Exploration of Solanum xanthocarpum Schrad. & Wendl. against Mycobacterium avium Subspecies paratuberculosis and Assessment of Its Immunomodulatory and Anti-Inflammatory Potential
Abstract
:1. Introduction
2. Results
2.1. Collection, Authentication and Extraction of Plant Materials
2.1.1. Macroscopy
2.1.2. Microscopy
2.1.3. Extraction of Active Constituents
2.2. Phytochemical Evaluation
2.2.1. Total Phenolic Content (TFC) & Total Phenolic Content (TPC)
2.2.2. Free Radical Scavenging Activity
2.3. In Vitro Immunomodulatory and Anti-Inflammatory Activity
2.3.1. Pinocytic Activity Assay
2.3.2. Effect of the Extract on Membrane Stabilization Assay
2.4. Confirmed Purity of Mycobacterium avium Culture and Anti-Mycobacterium Activity of Solanum xantocarpum Extracts Using the Resazurin Microtitre Assay (REMA)
2.5. Quantitative Validation of Solamargine, Solasonine & Solasodine
3. Discussion
4. Methodology
4.1. Materials and Chemicals
4.2. Plants Collection and Authentication
4.3. Extraction of Bioactive Compounds
4.4. Phytochemical Estimation
4.4.1. Estimation of TFC and TPC
4.4.2. Assessment of Free Radical Scavenging Potential (DPPH Assay)
4.5. In Vitro Immunomodulatory and Anti-Inflammatory Activity
4.5.1. Pinocytic Activity Assay
4.5.2. Membrane Stabilization Assay
Erythrocyte Suspension Preparation
Heat Induced Haemolysis (HIH)
- B1 = absorbance of reaction control
- B2 = absorbance of test sample
4.6. In Vitro Anti-MAP Activity
4.6.1. Preparation of Mycobacterium avium Subspecies paratuberculosis Suspension
4.6.2. Confirmation of M. paratuberculosis at Molecular Level: Characterization by IS900 PCR
- Forward primer-P90B 5′-GAA GGG TGT TCG GGG CCG TCG CTT AGG-3′
- Reverse primer-P91B 5′-GGC GTT GAG GTC GAT CGC CCA CGT GAC-3′
4.6.3. Resazurin Microtiter Assay (REMA)
4.7. Quality Control
4.7.1. Thin Layer Chromatography
4.7.2. High Performance Thin Layer Chromatography (HPTLC)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hermon-Taylor, J. Mycobacterium avium subspecies paratuberculosis, Crohn’s disease and the Doomsday scenario. Gut Pathog. 2009, 1, 15–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittington, R.; Donat, K.; Weber, M.F.; Kelton, D.; Nielsen, S.S.; Eisenberg, S.; Arrigoni, N.; Juste, R.; Sáez, J.L.; Dhand, N.; et al. Control of paratuberculosis: Who, why and how. A review of 48 countries. BMC Vet. Res. 2019, 15, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejuan, L.; Alvarez, J.; Aranaz, A.; Rodriguez, A.; Romero, B.; Bezos, J.; Mateos, A.; Dominguez, L. Molecular epidemiology of Types I/III strains of Mycobacterium avium subspecies paratuberculosis isolated from goats and cattle. Vet. Microbiol. 2006, 115, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Ayele, W.Y.; Svastova, P.; Roubal, P.; Bartos, M.; Pavlik, I. Mycobacterium avium Subspecies paratuberculosis Cultured from Locally and Commercially Pasteurized Cow’s Milk in the Czech Republic. Appl. Environ. Microbiol. 2005, 71, 1210–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, A.; Mutharia, L.; Raymond, M.; Odumeru, J. Improved template DNA preparation procedure for detection of Mycobacterium avium subsp. paratuberculosis in milk by PCR. J. Microbiol. Methods 2007, 69, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Naser, S.A.; Schwartz, D.; Shafran, I. Isolation of Mycobacterium avium subsp paratuberculosis from breast milk of Crohn’s disease patients. Am. J. Gastroenterol. 2000, 95, 1094. [Google Scholar] [CrossRef]
- Gaukler, S.M.; Linz, G.M.; Sherwood, J.S.; Dyer, N.W.; Bleier, W.J.; Wannemuehler, Y.M.; Nolan, L.K.; Logue, C.M. Escherichia coli, Salmonella, and Mycobacterium avium subsp. paratuberculosis in Wild European Starlings at a Kansas Cattle Feedlot. Avian Dis. 2009, 53, 544–551. [Google Scholar] [CrossRef]
- Chaubey, K.K.; Singh, S.V.; Gupta, S.; Singh, M.; Sohal, J.S.; Kumar, N.; Singh, M.K.; Bhatia, A.K.; Dhama, K. Mycobacterium avium subspecies paratuberculosis—An important food borne pathogen of high public health significance with special reference to india: An update. Veter. Q. 2017, 37, 282–299. [Google Scholar] [CrossRef] [Green Version]
- Sechi, L.A.; Dow, C.T. Mycobacterium avium ss. paratuberculosis Zoonosis—The Hundred Year War—Beyond Crohn’s Disease. Front. Immunol. 2015, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Scanu, A.M.; Bull, T.J.; Cannas, S.; Sanderson, J.D.; Sechi, L.A.; Dettori, G.; Zanetti, S.; Hermon-Taylor, J. Mycobacterium avium Subspecies paratuberculosis Infection in Cases of Irritable Bowel Syndrome and Comparison with Crohn’s Disease and Johne’s Disease: Common Neural and Immune Pathogenicities. J. Clin. Microbiol. 2007, 45, 3883–3890. [Google Scholar] [CrossRef]
- Garvey, M. Mycobacterium Avium Paratuberculosis: A Disease Burden on the Dairy Industry. Animals 2020, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.B.; Barletta, R.G. Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine. Clin. Microbiol. Rev. 2001, 14, 489–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.; Wolff, K.A.; Nguyen, L. Molecular Biology of Drug Resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol. 2012, 374, 53–80. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, A.; Gunaseelan, L.; Porteen, K.; Ronald, B.S.M. Bio-load of Mycobacterium avium subspecies paratuberculosis in buffaloes. Buffalo Bull. 2019, 38, 497–504. [Google Scholar]
- Anwikar, S.; Bhitre, M. Study of the synergistic anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl. and Cassia fistula Linn. Int. J. Ayurveda Res. 2010, 1, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The Ayurvedic Pharmacopoeia of India, Part-I, Volume-I. In The Ayurvedic Pharmacopoeia of India; Government of India, Ministry of Health and Family Welfare: New Delhi, India, 2010; ISBN 9788190595223. [Google Scholar]
- Gupta, R.K.; Hussain, T.; Panigrahi, G.; Das, A.; Singh, G.N.; Sweety, K.; Faiyazuddin, M.; Rao, C.V. Hepatoprotective effect of Solanum xanthocarpum fruit extract against CCl4 induced acute liver toxicity in experimental animals. Asian Pac. J. Trop. Med. 2011, 4, 964–968. [Google Scholar] [CrossRef] [Green Version]
- Tekuri, S.K.; Pasupuleti, S.K.; Konidala, K.K.; Amuru, S.R.; Bassaiahgari, P.; Pabbaraju, N. Phytochemical and pharmacological activities of Solanum surattense Burm. f.—A review. J. Appl. Pharm. Sci. 2019, 9, 126–136. [Google Scholar]
- Manning, E.J.B.; Collins, M.T. Mycobacterium avium subsp. paratuberculosis: Pathogen, pathogenesis and diagnosis. OIE Rev. Sci. Tech. 2001, 20, 133–150. [Google Scholar] [CrossRef]
- Mazlun, M.H.; Sabran, S.F.; Mohamed, M.; Abu Bakar, M.F.; Abdullah, Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules 2019, 24, 2449. [Google Scholar] [CrossRef] [Green Version]
- Villaume, S.A.; Fu, J.; N’Go, I.; Liang, H.; Lou, H.; Kremer, L.; Pan, W.; Vincent, S.P. Natural and Synthetic Flavonoids as Potent Mycobacterium tuberculosis UGM Inhibitors. Chemistry 2017, 23, 10423–10429. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poojari, A.C.; Bhalerao, S.A. Phytochemical and Pharmacological Profile of Solanum xanthocarpum Schrad and Wendel: A Review. World J. Pharm. Res. 2018, 7, 482–491. [Google Scholar]
- Li, C.; Dong, Z.; Zhang, B.; Huang, Q.; Liu, G.; Fu, X. Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera leaves. Carbohydr. Polym. 2020, 234, 115897. [Google Scholar] [CrossRef]
- Yesmin, S.; Paul, A.; Naz, T.; Rahman, A.B.M.A.; Akhter, S.F.; Wahed, M.I.I.; Bin Emran, T.; Siddiqui, S.A. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin. Phytosci. 2020, 6, 59. [Google Scholar] [CrossRef]
- Schena, E.; Nedialkova, L.; Borroni, E.; Battaglia, S.; Cabibbe, A.M.; Niemann, S.; Utpatel, C.; Merker, M.; Trovato, A.; Hofmann-Thiel, S.; et al. Delamanid susceptibility testing ofMycobacterium tuberculosisusing the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system. J. Antimicrob. Chemother. 2016, 71, 1532–1539. [Google Scholar] [CrossRef] [Green Version]
- Chester, K.; Paliwal, S.; Khan, W.; Ahmad, S. UPLC-ESI-MS/MS and HPTLC Method for Quantitative Estimation of Cytotoxic Glycosides and Aglycone in Bioactivity Guided Fractions of Solanum nigrum L. Front. Pharmacol. 2017, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Srivastava, V.; Kabir, M.; Samal, M.; Insaf, A.; Ibrahim, M.; Zahiruddin, S.; Ahmad, S. Development of Synergy-Based Combination for Learning and Memory Using in vitro, in vivo and TLC-MS-Bioautographic Studies. Front. Pharmacol. 2021, 12, 678611. [Google Scholar] [CrossRef]
- Sarwar Raju, G.; Mizanur Rahman Moghal, M.; Masudur Rahman Dewan, S.; Nurul Amin, M.; Mustahsan Billah, M. Characterization of phytoconstituents and evaluation of total phenolic content, anthelmintic, and antimicrobial activities of Solanum violaceum Ortega. Avicenna J. Phytomedicine 2013, 3, 313. [Google Scholar]
- Okmen, B.; Sigva, H.O.; Mutlu, S.; Doganlar, S.; Yemenicioglu, A.; Frary, A. Total Antioxidant Activity and Total Phenolic Contents in Different Turkish Eggplant (Solanum Melongena L.) Cultivars. Int. J. Food Prop. 2009, 12, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Cai, X.; Huang, M.; Wang, S. A specific peptide with immunomodulatory activity from Pseudostellaria heterophylla and the action mechanism. J. Funct. Foods 2020, 68, 103887. [Google Scholar] [CrossRef]
- Boothapandi, M.; Ramanibai, R. Immunomodulatory activity of Indigofera tinctoria leaf extract on in vitro macrophage re-sponses and lymphocyte proliferation. Int. J. Pharm. Pharm. Sci. 2016, 8, 58–63. [Google Scholar]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Okoli, C.O.; Akah, P.A.; Onuoha, N.J.; Okoye, T.C.; Nwoye, A.C.; Nworu, C.S. Acanthus montanus: An experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complement. Altern. Med. 2008, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Influence of Boiling, Steaming and Frying of Selected Leafy Vegetables on the In Vitro Anti-inflammation Associated Biological Activities. Plants 2018, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chui, L.W.; King, R.; Lu, P.; Manninen, K.; Sim, J. Evaluation of four DNA extraction methods for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 2004, 48, 39–45. [Google Scholar] [CrossRef]
- Pourmir, A.R.; Bahrmand, A.R.; Ettefagh Far, S.H.E.; Hadizadeh Tasbiti, A.R.H.; Yari, S. Rapid diagnosis of mycobacterium tuberculosis with electrical impedance spectroscopy in suspensions using interdigitated microelectrode. J. Anal. Chem. 2016, 71, 676–684. [Google Scholar] [CrossRef]
- McFaland, J. The Nephelometer: An instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. 1907, 49, 1176–1178. [Google Scholar] [CrossRef] [Green Version]
- Millar, D.S.; Withey, S.J.; Tizard, M.L.V.; Ford, J.G.; Hermon-Taylor, J. Solid-Phase Hybridization Capture of Low-Abundance Target DNA Sequences: Application to the Polymerase Chain Reaction Detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp. silvaticum. Anal. Biochem. 1995, 226, 325–330. [Google Scholar] [CrossRef]
Solanum xanthocarpum Schrad. & Wendl. | ||||
---|---|---|---|---|
S. No. | Biological Activity | Aqueous Extract (SXAQ) | Hydro-Alcoholic Extract (SXHA) | Alcoholic Extract (SXA) |
1 | IC50 value against free radicals (DPPH inhibition) | 25.22 | 28.71 | 15.16 |
2 | MIC50 value against MAP activity mg/mL | 3.125 | 0.195 | 0.195 |
3 | IC50 value against heat-induced haemolysis | 239 | 139 | 209 |
Validation Parameters | |||
---|---|---|---|
Parameters | Solamargine | Solasonine | Solasodine |
Wavelength | 540 | 540 | 540 |
Linearity range (ng/spot) | 20–2000 | 20–2000 | 20–2000 |
Regression equation | y = 1.893x + 2033.5 | y = 1.3154x + 36.701 | y = 1.4892x + 1086 |
Regression coefficient | 0.9796 | 0.9994 | 0.9761 |
Slope | 1.893 | 1.3154 | 1.4892 |
LOD (ng/spot) | 14.59 | 11.51 | 5.76 |
LOQ (ng/spot) | 24.24 | 34.89 | 17.45 |
Precision (% RSD) | 0.265 | 0.665 | 0.235 |
Drug content recovered | 112.08–112.31% | 101.29–102.83% | 95.6–111.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, V.; Navabharath, M.; Gupta, S.; Singh, S.V.; Ahmad, S. Exploration of Solanum xanthocarpum Schrad. & Wendl. against Mycobacterium avium Subspecies paratuberculosis and Assessment of Its Immunomodulatory and Anti-Inflammatory Potential. Pharmaceuticals 2022, 15, 1367. https://doi.org/10.3390/ph15111367
Srivastava V, Navabharath M, Gupta S, Singh SV, Ahmad S. Exploration of Solanum xanthocarpum Schrad. & Wendl. against Mycobacterium avium Subspecies paratuberculosis and Assessment of Its Immunomodulatory and Anti-Inflammatory Potential. Pharmaceuticals. 2022; 15(11):1367. https://doi.org/10.3390/ph15111367
Chicago/Turabian StyleSrivastava, Varsha, Manthena Navabharath, Saurabh Gupta, Shoor Vir Singh, and Sayeed Ahmad. 2022. "Exploration of Solanum xanthocarpum Schrad. & Wendl. against Mycobacterium avium Subspecies paratuberculosis and Assessment of Its Immunomodulatory and Anti-Inflammatory Potential" Pharmaceuticals 15, no. 11: 1367. https://doi.org/10.3390/ph15111367
APA StyleSrivastava, V., Navabharath, M., Gupta, S., Singh, S. V., & Ahmad, S. (2022). Exploration of Solanum xanthocarpum Schrad. & Wendl. against Mycobacterium avium Subspecies paratuberculosis and Assessment of Its Immunomodulatory and Anti-Inflammatory Potential. Pharmaceuticals, 15(11), 1367. https://doi.org/10.3390/ph15111367