Repurposing Lenvatinib as A Potential Therapeutic Agent against Thyroid Eye Disease by Suppressing Adipogenesis in Orbital Adipose Tissues
Abstract
1. Introduction
2. Results and Discussion
2.1. Contribution of Hyperplasia to Oat Expansion in TED
2.2. Perivascular Distribution of Smaller-Sized Adipocytes in OAT in TED
2.3. Role of the Vascular Endothelial Growth Factor Receptor Pathway in Adipogenesis
2.4. Effects of Lenvatinib, A VEGFR Inhibitor, on Adipogenesis
3. Materials and Methods
3.1. Sample Collection and Patients
3.2. Quantification of Adipocyte Size and Number
3.3. In-Vitro Differentiation
3.4. Immunofluorescence and Imaging
3.5. RNA-Seq
3.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
3.7. Treatment and Quantification of Adipocytes
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perros, P.; Kendall-Taylor, P. Thyroid-associated ophthalmopathy: Pathogenesis and clinical management. Baillieres Clin. Endocrinol. Metab. 1995, 9, 115–135. [Google Scholar] [CrossRef]
- Paschke, R.; Ludgate, M. The thyrotropin receptor in thyroid diseases. N. Engl. J. Med. 1997, 337, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Forbes, G.; Gorman, C.A.; Brennan, M.D.; Gehring, D.G.; Ilstrup, D.M.; Earnest, F., IV. Ophthalmopathy of Graves’ disease: Computerized volume measurements of the orbital fat and muscle. AJNR. Am. J. Neuroradiol. 1986, 7, 651–656. [Google Scholar] [PubMed]
- Hallin, E.S.; Feldon, S.E. Graves’ ophthalmopathy: II. Correlation of clinical signs with measures derived from computed tomography. Br. J. Ophthalmol. 1988, 72, 678–682. [Google Scholar] [CrossRef]
- Kahaly, G.J. Imaging in thyroid-associated orbitopathy. Eur. J. Endocrinol. 2001, 145, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Hiromatsu, Y.; Yang, D.; Bednarczuk, T.; Miyake, I.; Nonaka, K.; Inoue, Y. Cytokine profiles in eye muscle tissue and orbital fat tissue from patients with thyroid-associated ophthalmopathy. J. Clin. Endocrinol. Metab. 2000, 85, 1194–1199. [Google Scholar] [CrossRef]
- Hansen, C.; Fraiture, B.; Rouhi, R.; Otto, E.; Förster, G.; Kahaly, G. HPLC glycosaminoglycan analysis in patients with Graves’ disease. Clin. Sci. 1997, 92, 511–517. [Google Scholar] [CrossRef]
- Guo, N.; Baglole, C.J.; O’Loughlin, C.W.; Feldon, S.E.; Phipps, R.P. Mast cell-derived prostaglandin D2 controls hyaluronan synthesis in human orbital fibroblasts via DP1 activation: Implications for thyroid eye disease. J. Biol. Chem. 2010, 285, 15794–15804. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.S.; Afifiyan, N.F.; Hwang, C.J.; Chong, K.; Haider, U.; Richards, P.; Gianoukakis, A.G.; Smith, T.J. Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J. Clin. Endocrinol. Metab. 2010, 95, 430–438. [Google Scholar] [CrossRef]
- Koumas, L.; Smith, T.J.; Phipps, R.P. Fibroblast subsets in the human orbit: Thy-1+ and Thy-1-subpopulations exhibit distinct phenotypes. Eur. J. Immunol. 2002, 32, 477–485. [Google Scholar] [CrossRef]
- Hatton, M.P.; Rubin, P.A. The pathophysiology of thyroid-associated ophthalmopathy. Ophthalmol. Clin. N. Am. 2002, 15, 113–119. [Google Scholar] [CrossRef]
- Douglas, R.S.; Kahaly, G.J.; Ugradar, S.; Elflein, H.; Ponto, K.A.; Fowler, B.T.; Dailey, R.; Harris, G.J.; Schiffman, J.; Tang, R.; et al. Teprotumumab efficacy, safety, and durability in longer-duration thyroid eye disease and re-treatment: OPTIC-X study. Ophthalmology 2022, 129, 438–449. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.; Jin, W.; Lee, H.J. Acute exercise regulates adipogenic gene expression in white adipose tissue. Biol. Sport. 2016, 33, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Zwick, R.K.; Guerrero-Juarez, C.F.; Horsley, V.; Plikus, M.V. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 2018, 27, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Q.; Lane, M.D. Adipogenesis: From stem cell to adipocyte. Ann. Rev. Biochem. 2012, 81, 715–736. [Google Scholar] [CrossRef]
- Kliewer, S.A.; Lenhard, J.M.; Willson, T.M.; Patel, I.; Morris, D.C.; Lehmann, J.M. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 1995, 83, 813–819. [Google Scholar] [CrossRef]
- Feldon, S.E.; O’Loughlin, C.W.; Ray, D.M.; Landskroner-Eiger, S.; Seweryniak, K.E.; Phipps, R.P. Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am. J. Pathol. 2006, 169, 1183–1193. [Google Scholar] [CrossRef]
- Khong, J.J.; McNab, A.A.; Ebeling, P.R.; Craig, J.E.; Selva, D. Pathogenesis of thyroid eye disease: Review and update on molecular mechanisms. Br. J. Ophthalmol. 2016, 100, 142–150. [Google Scholar] [CrossRef]
- Kolonin, M.G.; Saha, P.K.; Chan, L.; Pasqualini, R.; Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 2004, 10, 625–632. [Google Scholar] [CrossRef]
- Rupnick, M.A.; Panigrahy, D.; Zhang, C.Y.; Dallabrida, S.M.; Lowell, B.B.; Langer, R.; Folkman, M.J. Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. USA 2002, 99, 10730–10735. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, S.; Manabe, I.; Nagasaki, M.; Hosoya, Y.; Yamashita, H.; Fujita, H.; Ohsugi, M.; Tobe, K.; Kadowaki, T.; Nagai, R.; et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 2007, 56, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; et al. Dynamics of fat cell turnover in humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.A.; Tao, C.; Gupta, R.K.; Scherer, P.E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013, 19, 1338–1344. [Google Scholar] [CrossRef]
- Kim, D.W.; Taneja, K.; Hoang, T.; Santiago, C.P.; McCulley, T.J.; Merbs, S.L.; Mahoney, N.R.; Blackshaw, S.; Rajaii, F. Transcriptomic profiling of control and thyroid-associated orbitopathy (TAO) orbital fat and TAO orbital fibroblasts undergoing adipogenesis. Investig. Ophthalmol. Vis. Sci. 2021, 62, 24. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Coenen, M.J.; Scherer, P.E.; Bahn, R.S. Evidence for enhanced adipogenesis in the orbits of patients with Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 2004, 89, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y. Angiogenesis modulates adipogenesis and obesity. J. Clin. Investig. 2007, 117, 2362–2368. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xue, Y.; Pang, L.; Shangguan, Z.; Pan, Y. Lysimachia Capillipes inhibit adipogenesis via angiogenesis inhibition. Drug Res. 2019, 69, 284–290. [Google Scholar] [CrossRef]
- Jin, H.; Li, D.; Wang, X.; Jia, J.; Chen, Y.; Yao, Y.; Zhao, C.; Lu, X.; Zhang, S.; Togo, J.; et al. VEGF and VEGFB play balancing roles in adipose differentiation, gene expression, and function. Endocrinology 2018, 159, 2036–2049. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Feng, Z.; Sheng, J.; Dong, A.; Zhang, M.; Cao, L. miR-345-5p regulates adipogenesis via targeting VEGF-B. Aging 2020, 12, 17114–17121. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling—In control of vascular function. Nat. Rev. Mol. Cell Biol. 2006, 7, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Hu, J.; Zhang, L.; Shen, N.; Chen, H.; Zhang, F. Repurposing Lenvatinib as A Potential Therapeutic Agent against Thyroid Eye Disease by Suppressing Adipogenesis in Orbital Adipose Tissues. Pharmaceuticals 2022, 15, 1305. https://doi.org/10.3390/ph15111305
Cheng L, Hu J, Zhang L, Shen N, Chen H, Zhang F. Repurposing Lenvatinib as A Potential Therapeutic Agent against Thyroid Eye Disease by Suppressing Adipogenesis in Orbital Adipose Tissues. Pharmaceuticals. 2022; 15(11):1305. https://doi.org/10.3390/ph15111305
Chicago/Turabian StyleCheng, Lu, Jing Hu, Ling Zhang, Ning Shen, Hui Chen, and Fang Zhang. 2022. "Repurposing Lenvatinib as A Potential Therapeutic Agent against Thyroid Eye Disease by Suppressing Adipogenesis in Orbital Adipose Tissues" Pharmaceuticals 15, no. 11: 1305. https://doi.org/10.3390/ph15111305
APA StyleCheng, L., Hu, J., Zhang, L., Shen, N., Chen, H., & Zhang, F. (2022). Repurposing Lenvatinib as A Potential Therapeutic Agent against Thyroid Eye Disease by Suppressing Adipogenesis in Orbital Adipose Tissues. Pharmaceuticals, 15(11), 1305. https://doi.org/10.3390/ph15111305