The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction
Abstract
:1. Introduction
2. Provenance and Properties
3. Metabolism and Toxicity
4. Mechanism of Action
5. Physiological and Therapeutic Roles
6. Effects on the Female Reproduction
7. Application in Reproductive Biology and Medicine
8. Conclusions and Possible Directions of Further Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, E.; Mahdy, H. Anatomy, abdomen and pelvis, ovary. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ruiz, D.; Egea, J.; Gil, M.I.; Tomás-Barberán, F.A. Characterization and quantitation of phenolic compounds in new apricot (Prunus Armeniaca L.) varieties. J. Agric. Food Chem. 2005, 53, 9544–9552. [Google Scholar] [CrossRef]
- Vardi, N.; Parlakpinar, H.; Ozturk, F.; Ates, B.; Gul, M.; Cetin, A.; Erdogan, A.; Otlu, A. Potent protective effect of apricot and beta-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem. Toxicol. 2008, 46, 3015–3022. [Google Scholar] [CrossRef]
- Ozturk, F.; Gul, M.; Ates, B.; Ozturk, I.C.; Cetin, A.; Vardi, N.; Otlu, A.; Yilmaz, I. Protective effect of apricot (Prunus Armeniaca L.) on hepatic steatosis and damage induced by carbon tetrachloride in Wistar rats. Br. J. Nutr. 2009, 102, 1767–1775. [Google Scholar] [CrossRef] [Green Version]
- Gezer, I.; Haciseferogullari, H.; Ozcan, M.M.; Arslan, D.; Asma, B.M.; Unver, A. Physico-chemical properties of apricot (Prunus armeniaca L.) kernels. South-West. J. Hortic. Biol. Environ. 2011, 2, 1–13. Available online: http://biozoojournals.ro/swjhbe/v2n1/01.swjhbe.v2n1.Gezer.pdf (accessed on 26 August 2021).
- Salama, R.H.; Ramadan, A.E.R.G.; Alsanory, T.A.; Herdan, M.O.; Fathallah, O.; Alsanory, A. Experimental and therapeutic trials of Amygdalin. Int. J. Biochem. Pharmacol. 2019, 1, 21–26. [Google Scholar] [CrossRef]
- Enculescu, M. Vitamin B17/Laetrile/Amygdalin (A review). Bull. USAMV Anim. Sci. Biotechnol. 2009, 66, 20–25. [Google Scholar] [CrossRef]
- Del Cueto, J.; Ionescu, I.A.; Pičmanová, M.; Gericke, O.; Motawia, M.S.; Olsen, C.E.; Campoy, J.A.; Dicenta, F.; Møller, B.L.; Sánchez-Pérez, R. Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering. Front. Plant. Sci. 2017, 8, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Xiong, W.; Lei, T.; Wang, H.; Sun, M.; Hao, E.; Wang, Z.; Huang, X.; Deng, S.; Deng, J.; et al. Amygdalin ameliorates the progression of Atherosclerosis in LDL receptor-deficient mice. Mol. Med. Rep. 2017, 16, 8171–8179. [Google Scholar] [CrossRef] [Green Version]
- Yamshanov, V.A.; Kovan’ko, E.G.; Pustovalov, Y.I. Effects of Amygdaline from apricot kernel on transplanted tumors in mice. Bull. Exp. Biol. Med. 2016, 160, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Milazzo, S.; Horneber, M.; Ernst, E. Laetrile treatment for cancer. Cochrane Database Syst. Rev. 2015, 2015, CD005476. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Nguyen, C.; Tran, P.N. Physician beware: Severe Cyanide toxicity from Amygdalin tablets ingestion. Case Rep. Emerg. Med. 2017, 2017, e4289527. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, Z.; Zainab, B.; Khan, S.; Abbasi, A.M.; Elshikh, M.S.; Munir, A.; Al-Ghamdi, A.A.; Alajmi, A.H.; Alsubaie, Q.D.; Mustafa, A.E.-Z.M.A. In silico authentication of Amygdalin as a potent anticancer compound in the bitter kernels of family Rosaceae. Saudi J. Biol. Sci. 2020, 27, 2444–2451. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin content of seeds, kernels and food products commercially—Available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Determination of Amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 2015, 170, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Xu, X. Advanced research on anti-tumor effects of Amygdalin. J. Cancer Res. Ther. 2014, 10 (Suppl. 1), 3–7. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Kim, P.; Kim, C.-J.; Lee, H.-J.; Shim, I.; Yin, C.S.; Yang, Y.; Hahm, D.-H. Antinociceptive effect of Amygdalin isolated from Prunus Armeniaca on Formalin-induced pain in rats. Biol. Pharm. Bull. 2008, 31, 1559–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-K.; Shin, M.-S.; Yang, H.-Y.; Lee, J.-W.; Kim, Y.-S.; Lee, M.-H.; Kim, J.; Kim, K.-H.; Kim, C.-J. Amygdalin induces Apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol. Pharm. Bull. 2006, 29, 1597–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiagang, D.; Li, C.; Wang, H.; Hao, E.; Du, Z.; Bao, C.; Lv, J.; Wang, Y. Amygdalin mediates relieved Atherosclerosis in Apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem. Biophys. Res. Commun. 2011, 411, 523–529. [Google Scholar] [CrossRef]
- Kopčeková, J.; Kolesárová, A.; Kováčik, A.; Kováčiková, E.; Gažarová, M.; Chlebo, P.; Valuch, J.; Kolesárová, A. Influence of long-term consumption of bitter Apricot seeds on risk factors for cardiovascular diseases. J. Environ. Sci. Health B 2018, 53, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Kolesár, E.; Halenár, M.; Kolesárová, A.; Massányi, P. Natural plat toxicant—Cyanogenic glycoside amygdalin: Characteristic, metabolism and the effect on animal reproduction. J. Microbiol. Biotechnol. Food Sci. 2015, 2021, 49–50. [Google Scholar]
- Kolesar, E.; Tvrda, E.; Halenar, M.; Schneidgenova, M.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Kovacik, A.; Kovacikova, E.; Massanyi, P.; et al. Assessment of rabbit spermatozoa characteristics after Amygdalin and Apricot seeds exposure in vivo. Toxicol. Rep. 2018, 5, 679–686. [Google Scholar] [CrossRef]
- Halenar, M.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Zbynovska, K.; Tusimova, E.; Kovacik, A.; Kolesarova, A. The evaluation of endocrine regulators after intramuscular and oral application of cyanogenic glycoside Amygdalin in rabbits. Biologia 2017, 72, 468–474. [Google Scholar] [CrossRef]
- Kolesárová, A.; Džurňáková, V.; Michalcová, K.; Baldovská, S.; Chrastinová, Ľ.; Ondruška, Ľ.; Jurčík, R.; Tokárová, K.; Kováčiková, E.; Kováčik, A.; et al. The effect of Apricot seeds on microscopic structure of rabbit liver. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 321–324. [Google Scholar] [CrossRef]
- Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent updates and future perspectives about Amygdalin as a potential anticancer agent: A review. Cancer Med. 2019, 8, 3004–3011. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Ito, H.; Mukainaka, T.; Tokuda, H.; Nishino, H.; Yoshida, T. Anti-tumor promoting effect of Glycosides from Prunus Persica seeds. Biol. Pharm. Bull. 2003, 26, 271–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalayel, M.H.F. Beyond laetrile (Vitamin B-17) controversy-antitumor illusion or revolution. Br. Biomed. Bull. 2017, 5, 296. [Google Scholar]
- Sauer, H.; Wollny, C.; Oster, I.; Tutdibi, E.; Gortner, L.; Gottschling, S.; Meyer, S. Severe Cyanide poisoning from an alternative medicine treatment with Amygdalin and Apricot kernels in a 4-year-old child. Wien. Med. Wochenschr. 2015, 165, 185–188. [Google Scholar] [CrossRef]
- PDQ Integrative, Alternative, and Complementary Therapies Editorial Board. Laetrile/Amygdalin (PDQ®): Health professional version. In PDQ Cancer Information Summaries; National Cancer Institute: Bethesda, MD, USA, 2021. [Google Scholar]
- EFSA. Acute health risks related to the presence of cyanogenic glycosides in raw Apricot kernels and products derived from raw Apricot kernels. EFSA J. 2016, 14, e04424. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.-M.; Kwon, H. Metabolites of Amygdalin under simulated human digestive fluids. Int. J. Food Sci. Nutr. 2010, 61, 770–779. [Google Scholar] [CrossRef]
- Do, J.-S.; Hwang, J.-K.; Seo, H.-J.; Woo, W.-H.; Nam, S.-Y. Antiasthmatic activity and selective inhibition of Type 2 helper T cell response by Aqueous extract of semen Armeniacae Amarum. Immunopharmacol. Immunotoxicol. 2006, 28, 213–225. [Google Scholar] [CrossRef]
- Chang, L.; Zhu, H.; Li, W.; Liu, H.; Zhang, Q.; Chen, H. Protective effects of amygdalin on hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat lungs in vitro. Chin. J. Pediatr. 2005, 43, 118–123. [Google Scholar]
- Qadir, M.; Fatima, K. Review on pharmacological activity of Amygdalin. Arch. Cancer Res. 2017, 5, 160. [Google Scholar] [CrossRef] [Green Version]
- Liczbiński, P.; Bukowska, B. Molecular mechanism of Amygdalin action in vitro: Review of the latest research. Immunopharmacol. Immunotoxicol. 2018, 40, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Hamel, J. A review of acute Cyanide poisoning with a treatment update. Crit. Care Nurse 2011, 31, 72–82. [Google Scholar] [CrossRef]
- Coentrão, L.; Moura, D. Acute Cyanide poisoning among jewelry and textile industry workers. Am. J. Emerg. Med. 2011, 29, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Albogami, S.; Hassan, A.; Ahmed, N.; Alnefaie, A.; Alattas, A.; Alquthami, L.; Alharbi, A. Evaluation of the effective dose of Amygdalin for the improvement of antioxidant gene expression and suppression of oxidative damage in mice. PeerJ 2020, 8, e9232. [Google Scholar] [CrossRef]
- Blaheta, R.A.; Nelson, K.; Haferkamp, A.; Juengel, E. Amygdalin, quackery or cure? Phytomedicine 2016, 23, 367–376. [Google Scholar] [CrossRef]
- Lee, H.M.; Moon, A. Amygdalin regulates Apoptosis and adhesion in Hs578T triple-negative breast cancer cells. Biomol. Ther. 2016, 24, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Makarević, J.; Rutz, J.; Juengel, E.; Kaulfuss, S.; Tsaur, I.; Nelson, K.; Pfitzenmaier, J.; Haferkamp, A.; Blaheta, R.A. Amygdalin influences bladder cancer cell adhesion and invasion in vitro. PLoS ONE 2014, 9, e110244. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Li, X.; Rong, J. Amygdalin isolated from semen Persicae (Tao Ren) extracts induces the expression of Follistatin in HepG2 and C2C12 cell lines. Chin. Med. 2014, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Duracka, M.; Tvrda, E.; Halenar, M.; Zbynovska, K.; Kolesar, E.; Lukac, N.; Kolesarova, A. The impact of Amygdalin on the oxidative profile of rabbit testicular tissue. In Proceedings of the International Conference MendelNet, Brno, Czech Republic, 9–10 November 2016; Volume 23, pp. 770–775. [Google Scholar]
- Abboud, M.M.; Awaida, W.A.; Alkhateeb, H.H.; Abu-Ayyad, A.N. Antitumor action of Amygdalin on human breast cancer cells by selective sensitization to oxidative stress. Nutr. Cancer 2019, 71, 483–490. [Google Scholar] [CrossRef]
- Qian, L.; Xie, B.; Wang, Y.; Qian, J. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 5363–5370. [Google Scholar]
- Luo, H.; Li, L.; Tang, J.; Zhang, F.; Zhao, F.; Sun, D.; Zheng, F.; Wang, X. Amygdalin inhibits HSC-T6 cell proliferation and fibrosis through the regulation of TGF-β/CTGF. Mol. Cell. Toxicol. 2016, 12, 265–271. [Google Scholar] [CrossRef]
- Zhang, A.; Pan, W.; Lv, J.; Wu, H. Protective effect of Amygdalin on LPS-induced acute lung injury by inhibiting NF-ΚB and NLRP3 signaling pathways. Inflammation 2017, 40, 745–751. [Google Scholar] [CrossRef]
- Tang, F.; Fan, K.; Wang, K.; Bian, C. Amygdalin attenuates acute liver injury induced by d-galactosamine and lipopolysaccharide by regulating the NLRP3, NF-ΚB and Nrf2/NQO1 signalling pathways. Biomed. Pharmacother. 2019, 111, 527–536. [Google Scholar] [CrossRef]
- Baroni, A.; Paoletti, I.; Greco, R.; Satriano, R.A.; Ruocco, E.; Tufano, M.A.; Perez, J.J. Immunomodulatory effects of a set of Amygdalin analogues on human keratinocyte cells. Exp. Dermatol. 2005, 14, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Omelka, R.; Kovacova, V.; Mondockova, V.; Grosskopf, B.; Kolesarova, A.; Martiniakova, M. Cyanogenic glycoside Amygdalin influences functions of human osteoblasts in vitro. J. Environ. Sci. Health B 2021, 56, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Kovacova, V.; Sarocka, A.; Omelka, R.; Bauerova, M.; Grosskopf, B.; Formicki, G.; Kolesarova, A.; Martiniakova, M. Subacute exposure to Amygdalin influences compact bone remodeling of rabbits. J. Physiol. Pharmacol. 2019, 70, 641–648. [Google Scholar] [CrossRef]
- Kovacikova, E.; Kovacik, A.; Halenar, M.; Tokarova, K.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Kolesar, E.; Valuch, J.; Kolesarova, A. Potential toxicity of cyanogenic glycoside Amygdalin and bitter Apricot seed in rabbits—Health status evaluation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Dogru, Y.H.; Kunt Isguder, C.; Arici, A.; Zeki Ozsoy, A.; Bahri Delibas, I.; Cakmak, B. Effect of Amygdalin on the treatment and recurrence of Endometriosis in an experimental rat study. Period. Biol. 2017, 119, 173–180. [Google Scholar] [CrossRef]
- Elsaed, W.M. Amygdalin (vitamin B17) pretreatment attenuates experimentally induced acute autoimmune hepatitis through reduction of CD4+ cell infiltration. Ann. Anat. 2019, 224, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hou, J.; Rao, J.; Zhou, C.; Liu, Y.; Gao, W. Magnetically directed enzyme/prodrug prostate cancer therapy based on β-Glucosidase/Amygdalin. Int. J. Nanomed. 2020, 15, 4639–4657. [Google Scholar] [CrossRef]
- Makarević, J.; Rutz, J.; Juengel, E.; Kaulfuss, S.; Reiter, M.; Tsaur, I.; Bartsch, G.; Haferkamp, A.; Blaheta, R.A. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and Cdk2. PLoS ONE 2014, 9, e105590. [Google Scholar] [CrossRef] [PubMed]
- Makarević, J.; Tsaur, I.; Juengel, E.; Borgmann, H.; Nelson, K.; Thomas, C.; Bartsch, G.; Haferkamp, A.; Blaheta, R.A. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci. 2016, 147, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Juengel, E.; Thomas, A.; Rutz, J.; Makarevic, J.; Tsaur, I.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro. Int. J. Mol. Med. 2016, 37, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Rooseboom, M.; Commandeur, J.N.M.; Vermeulen, N.P.E. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol. Rev. 2004, 56, 53–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halenár, M.; Tvrdá, E.; Slanina, T.; Ondruška, Ľ.; Kolesár, E.; Massányi, P.; Kolesárová, A. In vitro effects of amygdalin on the functional competence of rabbit spermatozoa. Int. J. Anim. Vet. Sci. 2016, 10, 712–716. [Google Scholar]
- Halenár, M.; Medveďová, M.; Maruniaková, N.; Packová, D.; Kolesárová, A. Dose-response of porcine ovarian granulosa cells to Amygdalin treatment combined with Deoxynivalenol. J. Microbiol. Biotechnol. Food Sci. 2014, 2021, 77–79. [Google Scholar]
- Halenar, M.; Kováčiková, E.; Nynca, A.; Sadowska, A.; Ciereszko, R.; Kolesarova, A. Stimulatory effect of Amygdalin on the viability and steroid hormone secretion by porcine ovarian granulosa cells in vitro. J. Microbiol. Biotechnol. Food Sci. 2016, 5, 44–46. [Google Scholar] [CrossRef] [Green Version]
- Halenar, M.; Medvedova, M.; Maruniakova, N.; Kolesarova, A. Assessment of a potential preventive ability of Amygdalin in Mycotoxin-induced ovarian toxicity. J. Environ. Sci. Health B 2015, 50, 411–416. [Google Scholar] [CrossRef]
- Halenar, M.; Kiko Medvedova, M.; Maruniaková, N.; Kolesarova, A. Ovarian hormone production affected by Amygdalin addition in vitro. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Jaswal, V.; Palanivelu, J.; Ramalingam, C. Effects of the gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity. Biochem. Biophys. Rep. 2018, 14, 125–132. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bagshawe, K.D. Antibody directed enzyme prodrug therapy (ADEPT): Trials and tribulations. Adv. Drug Deliv. Rev. 2017, 118, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kale, V.; Chen, M. Gene-directed enzyme prodrug therapy. AAPS J. 2015, 17, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opyd, P.M.; Jurgoński, A.; Juśkiewicz, J.; Milala, J.; Zduńczyk, Z.; Król, B. Nutritional and health-related effects of a diet containing apple seed meal in rats: The case of Amygdalin. Nutrients 2017, 9, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yiğit, D.; Yiğit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet Apricot (Prunus Armeniaca L.) kernels. Braz. J. Med. Biol. Res. 2009, 42, 346–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017, 104, 144–164. [Google Scholar] [CrossRef]
Dose of Amygdalin | Treatment Time | Experimental Model | Actions | Ref. |
---|---|---|---|---|
In vivo studies | ||||
1, 3, 10 mg/kg/day i.p. | 4 weeks | mice | protective effect against atherosclerosis | [9] |
5 mg/kg/week i.p. | 3 weeks | mice | protective effect against autoimmune hepatitis | [54] |
0.1, 0.5, 1 mg/kg i.m. | 30 min | rats | analgesic effect | [17] |
50, 100 mg/kg orally | 2 weeks | mice | antioxidant effect | [38] |
0.5, 1, 2 mg/kg i.p. | 1 h | mice | anti-inflammatory effect | [47] |
2, 4, 8 mg/kg i.p., twice (12 h interval) | 48 h | mice | anti-inflammatory effect | [48] |
320 mg/kg every 2 days, i.t. | 17 days | C57BL/6 mice | anti-tumor effect | [55] |
In vitro studies | ||||
200 µmol/L | 24 h | premature rats AECII | protective effect against lung injury | [33] |
200 μg/mL | 48 h | rat hepatic stellate cells | anti-fibrotic effect | [46] |
10−8 and 10−6 M | 48 h | human keratinocyte cells | immunomodulatory effect | [49] |
65 mmol/L | 48 h | human breast cancer cells | anti-tumor effect | [44] |
2.5 and 5 mg/mL | 48 h | human lung carcinoma cells | anti-tumor effect | [45] |
10 mg/mL | 24 h | mouse prostate cancer cells, human prostate cancer cells | anti-tumor effect | [55] |
10 mg/mL | 24 h | renal carcinoma cells, bladder cancer cells, prostate cancer cells | anti-tumor effect | [41,56,57,58] |
Dose of Amygdaline | Treatment Time | Experimental Model | Actions | Nature of Effect | Ref. |
---|---|---|---|---|---|
In vivo studies | |||||
100 mg/kg/day orally | 2 weeks | male mice | antioxidant effect | positive | [38] |
0.6 mg/kg b.w./day i.m. | 28 days | male rabbits | antioxidant effect | positive | [43] |
5 mg/kg/week i.p. | 42 days | female rats | protective effect against endometriosis | positive | [53] |
In vitro studies | |||||
0.5, 1, 2.5 and 5 mg/mL | 5 h | rabbit spermatozoa | stimulatory effect | positive | [60] |
1, 10, 100, 1000 and 10,000 µg/mL | 24 h | porcine ovarian cells | stimulatory effect | positive | [61,62,63,64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesarova, A.; Baldovska, S.; Roychoudhury, S. The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals 2021, 14, 881. https://doi.org/10.3390/ph14090881
Kolesarova A, Baldovska S, Roychoudhury S. The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals. 2021; 14(9):881. https://doi.org/10.3390/ph14090881
Chicago/Turabian StyleKolesarova, Adriana, Simona Baldovska, and Shubhadeep Roychoudhury. 2021. "The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction" Pharmaceuticals 14, no. 9: 881. https://doi.org/10.3390/ph14090881
APA StyleKolesarova, A., Baldovska, S., & Roychoudhury, S. (2021). The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals, 14(9), 881. https://doi.org/10.3390/ph14090881