo, M.R.; Mumivand, H.; Khorsand, G.J.; Karami, A.; Maggi, F.; Desneux, N.; Benelli, G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020, 40, 421–435. [Google Scholar] [CrossRef]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biol. Control. 2022, 176, 105071. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Rani, U.P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Pavela, R.; Pavoni, L.; Desneux, N.; Canale, A.; Maggi, F.; Benelli, G.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021, 94, 899–915. [Google Scholar] [CrossRef]
- Ibrahim, S.S. Essential Oil Nanoformulations as a Novel Method for Insect Pest Control in Horticulture. In Horticultural Crops; Baimaey, H.K., Hamamouch, N., Kolombia, A., Eds.; IntechOpen: London, UK, 2019; pp. 195–209. [Google Scholar]
- Khoshraftar, Z.; Safekordi, A.A.; Shamel, A.; Zaefizadeh, M. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int. J. Environ. Sci. Technol. 2020, 17, 1159–1170. [Google Scholar] [CrossRef]
- Pavela, R.; Murugan, K.; Canale, A.; Benelli, G. Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crops Prod. 2017, 97, 338–344. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crops Prod. 2013, 113, 46–49. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: London, UK, 1971. [Google Scholar]
- Stevenson, P.C.; Isman, M.B.; Belmain, S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crops Prod. 2017, 110, 2–9. [Google Scholar] [CrossRef]
No. | Component a | RI b | RI Lit. c | % d | ID Method e |
---|---|---|---|---|---|
1 | α-pinene | 926 | 932 | 8.8 ± 1.2 | Std |
2 | camphene | 939 | 946 | 0.4 ± 0.1 | Std |
3 | thuja-2,4(10)-diene | 944 | 953 | 0.1 ± 0.0 | RI,MS |
4 | benzaldehyde | 956 | 952 | Tr f | Std |
5 | β-pinene | 967 | 974 | 0.6 ± 0.2 | Std |
6 | p-cymene | 1020 | 1020 | 1.8 ± 0.4 | Std |
7 | limonene | 1024 | 1024 | 0.8 ± 0.2 | Std |
8 | 1,8-cineole | 1026 | 1026 | 0.7 ± 0.2 | Std |
9 | γ-terpinene | 1055 | 1054 | Tr | Std |
10 | p-cymenene | 1086 | 1089 | 0.1 ± 0.0 | RI,MS |
11 | 6-camphenone | 1092 | 1095 | 0.1 ± 0.0 | RI,MS |
12 | trans-p-mentha-2,8-dien-1-ol | 1118 | 119 | 0.3 ± 0.0 | RI,MS |
13 | α-campholenal | 1122 | 1122 | 0.5 ± 0.1 | RI,MS |
14 | trans-pinocarveol | 1137 | 1135 | 37.7 ± 4.2 | Std |
15 | trans-pinocamphone | 1157 | 1158 | 0.1 ± 0.0 | RI,MS |
16 | pinocarvone | 1159 | 1160 | 20.8 ± 3.1 | RI,MS |
17 | p-mentha-1,5-dien-8-ol | 1164 | 1166 | Tr | RI,MS |
18 | cis-pinocamphone | 1168 | 1172 | Tr | RI,MS |
19 | p-cymen-8-ol | 1184 | 1179 | 0.5 ± 0.2 | RI,MS |
20 | trans-p-mentha-1(7),8-dien-2-ol | 1184 | 1187 | 2.2 ± 0.4 | RI,MS |
21 | myrtenal | 1189 | 1194 | 1.8 ± 0.3 | Std |
22 | myrtenol | 1191 | 1194 | 1.5 ± 0.3 | Std |
23 | cis-piperitol | 1196 | 1195 | 0.3 ± 0.1 | RI,MS |
24 | trans-carveol | 1215 | 1215 | 0.7 ± 0.1 | RI,MS |
25 | 4-methylene | 1216 | 1216 | 0.5 ± 0.1 | RI,MS |
26 | cis-p-mentha-1(7),8-dien-2-ol | 1224 | 1227 | 1.4 ± 0.3 | RI,MS |
27 | carvone | 1239 | 1239 | 0.2 ± 0.0 | Std |
28 | perilla aldehyde | 1268 | 1269 | 0.1 ± 0.0 | RI,MS |
29 | bornyl acetate | 1280 | 1287 | 0.2 ± 0.1 | Std |
30 | trans-pinocarvyl acetate | 1295 | 1298 | 0.1 ± 0.0 | RI,MS |
31 | myrtenyl acetate | 1321 | 1324 | 0.5 ± 0.1 | RI,MS |
32 | perillyl acetate | 1433 | 1436 | 4.9 ± 0.9 | RI,MS |
33 | β-selinene | 1476 | 1489 | 10.2 ± 1.3 | RI,MS |
34 | α-selinene | 1481 | 1498 | 0.1 ± 0.0 | RI,MS |
Total identified (%) | 98.2 | ||||
Chemical classes (%) | |||||
Monoterpene hydrocarbons | 12.6 | ||||
Oxygenated monoterpenes | 75.3 | ||||
Sesquiterpene hydrocarbons | 10.2 | ||||
Others | Tr |
Arthropod Species and Instar | Unit | LD50 | CI95 a | LC90 | CI95 b | χ2 (d.f.) | p-Value |
---|---|---|---|---|---|---|---|
Musca domestica adult | µg adult−1 | 22.7 | 17.4–30.3 | 109.6 | 75.7–175.8 | 1.545 (4) | 0.818 ns |
Spodoptera littoralis larva | µg larva−1 | 35.6 | 30.1–41.3 | 79.2 | 66.1–101.3 | 0.933 (4) | 0.837 ns |
Culex quinquefasciatus larva | µg mL−1 | 43.6 | 37.2–50.8 | 111.4 | 90.5–149.5 | 0.750 (3) | 0.212 ns |
Metopolophium dirhodum adult | mL L−1 | 2.4 | 2.2–2.6 | 5.8 | 5.5–7.1 | 1.196 (3) | 0.753 ns |
Tetranychus urticae adult | mL L−1 | 1.2 | 0.9–1.7 | 3.3 | 2.3–8.7 | 2.703 (3) | 0.439 ns |
Arthropod Species and Instar | Unit | LD50 | CI95 a | LC90 | CI95 b | χ2 (d.f.) | p-Value |
---|---|---|---|---|---|---|---|
Musca domestica adult | µg adult−1 | ˃500 | - | - | - | - | - |
Spodoptera littoralis larva | µg larva−1 | 18.2 | 15.6–19.8 | 28.6 | 26.8–32.5 | 2.451 (3) | 0.751 ns |
Culex quinquefasciatus larva | µg mL−1 | 275.4 | 256.8–321.7 | 1285.7 | 1211.5–1354.4 | 3.512 (3) | 0.425 ns |
Metopolophium dirhodum adult | mL L−1 | 12.5 | 9.6–13.8 | 21.7 | 18.6–22.3 | 2.525 (3) | 0.598 ns |
Tetranychus urticae adult | mL L−1 | 5.8 | 5.1–6–8 | 10.1 | 9.2–12.7 | 1.851 (3) | 0.845 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavela, R.; Ferrati, M.; Spinozzi, E.; Maggi, F.; Petrelli, R.; Rakotosaona, R.; Ricciardi, R.; Benelli, G. The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest. Pharmaceuticals 2022, 15, 1511. https://doi.org/10.3390/ph15121511
Pavela R, Ferrati M, Spinozzi E, Maggi F, Petrelli R, Rakotosaona R, Ricciardi R, Benelli G. The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest. Pharmaceuticals. 2022; 15(12):1511. https://doi.org/10.3390/ph15121511
Chicago/Turabian StylePavela, Roman, Marta Ferrati, Eleonora Spinozzi, Filippo Maggi, Riccardo Petrelli, Rianasoambolanoro Rakotosaona, Renato Ricciardi, and Giovanni Benelli. 2022. "The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest" Pharmaceuticals 15, no. 12: 1511. https://doi.org/10.3390/ph15121511
APA StylePavela, R., Ferrati, M., Spinozzi, E., Maggi, F., Petrelli, R., Rakotosaona, R., Ricciardi, R., & Benelli, G. (2022). The Essential Oil from the Resurrection Plant Myrothamnus moschatus Is Effective against Arthropods of Agricultural and Medical Interest. Pharmaceuticals, 15(12), 1511. https://doi.org/10.3390/ph15121511