Extracellular Vesicles: A Double-Edged Sword in Sepsis
Abstract
:1. Introduction
1.1. Systemic Inflammation and Sepsis
1.2. Extracellular Vesicles (EVs)
2. The Characteristics of Blood EVs in Sepsis
2.1. EV Number and Size
2.2. Cellular Origin of EVs in Sepsis
3. EV Functions in Sepsis
3.1. The Bi-Directional Influence of EVs on the Immune Response during Sepsis
3.1.1. Inflammatory Content of EVs
3.1.2. Pro-Inflammatory Effects of EVs
3.1.3. Anti-Inflammatory Effects of EVs
3.2. Anti-Bacterial Effects of EVs
3.3. EVs Influence Apoptosis of Lymphocytes
3.4. Pro-Coagulant Properties of PS-Exposing, Tissue Factor (TF)-Bearing EVs in Sepsis
3.4.1. EVs as Carriers of Exposed PS
3.4.2. TF Expression and Activity in EVs
3.4.3. The Link between PS Presence and TF Activity
3.4.4. Pro-Coagulant EVs in DIC Sepsis Patients
3.5. Sepsis EVs Are Linked with Clinical Outcome and Can Predict Survival
3.6. EVs Can Participate in the Generation of Multiple Organ Damage
3.6.1. EVs Negatively Affect Endothelial Cell Activation but Are Protective against Vascular Hypo-Reactivity
3.6.2. EVs Can Influence Organ Damage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Levy, M.M.; Artigas, A.; Phillips, G.S.; Rhodes, A.; Beale, R.; Osborn, T.; Vincent, J.L.; Townsend, S.; Lemeshow, S.; Dellinger, R.P. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: A prospective cohort study. Lancet Infect. Dis. 2012, 12, 919–924. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med. 1992, 20, 864–874. [CrossRef]
- Tosi, M.F. Innate immune responses to infection. J. Allergy Clin. Immunol. 2005, 116, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicchese, J.M.; Evans, S.; Hult, C.; Joslyn, L.R.; Wessler, T.; Millar, J.A.; Marino, S.; Cilfone, N.A.; Mattila, J.T.; Linderman, J.J.; et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol. Rev. 2018, 285, 147–167. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 2003, 348, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Oberholzer, A.; Oberholzer, C.; Moldawer, L.L. Sepsis syndromes: Understanding the role of innate and acquired immunity. Shock 2001, 16, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraballo, C.; Jaimes, F. Organ dysfunction in sepsis: An ominous trajectory from infection to death. Yale J. Biol. Med. 2019, 92, 629–640. [Google Scholar] [PubMed]
- Chaudhry, N.; Duggal, A.K. Sepsis associated encephalopathy. Adv. Med. 2014, 2014, 762320. [Google Scholar] [CrossRef] [Green Version]
- Gul, F.; Arslantas, M.K.; Cinel, I.; Kumar, A. Changing definitions of sepsis. Turk. J. Anaesthesiol. Reanim. 2017, 45, 129–138. [Google Scholar] [CrossRef]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med. 2003, 29, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Balk, R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence 2014, 5, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korneev, K.V. Mouse Models of Sepsis and Septic Shock. Mol. Biol. 2019, 53, 799–814. [Google Scholar] [CrossRef]
- Lewis, A.J.; Seymour, C.W.; Rosengart, M.R. Current murine models of sepsis. Surg Infect. 2016, 17, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends Microbiol. 2011, 19, 198–208. [Google Scholar] [CrossRef]
- Andaloussi, S.E.; Mager, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Feng, Y.; Jeyaram, A.; Jay, S.M.; Zou, L.; Chao, W. Circulating plasma extracellular vesicles from septic mice induce inflammation via MicroRNA- and TLR7-dependent mechanisms. J. Immunol. 2018, 201, 3392–3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafrani, L.; Gerotziafas, G.; Byrnes, C.; Hu, X.; Perez, J.; Levi, C.; Placier, S.; Letavernier, E.; Leelahavanichkul, A.; Haymann, J.P.; et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am. J. Respir. Crit. Care Med. 2012, 185, 744–755. [Google Scholar] [CrossRef] [Green Version]
- Essandoh, K.; Yang, L.; Wang, X.; Huang, W.; Qin, D.; Hao, J.; Wang, Y.; Zingarelli, B.; Peng, T.; Fan, G.C. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim. Biophys. Acta 2015, 1852, 2362–2371. [Google Scholar] [CrossRef] [Green Version]
- Menck, K.; Sonmezer, C.; Worst, T.S.; Schulz, M.; Dihazi, G.H.; Streit, F.; Erdmann, G.; Kling, S.; Boutros, M.; Binder, C.; et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J. Extracell Vesicles 2017, 6, 1378056. [Google Scholar] [CrossRef] [PubMed]
- Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brugger, B.; Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008, 319, 1244–1247. [Google Scholar] [CrossRef]
- Dakhlallah, D.A.; Wisler, J.; Gencheva, M.; Brown, C.M.; Leatherman, E.R.; Singh, K.; Brundage, K.; Karsies, T.; Dakhlallah, A.; Witwer, K.W.; et al. Circulating extracellular vesicle content reveals de novo DNA methyltransferase expression as a molecular method to predict septic shock. J. Extracell Vesicles 2019, 8, 1669881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Meng, H.; Ma, R.; He, Z.; Wu, X.; Cao, M.; Yao, Z.; Zhao, L.; Li, T.; Deng, R.; et al. Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure. Shock 2016, 45, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Mostefai, H.A.; Meziani, F.; Mastronardi, M.L.; Agouni, A.; Heymes, C.; Sargentini, C.; Asfar, P.; Martinez, M.C.; Andriantsitohaina, R. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am. J. Respir. Crit. Care Med. 2008, 178, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- Fendl, B.; Weiss, R.; Eichhorn, T.; Linsberger, I.; Afonyushkin, T.; Puhm, F.; Binder, C.J.; Fischer, M.B.; Weber, V. Extracellular vesicles are associated with C-reactive protein in sepsis. Sci. Rep. 2021, 11, 6996. [Google Scholar] [CrossRef]
- Im, Y.; Yoo, H.; Lee, J.Y.; Park, J.; Suh, G.Y.; Jeon, K. Association of plasma exosomes with severity of organ failure and mortality in patients with sepsis. J. Cell Mol. Med. 2020, 24, 9439–9445. [Google Scholar] [CrossRef] [PubMed]
- Mooberry, M.J.; Bradford, R.; Hobl, E.L.; Lin, F.C.; Jilma, B.; Key, N.S. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia. J. Thromb. Haemost. 2016, 14, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Reithmair, M.; Buschmann, D.; Marte, M.; Kirchner, B.; Hagl, D.; Kaufmann, I.; Pfob, M.; Chouker, A.; Steinlein, O.K.; Pfaffl, M.W.; et al. Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis. J. Cell Mol. Med. 2017, 21, 2403–2411. [Google Scholar] [CrossRef]
- Liu, M.L.; Werth, V.P.; Williams, K.J. Blood plasma versus serum: Which is right for sampling circulating membrane microvesicles in human subjects? Ann. Rheum Dis. 2019, 79, e73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, K.; Jin, J.; Huang, C.; Li, J.; Luo, H.; Li, L.; Huang, Y.; Jiang, Y. Exosomes derived from septic mouse serum modulate immune responses via exosome-associated cytokines. Front. Immunol. 2019, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Berckmans, R.J.; Nieuwland, R.; Boing, A.N.; Romijn, F.P.; Hack, C.E.; Sturk, A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost. 2001, 85, 639–646. [Google Scholar] [PubMed]
- Fendl, B.; Weiss, R.; Fischer, M.B.; Spittler, A.; Weber, V. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem. Biophys. Res. Commun. 2016, 478, 168–173. [Google Scholar] [CrossRef]
- Weiss, R.; Groger, M.; Rauscher, S.; Fendl, B.; Eichhorn, T.; Fischer, M.B.; Spittler, A.; Weber, V. Differential interaction of platelet-derived extracellular vesicles with leukocyte subsets in human whole blood. Sci. Rep. 2018, 8, 6598. [Google Scholar] [CrossRef]
- Nieuwland, R.; Berckmans, R.J.; McGregor, S.; Boing, A.N.; Romijn, F.P.; Westendorp, R.G.; Hack, C.E.; Sturk, A. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000, 95, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Ogura, H.; Kawasaki, T.; Tanaka, H.; Koh, T.; Tanaka, R.; Ozeki, Y.; Hosotsubo, H.; Kuwagata, Y.; Shimazu, T.; Sugimoto, H. Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J. Trauma 2001, 50, 801–809. [Google Scholar] [CrossRef]
- Joop, K.; Berckmans, R.J.; Nieuwland, R.; Berkhout, J.; Romijn, F.P.; Hack, C.E.; Sturk, A. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb. Haemost. 2001, 85, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Lashin, H.M.S.; Nadkarni, S.; Oggero, S.; Jones, H.R.; Knight, J.C.; Hinds, C.J.; Perretti, M. Microvesicle subsets in sepsis due to community acquired pneumonia compared to faecal peritonitis. Shock 2018, 49, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Timar, C.I.; Lorincz, A.M.; Csepanyi-Komi, R.; Valyi-Nagy, A.; Nagy, G.; Buzas, E.I.; Ivanyi, Z.; Kittel, A.; Powell, D.W.; McLeish, K.R.; et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 2013, 121, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Lehner, G.F.; Harler, U.; Haller, V.M.; Feistritzer, C.; Hasslacher, J.; Dunzendorfer, S.; Bellmann, R.; Joannidis, M. Characterization of microvesicles in septic shock using high-sensitivity flow cytometry. Shock 2016, 46, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, H.; Yamakawa, K.; Ogura, H.; Koh, T.; Matsumoto, N.; Shimazu, T. Enhanced expression of cell-specific surface antigens on endothelial microparticles in sepsis-induced disseminated intravascular coagulation. Shock 2015, 43, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Soriano, A.O.; Jy, W.; Chirinos, J.A.; Valdivia, M.A.; Velasquez, H.S.; Jimenez, J.J.; Horstman, L.L.; Kett, D.H.; Schein, R.M.; Ahn, Y.S. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit. Care Med. 2005, 33, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Van Ierssel, S.H.; van Craenenbroeck, E.M.; Hoymans, V.Y.; Vrints, C.J.; Conraads, V.M.; Jorens, P.G. Endothelium dependent vasomotion and in vitro markers of endothelial repair in patients with severe sepsis: An observational study. PLoS ONE 2013, 8, e69499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorgens, A.; Bremer, M.; Ferrer-Tur, R.; Murke, F.; Tertel, T.; Horn, P.A.; Thalmann, S.; Welsh, J.A.; Probst, C.; Guerin, C.; et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell Vesicles 2019, 8, 1587567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janiszewski, M.; Do Carmo, A.O.; Pedro, M.A.; Silva, E.; Knobel, E.; Laurindo, F.R. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit. Care Med. 2004, 32, 818–825. [Google Scholar] [CrossRef]
- Tripisciano, C.; Weiss, R.; Eichhorn, T.; Spittler, A.; Heuser, T.; Fischer, M.B.; Weber, V. Different potential of extracellular vesicles to support thrombin generation: Contributions of phosphatidylserine, tissue factor, and cellular origin. Sci. Rep. 2017, 7, 6522. [Google Scholar] [CrossRef]
- Guervilly, C.; Lacroix, R.; Forel, J.M.; Roch, A.; Camoin-Jau, L.; Papazian, L.; Dignat-George, F. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit. Care 2011, 15, R31. [Google Scholar] [CrossRef] [Green Version]
- Delabranche, X.; Boisrame-Helms, J.; Asfar, P.; Berger, A.; Mootien, Y.; Lavigne, T.; Grunebaum, L.; Lanza, F.; Gachet, C.; Freyssinet, J.M.; et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013, 39, 1695–1703. [Google Scholar] [CrossRef] [Green Version]
- Oehmcke, S.; Morgelin, M.; Malmstrom, J.; Linder, A.; Chew, M.; Thorlacius, H.; Herwald, H. Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol. 2012, 14, 107–119. [Google Scholar] [CrossRef]
- Cheng, Y.; Cao, X.; Qin, L. Mesenchymal stem cell-derived extracellular vesicles: A novel cell-free therapy for sepsis. Front. Immunol. 2020, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Huang, R.; Qiu, G.; Ge, M.; Wang, J.; Shu, Q.; Xu, J. Mesenchymal stromal cell-derived extracellular vesicles: Regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 2018, 374, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013, 27, 669–684. [Google Scholar] [PubMed]
- Cvjetkovic, A.; Jang, S.C.; Konecna, B.; Hoog, J.L.; Sihlbom, C.; Lasser, C.; Lotvall, J. Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci. Rep. 2016, 6, 36338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, W.; Freeman, M.L.; Lederman, M.M.; Vasilieva, E.; Romero, R.; Margolis, L. A system of cytokines encapsulated in extracellular vesicles. Sci. Rep. 2018, 8, 8973. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Mazza, D.; Brambilla, F.; Gorzanelli, A.; Agresti, A.; Bianchi, M.E. LPS-challenged macrophages release microvesicles coated with histones. Front. Immunol. 2018, 9, 1463. [Google Scholar] [CrossRef]
- Gupta, A.; Cooper, Z.A.; Tulapurkar, M.E.; Potla, R.; Maity, T.; Hasday, J.D.; Singh, I.S. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J. Biol. Chem. 2013, 288, 2756–2766. [Google Scholar] [CrossRef] [Green Version]
- Tulapurkar, M.E.; Ramarathnam, A.; Hasday, J.D.; Singh, I.S. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells. PLoS ONE 2015, 10, e0118010. [Google Scholar] [CrossRef] [Green Version]
- Coleman, L.G., Jr.; Maile, R.; Jones, S.W.; Cairns, B.A.; Crews, F.T. HMGB1/IL-1beta complexes in plasma microvesicles modulate immune responses to burn injury. PLoS ONE 2018, 13, e0195335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, F.; Wang, X.; Zhang, X.; Ha, T.; Wang, Y.; Fan, M.; Yang, K.; Gill, P.S.; Ozment, T.R.; Dai, Y.; et al. Novel role of endothelial derived exosomal HSPA12B in regulating macrophage inflammatory responses in polymicrobial sepsis. Front. Immunol. 2020, 11, 825. [Google Scholar] [CrossRef] [PubMed]
- Marino-Ramirez, L.; Kann, M.G.; Shoemaker, B.A.; Landsman, D. Histone structure and nucleosome stability. Expert Rev. Proteom. 2005, 2, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wan, D.; Luo, X.; Song, T.; Wang, Y.; Yu, Q.; Jiang, L.; Liao, R.; Zhao, W.; Su, B. Circulating histones in sepsis: Potential outcome predictors and therapeutic targets. Front. Immunol. 2021, 12, 650184. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhang, X.; Monestier, M.; Esmon, N.L.; Esmon, C.T. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 2011, 187, 2626–2631. [Google Scholar] [CrossRef] [Green Version]
- Gelain, D.P.; de Bittencourt Pasquali, M.A.; Comim, M.C.; Grunwald, M.S.; Ritter, C.; Tomasi, C.D.; Alves, S.C.; Quevedo, J.; Dal-Pizzol, F.; Moreira, J.C. Serum heat shock protein 70 levels, oxidant status, and mortality in sepsis. Shock 2011, 35, 466–470. [Google Scholar] [CrossRef]
- Anand, P.K.; Anand, E.; Bleck, C.K.; Anes, E.; Griffiths, G. Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria. PLoS ONE 2010, 5, e10136. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.; Liu, Y.; Werth, V.P.; Williams, K.J.; Liu, M.L. Translocation of endogenous danger signal HMGB1 from nucleus to membrane microvesicles in macrophages. J. Cell Physiol. 2016, 231, 2319–2326. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Deng, M.; Loughran, P.A.; Yang, M.; Lin, M.; Yang, C.; Gao, W.; Jin, S.; Li, S.; Cai, J.; et al. LPS induces active HMGB1 release from hepatocytes into exosomes through the coordinated activities of TLR4 and caspase-11/GSDMD signaling. Front. Immunol. 2020, 11, 229. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Wisler, J.R.; Singh, K.; McCarty, A.R.; Abouhashem, A.S.E.; Christman, J.W.; Sen, C.K. Proteomic pathway analysis of monocyte-derived exosomes during surgical sepsis identifies immunoregulatory functions. Surg Infect. 2020, 21, 101–111. [Google Scholar] [CrossRef]
- Youn, Y.J.; Shrestha, S.; Lee, Y.B.; Kim, J.K.; Lee, J.H.; Hur, K.; Mali, N.M.; Nam, S.W.; Kim, S.H.; Lee, S.; et al. Neutrophil-derived trail is a proinflammatory subtype of neutrophil-derived extracellular vesicles. Theranostics 2021, 11, 2770–2787. [Google Scholar] [CrossRef] [PubMed]
- Real, J.M.; Ferreira, L.R.P.; Esteves, G.H.; Koyama, F.C.; Dias, M.V.S.; Bezerra-Neto, J.E.; Cunha-Neto, E.; Machado, F.R.; Salomao, R.; Azevedo, L.C.P. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: New signaling pathways in sepsis? Crit. Care 2018, 22, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonkoly, E.; Pivarcsi, A. microRNAs in inflammation. Int Rev. Immunol. 2009, 28, 535–561. [Google Scholar] [CrossRef] [PubMed]
- Nejad, C.; Stunden, H.J.; Gantier, M.P. A guide to miRNAs in inflammation and innate immune responses. FEBS J. 2018, 285, 3695–3716. [Google Scholar] [CrossRef]
- Mastronardi, M.L.; Mostefai, H.A.; Meziani, F.; Martinez, M.C.; Asfar, P.; Andriantsitohaina, R. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit. Care Med. 2011, 39, 1739–1748. [Google Scholar] [CrossRef] [Green Version]
- Dalli, J.; Norling, L.V.; Montero-Melendez, T.; Federici Canova, D.; Lashin, H.; Pavlov, A.M.; Sukhorukov, G.B.; Hinds, C.J.; Perretti, M. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol. Med. 2014, 6, 27–42. [Google Scholar] [CrossRef]
- Alves-Filho, J.C.; Freitas, A.; Souto, F.O.; Spiller, F.; Paula-Neto, H.; Silva, J.S.; Gazzinelli, R.T.; Teixeira, M.M.; Ferreira, S.H.; Cunha, F.Q. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. USA 2009, 106, 4018–4023. [Google Scholar] [CrossRef] [Green Version]
- Alves-Filho, J.C.; Sonego, F.; Souto, F.O.; Freitas, A.; Verri, W.A., Jr.; Auxiliadora-Martins, M.; Basile-Filho, A.; McKenzie, A.N.; Xu, D.; Cunha, F.Q.; et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 2010, 16, 708–712. [Google Scholar] [CrossRef]
- Laffont, B.; Corduan, A.; Ple, H.; Duchez, A.C.; Cloutier, N.; Boilard, E.; Provost, P. Activated platelets can deliver mRNA regulatory Ago2* microRNA complexes to endothelial cells via microparticles. Blood 2013, 122, 253–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szilagyi, B.; Fejes, Z.; Rusznyak, A.; Fenyvesi, F.; Pocsi, M.; Halmi, S.; Griger, Z.; Kunapuli, S.P.; Kappelmayer, J.; Nagy, B., Jr. Platelet microparticles enriched in miR-223 reduce ICAM-1-dependent vascular inflammation in septic conditions. Front. Physiol. 2021, 12, 658524. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Tan, J.; Miao, Y.; Zhang, Q. The role of microvesicles containing microRNAs in vascular endothelial dysfunction. J. Cell Mol. Med. 2019, 23, 7933–7945. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Simard, M.J.; Huot, J. Endothelial microRNAs regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. FASEB J. 2018, 32, 4070–4084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcon-Vila, C.; Baroja-Mazo, A.; de Torre-Minguela, C.; Martinez, C.M.; Martinez-Garcia, J.J.; Martinez-Banaclocha, H.; Garcia-Palenciano, C.; Pelegrin, P. CD14 release induced by P2X7 receptor restricts inflammation and increases survival during sepsis. Elife 2020, 9, e60849. [Google Scholar] [CrossRef] [PubMed]
- Laffont, B.; Corduan, A.; Rousseau, M.; Duchez, A.C.; Lee, C.H.; Boilard, E.; Provost, P. Platelet microparticles reprogram macrophage gene expression and function. Thromb. Haemost. 2016, 115, 311–323. [Google Scholar] [PubMed]
- Oehmcke, S.; Westman, J.; Malmstrom, J.; Morgelin, M.; Olin, A.I.; Kreikemeyer, B.; Herwald, H. A novel role for pro-coagulant microvesicles in the early host defense against streptococcus pyogenes. PLoS Pathog. 2013, 9, e1003529. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.N.; Li, Y.Q.; Liu, Y.; Li, Q.; Hu, Y.; Xu, J.Q.; Sun, T.Y.; Xie, L.X. Exosomes derived from plasma of septic patients inhibit apoptosis of T lymphocytes by down-regulating bad via hsa-miR-7-5p. Biochem. Biophys. Res. Commun. 2019, 513, 958–966. [Google Scholar] [CrossRef]
- Exline, M.C.; Justiniano, S.; Hollyfield, J.L.; Berhe, F.; Besecker, B.Y.; Das, S.; Wewers, M.D.; Sarkar, A. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis. PLoS ONE 2014, 9, e90968. [Google Scholar] [CrossRef]
- Tsao, C.M.; Ho, S.T.; Wu, C.C. Coagulation abnormalities in sepsis. Acta Anaesthesiol. Taiwan 2015, 53, 16–22. [Google Scholar] [CrossRef]
- Okamoto, K.; Tamura, T.; Sawatsubashi, Y. Sepsis and disseminated intravascular coagulation. J. Intensive Care 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Vance, J.E.; Steenbergen, R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 2005, 44, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Morel, O.; Jesel, L.; Freyssinet, J.M.; Toti, F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Delabranche, X.; Quenot, J.P.; Lavigne, T.; Mercier, E.; Francois, B.; Severac, F.; Grunebaum, L.; Mehdi, M.; Zobairi, F.; Toti, F.; et al. Early detection of disseminated intravascular coagulation during septic shock: A multicenter prospective study. Crit. Care Med. 2016, 44, e930–e939. [Google Scholar] [CrossRef]
- Mackman, N. The many faces of tissue factor. J. Thromb. Haemost. 2009, 7, 136–139. [Google Scholar] [CrossRef]
- Pawlinski, R.; Mackman, N. Cellular sources of tissue factor in endotoxemia and sepsis. Thromb. Res. 2010, 125, S70–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, T.A.; Morrissey, J.H.; Edgington, T.S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 1989, 134, 1087–1097. [Google Scholar]
- Giesen, P.L.; Rauch, U.; Bohrmann, B.; Kling, D.; Roque, M.; Fallon, J.T.; Badimon, J.J.; Himber, J.; Riederer, M.A.; Nemerson, Y. Blood-borne tissue factor: Another view of thrombosis. Proc. Natl. Acad. Sci. USA 1999, 96, 2311–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimmino, G.; Golino, P.; Badimon, J.J. Pathophysiological role of blood-borne tissue factor: Should the old paradigm be revisited? Intern. Emerg. Med. 2011, 6, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Biro, E.; Sturk-Maquelin, K.N.; Vogel, G.M.; Meuleman, D.G.; Smit, M.J.; Hack, C.E.; Sturk, A.; Nieuwland, R. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J. Thromb. Haemost. 2003, 1, 2561–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parhami-Seren, B.; Butenas, S.; Krudysz-Amblo, J.; Mann, K.G. Immunologic quantitation of tissue factors. J. Thromb. Haemost. 2006, 4, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Butenas, S.; Bouchard, B.A.; Brummel-Ziedins, K.E.; Parhami-Seren, B.; Mann, K.G. Tissue factor activity in whole blood. Blood 2005, 105, 2764–2770. [Google Scholar] [CrossRef]
- Aras, O.; Shet, A.; Bach, R.R.; Hysjulien, J.L.; Slungaard, A.; Hebbel, R.P.; Escolar, G.; Jilma, B.; Key, N.S. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 2004, 103, 4545–4553. [Google Scholar] [CrossRef]
- Hron, G.; Kollars, M.; Weber, H.; Sagaster, V.; Quehenberger, P.; Eichinger, S.; Kyrle, P.A.; Weltermann, A. Tissue factor-positive microparticles: Cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb. Haemost. 2007, 97, 119–123. [Google Scholar] [CrossRef]
- Mallat, Z.; Hugel, B.; Ohan, J.; Leseche, G.; Freyssinet, J.M.; Tedgui, A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: A role for apoptosis in plaque thrombogenicity. Circulation 1999, 99, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellum, M.; Ovstebo, R.; Brusletto, B.S.; Berg, J.P.; Brandtzaeg, P.; Henriksson, C.E. Microparticle-associated tissue factor activity correlates with plasma levels of bacterial lipopolysaccharides in meningococcal septic shock. Thromb. Res. 2014, 133, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Manly, D.; Kirchhofer, D.; Pawlinski, R.; Mackman, N. Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. J. Thromb. Haemost. 2009, 7, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Egorina, E.M.; Sovershaev, M.A.; Bjorkoy, G.; Gruber, F.X.; Olsen, J.O.; Parhami-Seren, B.; Mann, K.G.; Osterud, B. Intracellular and surface distribution of monocyte tissue factor: Application to intersubject variability. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1493–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, H.; Yamakawa, K.; Ogura, H.; Koh, T.; Matsumoto, N.; Shimazu, T. Clinical significance of tissue factor and CD13 double-positive microparticles in sirs patients with trauma and severe sepsis. Shock 2017, 47, 409–415. [Google Scholar] [CrossRef]
- Lechner, D.; Weltermann, A. Circulating tissue factor-exposing microparticles. Thromb. Res. 2008, 122, S47–S54. [Google Scholar] [CrossRef]
- Brand, K.; Fowler, B.J.; Edgington, T.S.; Mackman, N. Tissue factor mRNA in THP-1 monocytic cells is regulated at both transcriptional and posttranscriptional levels in response to lipopolysaccharide. Mol. Cell Biol. 1991, 11, 4732–4738. [Google Scholar] [CrossRef] [Green Version]
- Ovstebo, R.; Aass, H.C.; Haug, K.B.; Troseid, A.M.; Gopinathan, U.; Kierulf, P.; Berg, J.P.; Brandtzaeg, P.; Henriksson, C.E. LPS from Neisseria meningitidis is crucial for inducing monocyte- and microparticle-associated tissue factor activity but not for tissue factor expression. Innate Immun. 2012, 18, 580–591. [Google Scholar] [CrossRef]
- Rao, L.V.; Kothari, H.; Pendurthi, U.R. Tissue factor encryption and decryption: Facts and controversies. Thromb. Res. 2012, 129, S13–S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.A.; Pendurthi, U.R.; Sen, P.; Rao, L.V. The role of putative phosphatidylserine-interactive residues of tissue factor on its coagulant activity at the cell surface. PLoS ONE 2016, 11, e0158377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepesch, C.; Nitzsche, R.; Glass, A.; Kreikemeyer, B.; Schubert, J.K.; Oehmcke-Hecht, S. High intravascular tissue factor-but not extracellular microvesicles-in septic patients is associated with a high SAPS II score. J. Intensive Care 2016, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Chang, E.; Zingarelli, B.; Fan, H. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit. Care 2019, 23, 44. [Google Scholar] [CrossRef] [Green Version]
- Dalli, J.; Montero-Melendez, T.; Norling, L.V.; Yin, X.; Hinds, C.; Haskard, D.; Mayr, M.; Perretti, M. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol. Cell Proteom. 2013, 12, 2205–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Ku, X.; Wu, C.; Cai, C.; Tang, J.; Yan, W. Exosomal proteome analysis of human plasma to monitor sepsis progression. Biochem. Biophys. Res. Commun. 2018, 499, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Ince, C.; Mayeux, P.R.; Nguyen, T.; Gomez, H.; Kellum, J.A.; Ospina-Tascon, G.A.; Hernandez, G.; Murray, P.; de Backer, D.; Workgroup, A.X. The endothelium in sepsis. Shock 2016, 45, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitanga, T.N.; de Aragao Franca, L.; Rocha, V.C.; Meirelles, T.; Borges, V.M.; Goncalves, M.S.; Pontes-de-Carvalho, L.C.; Noronha-Dutra, A.A.; dos-Santos, W.L. Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells. BMC Cell Biol. 2014, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, R.; Qu, H.; Wu, J.; Li, L.; Tang, Y. Endothelial microparticles activate endothelial cells to facilitate the inflammatory response. Mol. Med. Rep. 2017, 15, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Mitra, S.; Mehta, S.; Raices, R.; Wewers, M.D. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS ONE 2009, 4, e7140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostefai, H.A.; Bourget, J.M.; Meziani, F.; Martinez, M.C.; Leonetti, D.; Mercat, A.; Asfar, P.; Germain, L.; Andriantsitohaina, R. Interleukin-10 controls the protective effects of circulating microparticles from patients with septic shock on tissue-engineered vascular media. Clin. Sci. 2013, 125, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, L.C.; Janiszewski, M.; Pontieri, V.; Pedro Mde, A.; Bassi, E.; Tucci, P.J.; Laurindo, F.R. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit. Care 2007, 11, R120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Karamanos, Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells 2020, 9, 851. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, S.H.; Andrews, A.M.; Paul, D.; Pachter, J.S. Extracellular vesicles: Mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018, 15, 19. [Google Scholar] [CrossRef]
- Li, J.J.; Wang, B.; Kodali, M.C.; Chen, C.; Kim, E.; Patters, B.J.; Lan, L.; Kumar, S.; Wang, X.; Yue, J.; et al. In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J. Neuroinflamm. 2018, 15, 8. [Google Scholar] [CrossRef]
- Balusu, S.; van Wonterghem, E.; de Rycke, R.; Raemdonck, K.; Stremersch, S.; Gevaert, K.; Brkic, M.; Demeestere, D.; Vanhooren, V.; Hendrix, A.; et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol. Med. 2016, 8, 1162–1183. [Google Scholar] [CrossRef]
- Paul, D.; Baena, V.; Ge, S.; Jiang, X.; Jellison, E.R.; Kiprono, T.; Agalliu, D.; Pachter, J.S. Appearance of claudin-5(+) leukocytes in the central nervous system during neuroinflammation: A novel role for endothelial-derived extracellular vesicles. J. Neuroinflamm. 2016, 13, 292. [Google Scholar] [CrossRef] [Green Version]
- Vermette, D.; Hu, P.; Canarie, M.F.; Funaro, M.; Glover, J.; Pierce, R.W. Tight junction structure, function, and assessment in the critically ill: A systematic review. Intensive Care Med. Exp. 2018, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, A.M.; Lutton, E.M.; Merkel, S.F.; Razmpour, R.; Ramirez, S.H. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury. Front. Cell Neurosci. 2016, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozio, V.; Sanchez, J.C. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J. Extracell. Vesicles 2017, 6, 1302705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, Q.; van Deun, J.; Dedeyne, S.; Hendrix, A. The EV-TRACK summary add-on: Integration of experimental information in databases to ensure comprehensive interpretation of biological knowledge on extracellular vesicles. J. Extracell. Vesicles 2020, 9, 1699367. [Google Scholar] [CrossRef] [PubMed]
EV Source | Markers | Reference |
---|---|---|
Platelets | CD61+ | [39,41] |
CD61+/CD42b+ | [48] | |
CD31+/CD42+ | [46] | |
CD41(a)+ | [28,29,32,42,44,49,50] | |
CD42(a, b)+ | [40,44,51] | |
Endothelial cells (*Activated endothelial cells) | CD31+ | [32,48,50,51] |
CD31+/CD42− | [46] | |
CD31+/CD41− | [28,44,50] | |
CD31+/CD42b− | [47] | |
*CD62E+ | [39,41,44,51] | |
CD144+ | [41,44] | |
CD146+ | [29,45] | |
CD51+ | [42] | |
*CD105+ | [51] | |
*CD106+ | [44] | |
Red blood cells | CD235a+ | [28,29,32,39,41,42,49] |
Granulocytes | CD66b+ | [28,29,39,41,42,44] |
CD66b+/CD11b+ | [50] | |
CD11+/CD177+ | [43] | |
CD15 | [48] | |
Monocytes | CD14+ | [28,32,39,42,44,48,49,52] |
CD11b+ | [29] | |
Lymphocytes | CD3+ | [42,48] |
CD45+ | [28,29,44,49,50] | |
CD11a+ | [51] | |
T-lymphocytes | CD4+ | [39,41] |
CD8+ | [39,41] | |
CD3+ | [28,44] | |
B-lymphocytes | CD19+ | [28] |
CD20+ | [39,41,44] |
Sepsis Model | Model Specifications | Biofluid as EV Source (Timepoint) | EV-Related, Experimental Details | Observations | EV Isolation Method | EV Characterization | Ref. | |
---|---|---|---|---|---|---|---|---|
Global Quantification | Protein Marker Detection | |||||||
CLP model | 1.5 cm ligation Punctured through with 18G C57BL6/J TLR7, TLR3, MyD88 KO | Plasma (24 h post-CLP) | EV quantification EV-miRNA analysis EV injection (i.p., 300 µg) in WT mice BMDMs incubated with EVs (20 µg/mL, 20 h IT) | ↑ EV levels ↑ Pro-inflammatory miRNAs (~TLR7, MyD88) ↑ Peritoneal neutrophils ↓ Peritoneal macrophages ↑ Pro-inflammatory cytokines, chemokines, complement | DC | ☑ A (250 µL) ☑ B (NTA) ☑ C (BA) ☐ D ☑ E | ☑ 1 (CD81, AChE) ☐ 2 ☐ 3 ☐ 4 | [22] |
8 mm ligation 2 punctures with 21G WT vs. Tg, calpastatin over-expressing mice (C57BL6/J background) | Plasma (24 h post-CLP) | EV quantification EV transfer: WT CLP to Tg CLP (retro-orbital, dose ND) | ↓ Pro-coagulant EVs in Tg mice ↓ Survival ↑ Coagulation | Centrifugation and ANX V-PE labeling | ☑ A (300 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD14, CD144, CD41) ☐ 2 ☐ 3 ☐ 4 | [23] | |
1 cm ligation Puncture with 18G C57BL6/J | Serum (12 h post-CLP) | EV levels post-CLP EV levels and survival after pretreatment with GW4869 (i.p., 2.5 μg/g, 1 h prior to CLP) | ↑ EV levels Effect of GW4869: EV increase inhibited ↑ Survival, cardiac function | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (AChE) ☐ 2 ☐ 3 ☐ 4 | [24] | |
1/3 ligation Puncture with 23G Endothelial-specific HSPA12B KO (Tek-cre strain) vs. WT mice | Serum (ND) | RAW 264.7 macrophages incubated with EVs (45 min and 12 h IT, dose ND) | Attenuated TNF and IL1 increase by incubation with HSPA12B-EVs from WT mice, via downregulation of NFκB activation. | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☑ 2 (GAPDH) ☐ 3 ☐ 4 | [63] | |
2/3 ligation Through-and-through with 21G P2rx7 KO vs. WT mice | Peritoneal fluid (24 h, 48 h post-CLP) | CD14-EV levels in peritoneal fluid | ↓ CD14-EVs in P2rx7 KO Increased CD14(-EV) release linked with higher survival. | ExoQuick-TC precipitation | ☑ A (2 mL) ☐ B ☐ C ☐ D ☐ E | ☑ 1 (CD14) ☐ 2 ☐ 3 ☐ 4 | [86] | |
LPS model (in vivo) | LPS from E. coli i.p., 25 μg/g C57BL6/J | Serum (12 h post-LPS) | EV levels post-LPS EV levels after pretreatment with GW4869 (i.p., 2.5 μg/g, 1 h prior to LPS) | ↑ EV levels Effect of GW4869: EV increase inhibited ↑ Survival, cardiac function | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (AChE) ☐ 2 ☐ 3 ☐ 4 | [24] |
LPS from E. coli i.p., 10 mg/kg C57BL6/J | Serum (0–72 h post-LPS) | T-cells incubated with EVs (10 µg/mL, 72 h IT) Pretreatment of CLP mice with EVs (i.v., 100 µg, day 1/3/5 prior to CLP surgery) | Cytokines, chemokines, growth factors in EVs ↑ Differentiation of naïve T-cells to T-helper cells ↑ Survival ↓ Lung, liver damage ↓ Serum IL-10, TNF | DC | ☑ A (200 µL) ☑ B (NTA) ☑ C (BCA) ☐ D ☑ E | ☑ 1 (CD9, CD81, CD63) ☐ 2 ☐ 3 ☐ 4 | [35] | |
LPS from E. coli i.p., 7.5 mg/kg C57BL6/J | Plasma (6 h post-LPS) | Measuring tissue factor activity in EVs | ↑ EV associated tissue factor activity in LPS-mice | Centrifugation | ☑ A (50 µL) ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [108] | |
LPS from E. coli i.p., 0.5–10 mg/kg C57BL6/J | Serum (6 h post-LPS) | EV administration to young, adult, healthy mice (i.v., 500 μg, 1 mg, and 1.5 mg) | ↑ Microglial activation ↑ Astrogliosis ↑ Pro-inflammatory miRNA ↑ Pro-inflammatory cytokine mRNA | DC + ExoQuick precipitation | ☐ A ☐ B ☑ C (BCA) ☐ D ☐ E | ☐ 1 ☑ 2 (TSG101, actin) ☐ 3 ☐ 4 | [128] | |
LPS from Salmonella enterica abortus equi i.p., 200 µg/20 g C57BL6/J | CSF (0–6 h post-LPS) | EV quantification, miRNA analysis and proteomics on CSF-EVs Mixed cortical cultures incubated with EVs (EVs from 12 µL CSF, 4 h IT) i.c.v. injection of PKH26-labelled CSF-EVs (2.9 × 108 particles) i.c.v. injection of GW4869 (4.3 mM) (4 h post-LPS) | ↑ EV levels ↑Pro-inflammatory EV-miRNA EV uptake by microglia and astrocytes ↑ Pro-inflammatory gene expression Penetration of brain parenchyma ↓ Pro-inflammatory gene expression ↓ CSF-EVs miRNA accumulation (CP). ↓ Brain inflammation. | Total Exosome Isolation kit | ☑ A (12–50 µL) ☑ B (NTA) ☑ C (MS) ☐ D ☑ E | ☑ 1 (CD63) ☑ 2 (actin, tubulin) ☐ 3 ☐ 4 | [129] | |
LPS from Salmonella enterica abortus equi i.p., 200 µg/20 g C57BL6/J | CM (2.5 h post-CP isolation) | Determination of EV levels in CM of choroid plexus explants CP isolation 2.5 h post-LPS EV isolation at 2.5 h IT | ↑ EV levels in CM | No EV isolation | ☐ A ☑ B (NTA) ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [129] | |
LPS from i.v., 2–10 mg/kg Balb/c mice | Plasma (1 h and 20 h post-LPS) | Determination of histone-EVs | Unique detection of histone-EVs in plasma of LPS mice | Anti-CD63 beads | ☐ A ☑ B (FC) ☑ C (BCA) ☐ D ☐ E | ☑ 1 (CD63) ☑ 2 (FLOT-1) ☐ 3 ☑ 4 (Histone H3) | [59] | |
LPS model (in vitro) | LPS from E. coli 1 μg/mL RAW264.7 macrophages | CM (24 h IT) | GW4869 pretreatment (10–20 µM, 10 min-24 h IT) before LPS stimulation. Naïve RAW264.7 cells incubated with EVs (20 µg, 10 min-24 h IT). | LPS: ↑ TNF, IL-6 in EVs GW4869 + LPS: ↓ TNF, IL6, IL-1β in CM ↓ EVs in CM EVs: ↑ TNF, IL-6 production by macrophages (24 h). | DC | ☑ A (1.2 × 106 cells/100 mm) ☐ B ☑ C (Micro BCA) ☐ D ☐ E | ☑ 1 (CD81, CD63, AChE) ☑ 2 (GAPDH) ☐ 3 ☐ 4 | [24] |
LPS from Salmonella typhimurium 100 ng/mL BMDMs | CM (4 h IT) | Naïve BMDMs incubated with EVs (dose ND, 4 h IT) | Histone-EV release by LPS-stimulated BMDMs Histones located inside EVs and at EV surface. ↑ TNF, IL-6, IL-1β production (~TLR4) | Concentration and discontinuous iodixanol gradient (OptiPrep) | ☑ A (5 × 107 cells) ☐ B ☑ C (BCA) ☐ D ☑ E | ☑ 1 (CD63) ☑ 2 (TSG101) ☐ 3 ☑ 4 (Histone H3) | [59] | |
LPS from E. coli 10 ng/mL ATP-stimulated (3 mM) BMDM cultures | CM (4 h IT) | Study of CD14-EV release by stimulated BMDMs | CD14-EV release by macrophages results in reduced TNF, IL-6 and IL-1β production. | DC or ExoQuick-TC ULTRA precipitation | ☑ A (150 mm2 plates) ☑ B (NTA) ☐ C ☐ D ☑ E | ☑ 1 (CD9, CD14) ☐ 2 ☐ 3 ☐ 4 | [86] | |
LPS from Salmonella enterica abortus equi 1000ng/mL Primary CP epithelial cells. | CM (ND) | Determination of EV levels with and without GW4869 | ↓ EV levels with GW4869 | Total Exosome Isolation kit | ☑ A (2 mL) ☑ B (NTA) ☑ C (MS) ☐ D ☐ E | ☑ 1 (CD63) ☑ 2 (actin, tubulin) ☐ 3 ☐ 4 | [129] | |
Other | Mycobacteria-infected RAW 264.7 macrophages | CM (48 h post-infection) | RAW264.7 cells incubated with EVs (10 µg, 24 h IT) | ↑ HSP70-EVs post-LPS ↑ NFκB activation, TNF release by macrophages. | DC | ☑ A (2 × 108 cells) ☐ B ☑ C (Micro BCA) ☐ D ☑ E | ☐ 1 ☑ 2 (HSP70, actin) ☐ 3 ☐ 4 | [69] |
Mouse model for burns: 20% total body surface area mouse model (TBSA) | Plasma | Determination of HMGB1-EVs | ↑ HMGB1-EVs in plasma from TBSA mice ↑ HMGB1+/IL-1β+ EVs | DC | ☐ A ☑ B (FC) ☑ C (BCA) ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [62] | |
TNF-stimulated BMECs (10 ng/mL) Primary BMECs from: eGFP-CLN-5 mice and immortalized BMEC cell line bEND3. | CM (12 h IT) | Detection of Claudin-5 positive EVs in CM Incubation of BMEC-EVS (labeled) with peripheral blood leukocytes (24 h IT) | Constitutive Claudin-5-EV release by BMECs ↑ upon TNF stimulation. Claudin-5-EVs bind to leukocytes. | DC | ☐ A ☐ B ☑ C (Micro BCA) ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☑ 4 | [130] |
Patient Studies | ||||||||
---|---|---|---|---|---|---|---|---|
Patient info (disease/controls) | Biofluid as EV source | Additional setup with EVs | Observations | EV isolation | EV characterization | Ref. | ||
Global quantification | Protein marker detection | |||||||
(Severe) sepsis | Healthy controls | Plasma | NA | ↑ Total EV levels ↑ Platelet-, EC-, RBC-, monocyte-, granulocyte- and lymphocyte-EVs in sepsis ↑ PS-EVs in sepsis ↑ Pro-coagulant activity of EVs in sepsis | Centrifugation Lactadherin-Alexa 488 staining without prior EV isolation | ☑ A (250 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD235a, CD14, CD45, CD66b, CD3, CD19, CD41a, CD31) ☐ 2 ☐ 3 ☐ 4 | [28] |
Plasma | Human primary monocytes incubated with EVs | ↑ Total EV plasma levels in sepsis ↑ CRP-EVs in plasma ↑ Platelet-EVs in plasma ↑ IL-8 production by monocytes | ANX V-PE staining without prior EV isolation or EV-enrichment with centrifugation | ☑ A (500 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD45, CD14, CD235a, CD41) ☐ 2 ☐ 3 ☐ 4 | [30] | ||
Plasma Within 24 h TOD | Vascular ECs treated with EVs (30 min IT, 400 µg/mL protein) | EV-induced, NAD(P)H activity- Dependent, vascular damage and apoptosis. Most EVs of platelet origin (not compared with healthy controls). | UC ANX V-FITC staining (FC) | ☐ A ☑ B (FC) ☑ C (BA) ☐ D ☐ E | ☑ 1 (CD9, CD63, CD15, CD14, CD61, CD56, CD31, CD42b, CD3) ☐ 2 ☐ 3 ☐ 4 | [48] | ||
Plasma Day 1 and 7 PA | NA | ↑ EV-mRNA for redox genes (D1) EV-miRNA analysis: 30 DE-miRNAs in EVs at D1. 65 DE-miRNAs in EVs at D7. DE-miRNAs in EVs~inflammatory pathways. Partial separation survivors/non-survivors based on 35 EV-associated, DE- miRNAs (~cell cycle regulation). | UC | ☐ A ☑ B (NTA, nano FC) ☐ C ☐ D ☐ E | ☑ 1 (CD9, CD41) ☑ 2 (FLOT1) ☐ 3 ☐ 4 | [75] | ||
Plasma At 0, 24 and 48 h PA | NA | ↑ EC-EVs ↑ Platelet-EVs (but not significantly) ↑ EC-EVs in the blood of survivors vs. non-survivors. Negative correlation between SOFA score, EC-EV and platelet EV levels. | ND | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD31, CD42) ☐ 2 ☐ 3 ☐ 4 | [46] | ||
Plasma | LPS-stimulated human T-lymphocytes incubated with EVs. EV injection (i.v.) into FIP mice. | Anti-apoptotic effect of EVs (has-miR-7-5p related). ↓ Bad, Bax, caspase-3 ↑ Bcl2 ↓ Mortality in FIP mice | DC | ☐ A ☑ B (NTA) ☐ C ☐ D ☑ E | ☑ 1 (CD63) ☑ 2 (HSP70) ☐ 3 ☐ 4 | [89] | ||
Plasma Within 24 h PA | NA | ↑ A2MG, neutrophil derived EVs in sepsis High A2MG-EV levels associated with survival | Gradient centrifugation and UC | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD66b) ☐ 2 ☐ 3 ☐ 4 | [79] | ||
Plasma After admission but before sepsis-related treatment | Human coronary artery endothelial cells incubated with EVs (24 h IT). | ↑ miR-223 in septic platelet EVs compared to controls EV effects on endothelial cells: ↓ ICAM-1 expression on endothelial cells ↓ PBMC binding to endothelial cells | DC ANX V-FITC labeling (FC) | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD41a) ☐ 2 ☐ 3 ☐ 4 | [83] | ||
Plasma | NA | ↑ Pro-coagulant EV activity ↑ PS-EVs | Centrifugation ANX V-PE labelling (FC) | ☑ A (200 µL) ☑ B (FC) ☐ C ☐ D ☑ E | ☑ 1 (CD14) ☐ 2 ☐ 3 ☐ 4 | [52] | ||
Critically ill, non-septic | Plasma Day 1 of diagnosis | NA | Proteomics on EVs: ↓ Complement, acute phase pathways in sepsis ↑ CRP-EVs in sepsis | ExoQuick precipitation | ☐ A ☑ B (NTA) ☑ C (MS, BA) ☐ D ☐ E | ☐ 1 ☑ 2 (actin) ☑ 3 (albumin) ☐ 4 | [73] | |
Plasma Day 1 | Lymphocytes incubated with EVs | Pro-apoptotic effect of EVs (caspase-1 dependent). Caspase-1 activity in EVs higher in plasma EVs from sepsis patients. | DC | ☐ A ☑ B (FC) ☐ C ☐ D ☑ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [90] | ||
None | Plasma Six timepoints during disease progression | NA | Negative correlation between EV-SPTLC3 protein and disease progression (~body temperature, CRP levels). | DC + 17% Optiprep | ☑ A (300 µL) ☑ B (NTA) ☑ C (MS) ☐ D ☑ E | ☑ 1 (CD63) ☐ 2 ☐ 3 ☐ 4 | [119] | |
Plasma | EV incubation with tissue-engineered vascular media (1417–48190 EVs/μL, 24 h IT) | Restoration of vascular hypo-reactivity (IL-10 mediated) | DC | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD41, CD45, CD235a, CD146, CD11b, CD66b, CD62L, CD62P) ☐ 2 ☐ 3 ☐ 4 | [124] | ||
SIRS patients and healthy controls | Plasma | NA | ↑ TF+/CD13+ monocyte-derived EVs. High levels of TF+/CD13+ EVs correlated with higher APACHE II score and DIC scores. | ANX V labeling of plasma without prior EV isolation | ☑ A (50 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD13, CD142) ☐ 2 ☐ 3 ☐ 4 | [110] | |
Plasma | NA | ↑TF-EVs from ECs High amount of TF-EVs correlated with high DIC score. Negative correlation between the ratio of thrombomodulin (TM)- and EC-derived TF- EVs with DIC scores. | ND | ☑ A (50 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD146, CD142, CD141, CD201) ☐ 2 ☐ 3 ☐ 4 | [45] | ||
Blood | NA | ↑ Platelet-EVs | ND | ☑ A (50 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD42a, CD62P) ☐ 2 ☐ 3 ☐ 4 | [40] | ||
Sepsis + MODS | Healthy controls | Plasma | NA | ↑ Granulocyte-EVs ↓ EC-EVs, platelet-EVs Thrombin generation negatively correlated with EV numbers. | Centrifugation ANX V-PE labeling | ☑ A (250 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD61, CD235a, CD62E, CD144, CD66b) ☐ 2 ☐ 3 ☐ 4 | [41] |
Sepsis + CAP or FP | Plasma Day 1,3 and 5 PA | NA | ↑ Neutrophil-, monocyte-, lymphocyte- and EC-EVs in CAP vs. FP and healthy controls. No difference in RBC- and platelet-EVs between CAP/FP/healthy controls. High A2MG-EV levels are associated with survival of CAP patients | DC ANX V-Pacific Blue labeling | ☑ A (5 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD66b, CD14, CD235, CD41, CD3, CD51, CD146) ☐ 2 ☐ 3 ☐ 4 | [42] | |
Sepsis + CAP | Plasma Day 1 | NA | ↑A2MG levels in neutrophil-derived EVs | DC | ☐ A ☑ B (FC) ☑ C (MS) ☐ D ☐ E | ☑ 1 (CD66b, CD45, CD62P; CD14, CD41, CD54) ☑ 2 (ANXA1, HSP71, Actin) ☐ 3 ☐ 4 | [118] | |
ARDS patients | None | Plasma BAL fluid Day 1 and 3 of ARDS | NA | Increased levels of leukocyte-EVs are associated with better survival. | Plasma: ND BAL: DC | ☑ A (30 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD31, CD41, CD45, CD11b, CD66b) ☐ 2 ☐ 3 ☐ 4 | [50] |
Septic shock | Healthy controls | Plasma | NA | No significant difference in platelet-EVs between septic shock and healthy controls. Lower amount of platelet EVs in patients with DIC score > 5 compared to DIC score < 5. ↑ CD144 and CD62E+ EC-EVs in septic shock (in low range of detection limit). ↑ CD41+ EVs, CD31+/CD41- EVs plasma of septic shock patients who died within 48 h after inclusion vs. survivors. | ANX V-FITC staining of plasma without prior EV isolation | ☐ A ☑ B (hsFC) ☐ C ☐ D ☐ E | ☑ 1 (CD144, CD42b, CD62E, CD106, CD41, CD31, CD45, CD66b, CD20, CD14, CD3) ☐ 2 ☐ 3 ☐ 4 | [44] |
Plasma 10 ± 4 h after enrollment | EV injection (i.v.) in LPS-treated mice (40 mg/kg, i.p.) | ↑ Total EV levels in septic shock ↑ L- and P-selectin in EVs ↑ EC-EVs and platelet-EVs ↓ Leukocyte-EVs No difference in RBC-, monocyte- and granulocyte-EVs. Counter-act hypo-reactivity in the aorta (↑ thromboxane A2) | DC | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD41, CD45, CD235a, CD146, CD11b, CD66b, CD62L, CD62P) ☑ 2 (actin) ☐ 3 ☐ 4 | [29] | ||
Plasma | Rabbit-derived heart preparations incubated with EVs (0.5 to 1× EV amount in plasma) | EV-induced nitric oxide production. Induction of myocardial dysfunction. | UC | ☐ A ☐ B ☑ C (BA) ☐ D ☑ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [125] | ||
None | Plasma Day 1, 3 and 7 | NA | ↑ PS-EVs Combination of prothrombin time, EC-derived CD105+ EVs and platelet count at D1 could predict DIC absence. | ANX V labeling of plasma without prior EV isolation | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (CD31, CD105, CD11a) ☐ 2 ☐ 3 ☐ 4 | [95] | |
Septic shock + DIC | Septic shock without DIC | Plasma Day 1, 3, 5, 7 | NA | Total EV amount in same range for DIC and non-DIC patients. Specific EV source pattern in DIC patients. ↓ Platelet-derived EVs in DIC patients compared to non-DIC patients ↑ EC-EVs and leukocyte EVs in DIC (D1) ↑ Leukocyte- EVs in DIC at D7 | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (CD11a, GPIb, CD31, CD62E, CD105) ☐ 2 ☐ 3 ☐ 4 | [51] |
(Severe) sepsis septic shock | Healthy controls | Serum | NA | No difference in EV levels between sepsis/septic shock patients and healthy donors. miR125-5p exclusively upregulated in serum EVs from sepsis patients (~survival prediction). | miRCURY Exosome Isolation kit | ☑ A (3 mL) ☑ B (NTA) ☐ C ☐ D ☑ E | ☑ 1 (CD81) ☑ 2 (TSG101, syntenin-1) ☐ 3 ☐ 4 | [33] |
Plasma 10 ± 4 h after enrollment | EVs injected (i.v.) in Swiss mice. | Organ damage propagation via oxidative stress and inflammation: Heart: ↑ COX1, COX2, SOD, eNOS. Lungs: COX-2, NFκB levels affected. Liver: ↓ eNOS, manganese SOD. | ND | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD62L, CD62P) ☐ 2 ☐ 3 ☐ 4 | [78] | ||
Plasma | NA | No difference in EC-EV levels | No EV isolation | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD31, CD42b) ☐ 2 ☐ 3 ☐ 4 | [47] | ||
Plasma Within 48 h after enrollment | NA | EV levels: septic shock > sepsis without shock > healthy controls. High EV level group associated with development of septic shock, the need for mechanical ventilation or vasopressor support, disease severity (SAPS 3, APACHE II and SOFA scores), and 28-day mortality. | ExoQuick precipitation | ☑ A (250 µL) ☐ B ☑ C (BCA) ☐ D ☑ E | ☑ 1 (CD9, CD63) ☐ 2 ☐ 3 ☐ 4 | [31] | ||
Critically ill non-septic and healthy controls | Plasma Day 1, 3 and 5 from TOD | NA | ↑ EV levels in sepsis/septic shock vs. healthy controls. ↑ EV levels in septic shock patients vs. sepsis patients. No difference in EV levels between sepsis patients and critically ill, non-septic patients. ↑ De novo methylation regulators DNMT3A and DNMT3B mRNAs in EVs in the septic shock cohort vs. critically ill, non-septic control and sepsis cohorts. | DC | ☑ A (1 mL) ☑ B (NTA) ☐ C ☐ D ☐ E | ☑ 1 (CD63, CD81, EPCAM) ☑ 2 (FLOT1, TSG101, ANXA5) ☐ 3 ☑ 4 (GM130) | [27] | |
Sepsis vs. Severe sepsis vs. Septic shock | Plasma Daily for 2 weeks | NA | Higher amount of PS-positive EVs correlated with a lower risk for mortality and multiple organ failure. High amounts of TF correlated with increased risk for high disease severity (SAPS II score > 60). | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (CD142) ☐ 2 ☐ 3 ☐ 4 | [116] | |
Human endotoxemia (2 ng/kg) | None | Plasma 0, 3, 6 and 24 h post-LPS | NA | ↑ Total and platelet-EVs 6 h post-LPS ↑ PS-EVs ↑ EV-associated TF activity 6 h post-LPS | ANX V-FITC staining of plasma without prior EV isolation | ☑ A (30 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD31, CD41a, CD14, CD235a) ☐ 2 ☐ 3 ☐ 4 | [32] |
Healthy controls | Plasma 0, 1, 2, 3, 4, 8, and 24 h post-LPS | NA | ↑TF activity of EVs post-LPS | UC and ANX V-Cy5 labelling | ☐ A ☑ B (FC) ☐ C ☐ D ☑ E | ☑ 1 (CD14, CD144) ☐ 2 ☐ 3 ☐ 4 | [104] | |
Healthy donors | Plasma | NA | Most EVs are platelet-derived. Low amount of TF-bearing EVs detected (median 47 × 106 EVs/L). EV-dependent, low grade thrombin generation was TF-independent. | Centrifugation ANX V-PE staining | ☑ A (250 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD14, CD61, CD62E, CD66e, CD235a) ☐ 2 ☐ 3 ☐ 4 | [36] | |
Plasma | NA | Most EVs are platelet-derived. | Lactadherin-FITC staining without prior EV isolation | ☐ A ☑ B (FC, ImageStream) ☐ C ☐ D ☐ E | ☑ 1 (CD14, CD41, CD235a, CD45) ☐ 2 ☐ 3 ☐ 4 | [37] | ||
Plasma | NA | Most EVs are platelet-derived. | Lactadherin-FITC staining of plasma without prior EV isolation | ☐ A ☑ B (FC, ImageStream) ☐ C ☐ D ☐ E | ☑ 1 (CD41, CD235a) ☐ 2 ☐ 3 ☐ 4 | [38] | ||
Plasma | NA | Generally more inside EVs: IL-2, IL-4, IL-10, IL-12, IL-15, IL-16, IL-18, IL-21, IL-22, IL-33, Eotaxin, IP-10, ITAC, M-CSF, MIG, MIP-3α, TGF-β, and TNF. Generally more on EV surface: IL-8, IL-17, and GRO-α. Specific for IL-6: Selectively bound to the EV surface when released from tissues, but mostly present inside EVs derived from body fluids or cultured immune cells. Cellular activation influences cytokine secretion pattern of monocytes (stimulus-dependent). Monocytes + LPS IL-1α, IL-1β, IL-10, IL-18, IL-21, IL-22, GM-CSF, Gro-α, and TNF: ↓ EV-associated secretion, MCP-1: ↑ EV-associated secretion Shift EV surface-EV encapsulation: for IL-1β, IL-18, GRO-α, IP-10, M-CSF, MCP-1 and MIP-1α. | ExoQuick (TC) precipitation | ☑ A (250 µL) ☑ B (NTA) ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [58] | ||
Amniotic fluid | NA | ND | ☐ A ☑ B (NTA) ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [58] | |||
Explant CM: Placental, tonsillar and cervix tissue. CM cell culture: T-cells and monocytes. | NA | ExoQuick (TC) precipitation | ☑ A (500 µL) ☑ B (NTA) ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [58] | |||
Plasma/platelet concentrates | NA | Total EV amount: 2× 105 EVs/µL PS-EVs (10%) were mainly platelet-derived (88.4%). PS-EVs: PS- dependent thrombin generation. | DC or Total Exosome Isolation kit ANX V-FITC labelling (FS) Lactadherin-FITC-labelling (ImageStream) | ☐ A ☑ B (NTA, FC, ImageStream) ☑ C (ND) ☐ D ☑ E | ☑ 1 (CD14, CD41, CD235a, CD45) ☐ 2 ☐ 3 ☐ 4 | [49] | ||
Bacteremic S. aureus | Healthy controls | Serum | NA | ↑ Granulocyte-EVs | Filtering and sedimentation | ☐ A ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD11b, CD177) ☐ 2 ☐ 3 ☐ 4 | [43] |
Meningococcal sepsis | Healthy controls | Plasma | NA | ↑ Platelet-EVs ↑ Granulocyte-EVs ↑ PS- EVs, mainly derived from platelets. ↑ TF-EVs (85% monocyte-derived), with higher TF- and pro-coagulant activity (especially in DIC patients) | Centrifugation ANX V-PE staining | ☑ A (250 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD4, CD8, CD14, CD20, CD61, CD62E, CD235a, CD66b) ☐ 2 ☐ 3 ☐ 4 | [39] |
Meningococcal septic shock | Meningococcal meningitis | Plasma | NA | More efficient TF-dependent thrombin generation and clot formation by TF-EVs in meningococcal septic shock vs. patients with meningitis. EV-TF activity was associated with plasma LPS levels. | DC | ☑ A (300 µL) ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [107] |
Cardiac surgery patients | Healthy controls | Plasma | NA | No difference in EV levels. ↑ TF+ EVs in cardiac surgery patients ↑ Pro-coagulant activity of TF-EVs from cardiac surgery patients. Healthy controls: 5% of EVs was TF+, no pro-coagulant activity in vitro. | Centrifugation and ANX V-APC labelling | ☑ A (250 µL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD14, CD66e, CD142, CD61, CD235a) ☐ 2 ☐ 3 ☐ 4 | [101] |
Burn patients | Healthy controls | Plasma (0–120 h AD) | NA | ↑ HMGB1-EVs in burn patients | DC | ☐ A ☑ B (FC) ☑ C (BCA) ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [62] |
In vitro studies | ||||||||
Cells | Stimulus | Additional setup with EVs | Observations | EV isolation | EV characterization | Ref. | ||
Global quantification | Protein marker detection | |||||||
THP-1 monocytes | LPS from E. coli 100 µg/mL, 20 h | NA | Release of CD31+/CD41- EVs. 26.8% expressed at least one of the analyzed leukocyte markers (CD45, CD14, CD66b, CD20 or CD3). | ANX V-FITC staining of CM without prior EV isolation | ☑ A (2 × 106 cells/mL) ☑ B (hsFC) ☐ C ☐ D ☐ E | ☑ 1 (CD41, CD31, CD45, CD66b, CD20, CD14, CD3) ☑ 2 ☐ 3 ☐ 4 | [44] | |
LPS 5 µg/mL, 4 h | NA | ↑ TF expression on monocyte-derived EVs from LPS-stimulated cultures vs. EVs from unstimulated monocyte cultures. TF blockage: ↓ thrombin generation by EVs from LPS-stimulated monocytes. | DC | ☑ A (1 × 106 cells/mL) ☐ B ☑ C (ND) ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [49] | ||
LPS from E. coli (6 h and 24 h IT) Hyperthermia (37 °C vs. 39.5 °C, 6 h and 24 h IT) | NA | LPS + hyperthermia: EV-independent release of inducible HSP70. EV dependent release of constitutive HSP70. | DC | ☐ A ☐ B ☐ C ☐ D ☑ E | ☑ 1 (CD63) ☑ 2 (HSP70) ☐ 3 ☐ 4 | [61] | ||
PBMCs (healthy volunteers) | S. pyogenes | S. pyogenes-infected Balb/c mice treated with EVs from stimulated PBMCs (50 to 150 EVs/mL) | ↑ Fibrinogen-binding integrins in EVs Anti-bacterial effect of EVs: bacteria trapping into fibrin networks. ↓ Bacterial loads in the blood, spleen and liver in S. pyogenes-infected mice | DC | ☑ A (2.6 × 106 PBMCs, 50–150 EVs/mL) ☐ B ☑ C (MS) ☐ D ☑ E | ☑ 1 (CD14, CD45, CD18) ☑ 2 (ANXA1, ANXA2, ANXA5, ANXA6) ☐ 3 ☐ 4 | [88] | |
M proteins from S. pyogenes (1 mg mL, 24 h IT) LPS (100 ng mL, 24 h IT) Lipoteichoic acid (1 mg mL, 24 h IT) | NA | Higher abundance of PS and TF on EVs from stimulated PBMCs. Both intrinsic and extrinsic coagulation pathways are involved in EV-triggered clotting. | DC ANX V-PE labelling (FC) | ☑ A (900 µL) ☑ B (FC) ☐ C ☐ D ☑ E | ☑ 1 (CD14) ☐ 2 ☐ 3 ☐ 4 | [52] | ||
LPS from E. coli 1 µg/mL | Vascular smooth muscle cells incubated with EVs | Monocyte-derived, caspase-1-carrying EVs can induce apoptosis in smooth muscle cells. | DC | ☑ A (10 × 106 cells/mL) ☑ B (FC) ☐ C ☐ D ☑ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [123] | ||
LPS 6 ng/mL, 12 h | Naïve human monocytes incubated with EVs from LPS-treated monocytes (12 h IT), followed by LPS stimulation (6 ng/mL, 4 h IT) | Proteomics on EVs: ↓ Complement and acute phase pathways post-LPS In vitro validation: ↓ TNF expression by monocytes | ExoQuick precipitation | ☐ A ☑ B (NTA) ☑ C (MS, BA) ☐ D ☐ E | ☐ 1 ☑ 2 (actin) ☑ 3 (albumin) ☐ 4 | [73] | ||
N. meningitidis (4 h) | NA | ↑ TF activity in monocytes and EVs exposed to LPS from N. meningitidis | DC ANX V-FITC labelling | ☑ A (106 cells) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD14, CD142) ☐ 2 ☐ 3 ☐ 4 | [113] | ||
Primary neutrophils | Various stimulants (e.g., LPS, S. aureus, PMA, TNF) | NA | Highest amount of EV production by S. aureus. Anti-bacterial effect of EVs due to EV-bacteria aggregation. Interference with actin polymerization, glucose metabolisms and β2-integrins, impaired anti-bacterial effect of EVs. | Filtering and sedimentation ANX V-FITC labelling | ☑ A (4.5 × 106 cells) ☑ B (FC) ☑ C (BA) ☑ D (MS) ☑ E | ☑ 1 (CD11b, CD18) ☑ 2 (Actin) ☐ 3 ☐ 4 | [43] | |
S. aureus, E. coli or LPS (1 µg/mL) | Stimulation of THP-1 monocytes with EVs (108 particles) or LPS (100 ng/mL) | “Trails” = neutrophil-derived EVs produced during migration towards inflamed foci. Anti-bacterial effect: reactive oxygen species (ROS)- and granule-dependent. Monocyte attraction (MCP-1) Induction of macrophage polarization to pro-inflammatory phenotype. Pro-inflammatory miRNAs profile (miR-1260, miR-1285, miR-4454, and miR-7975) in trails vs. anti-inflammatory miRNAs (miR-126, miR-150, and miR-451a) in neutrophil-derived released upon arrival at the inflamed foci. | Filtering and DC | ☑ A (2 × 109 cells) ☑ B (NTA) ☐ C ☐ D ☑ E | ☑ 1 (CD81, CD63, CD9, CD66b, CD35, CD11b, CD39, CD29, CD18) ☑ 2 (ANXA1, FLOT-1, HSP70) ☐ 3 ☐ 4 | [74] | ||
+/− pre-incubation (20 min) with HUVEC monolayer. fMLP (1 µM, 20 min) | A2MG- EV injection (105 EVs, i.v., 1 h post-CLP) in CLP mice (2 punctures with 20 G). A2MG-EVs (5 × 104/0.6 cm2 channel, 4 h IT) incubated with TNF-stimulated HUVECs (10 ng/mL TNF, 4 h IT) | Beneficial effects of A2MG-EVs in CLP mice ↑ Survival ↓ Pro-inflammatory cytokine levels in plasma ↓ Bacterial load ↑ Bacterial phagocytosis in peritoneal exudates ↓ Neutrophil infiltration lungs ↓ Hypothermia A2MG transfer to plasma membrane of ECs. ↑ Neutrophil adhesion to HUVECs | DC | ☑ A (2 × 107 cells) ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [79] | ||
fMLP (1 µM, 20 min) | HUVECs incubated with EVs (8 × 105, 6 h) | Anti-inflammatory effects (↓STAT1, NFKBIZ, CCL8, or CXCL6 in HUVECs) | DC | ☑ A (2 × 107 cells/mL) ☑ B (FC) ☑ C (MS) ☐ D ☐ E | ☑ 1 (CD66b) ☑ 2 (ANXA1, HSP71, actin) ☐ 3 ☐ 4 | [118] | ||
Ca2+ ionophore (2 µM, A23187, 20 min) | HUVECs incubated with EVs (30 min IT) | MPO-EVs induce EC damage. | DC PKH6 and ANX V-PE labelling | ☐ A ☑ B (FC) ☑ C (BCA) ☐ D ☑ E | ☑ 1 (CD66b, CD62L) ☐ 2 ☐ 3 ☐ 4 | [121] | ||
Blood monocytes (healthy donors) | LPS from E. coli, 10 ng/mL, 4 h | NA | TF-pro-coagulant activity assay Constitutive generation of TF-EV generation barely detectable in CM at baseline. ↑ TF-EV generation post-LPS. | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [104] | |
Whole blood | N. meningitidis (106/mL, WT and LPS-deficient). LPS from N. meningitidis and E. coli (4 h IT). | NA | In vitro whole blood model to study TF activity: ↑ TF activity in EVs from in whole blood after exposed to WT N. meningitidis vs. LPS-deficient N. meningitidis. ↓ TF activity of EVs from whole blood after exposure to LPS from N. meningitidis or E. coli vs. EVs released after exposure to N. meningitidis. | DC | ☑ A (250 µL) ☐ B ☐ C ☐ D ☐ E | ☑ 1 ☐ 2 ☐ 3 ☐ 4 | [113] | |
Platelets (healthy donors) | Platelet labeling with CellTracker Orange CMTMR. Platelet activation with thrombin (0.1 U/mL, 15–60 min IT). | HUVECs incubated with EVs (ratio 1:100 HUVEC:EVs, 48 h IT) | EV internalization by HUVECs. miR-223 in platelet EVs is transferred to HUVECs and can regulate the expression of endothelial genes (FBXW7 and EFNA1). | Filtering and DC | ☑ A (108 platelets/mL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD41a) ☐ 2 ☐ 3 ☐ 4 | [82] | |
Platelet labeling with CellTracker Orange CMTMR or CellTracker Red CMPTX dye. Platelet activation with thrombin (0.1 U/mL, 60 min IT). | PBMCs incubated with EVs (ratio 1:100, 6 h IT). | EV internalization by macrophages. EV effects on macrophages: ↑ Phagocytic activity ↓ Cytokine and chemokine release (CCL4, TNF, M-CSF) (mi)RNA expression analysis in macrophages exposed to platelet EVs. 66 miRNAs and 653 additional RNAs differentially expressed. Upregulation of 34 miRNAs, concomitant downregulation of 367 RNAs, including mRNAs encoding for cytokines/chemokines. | Filtering and DC | ☑ A (108 platelets/mL) ☑ B (FC) ☐ C ☐ D ☐ E | ☑ 1 (CD41a) ☐ 2 ☐ 3 ☐ 4 | [87] | ||
HUVECs | Transfection with Ad-HSPA12B-GFP or Ad-GFP. +/− LPS stimulation (4 h IT) | LPS-treated RAW264.7 macrophages and BMDMs (24 h LPS, 1 µg/mL LPS) incubated with EVs (1 h IT) | Endothelial HSPA12B-EVs Uptake by macrophages. EV effects in LPS-stimulated macrophages: ↑ IL-10 production ↓ TNF, IL-1 production ↓ NFκB activation | PEG6000 | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (CD9) ☑ 2 (HSPA12B) ☐ 3 ☐ 4 | [63] | |
TNF stimulation (10 ng/mL, 4 h) | NA | TF- pro-coagulant activity assay Constitutive generation of TF-EV generation barely detectable in CM at baseline. ↑ TF-EV generation post-TNF. | ND | ☐ A ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [104] | ||
EPCs | Isolated from cord blood of healthy pregnant women. | Intratracheal administration of EVs to LPS-induced ALI mice (25 µg LPS) | Beneficial effects on lung damage in acute lung injury mice(partly miRNA-126 related). ↓ Cell number, protein concentration and cytokine/chemokine concentration in BAL fluid. ↓ Edema, myeloperoxidase activity and organ damage score in lungs. | Total Exosome Isolation kit | ☐ A ☑ B (NTA) ☑ C (Biorad DC protein assay) ☐ D ☐ E | ☑ 1 (CD81, CD9, CD63) ☐ 2 ☐ 3 ☐ 4 | [117] | |
PMECs | TNF (100 ng/mL, 24 h) | Pulmonary microvascular ECs incubated with EVs (10 µg/mL, 24 h IT) | EC-derived EVs can induce inflammatory pathways in parent ECs itself. ↑ IP-10 expression, NFκB translocation | DC | ☐ A ☐ B ☐ C ☐ D ☐ E | ☐ 1 ☐ 2 ☐ 3 ☐ 4 | [122] | |
Human mast cells (HMC-1) | NA | NA | Protein topology analysis of EVs: many cytosolic proteins are situated on the EV surface. | DC and discontinuous iodixanol density gradient | ☑ A (5 × 105 cells/mL) ☑ B (NTA) ☑ C (MS, BCA) ☐ D ☑ E | ☑ 1 (CD81, CD63) ☑ 2 (TSG101, FLOT-1, GAPDH) ☐ 3 ☑ 4 (Histone H1) | [57] | |
BMECs | Mechanical injury (mechanical strain-induced injury model) | NA | Time-dependent increase in EV-associated occludin, CD31 and ICAM-1 following mechanical injury. | ExoQuick TC precipitation | ☐ A ☐ B ☐ C ☐ D ☐ E | ☑ 1 (CD31) ☐ 2 ☐ 3 ☐ 4 | [132] | |
CMECs | TNF (10 ng/mL, 24 h IT) | NA | ↑ Adhesion molecules in EVs post-TNF stimulation (ICAM-1 and VCAM-1). | DC | ☑ A (13–18 × 106 cells) ☑ B (NTA) ☑ C (BA, MS) ☐ D ☑ E | ☑ 1 (CD9, CD81) ☑ 2 (ALIX) ☐ 3 ☑ 4 (HSP90B1) | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgelman, M.; Vandendriessche, C.; Vandenbroucke, R.E. Extracellular Vesicles: A Double-Edged Sword in Sepsis. Pharmaceuticals 2021, 14, 829. https://doi.org/10.3390/ph14080829
Burgelman M, Vandendriessche C, Vandenbroucke RE. Extracellular Vesicles: A Double-Edged Sword in Sepsis. Pharmaceuticals. 2021; 14(8):829. https://doi.org/10.3390/ph14080829
Chicago/Turabian StyleBurgelman, Marlies, Charysse Vandendriessche, and Roosmarijn E. Vandenbroucke. 2021. "Extracellular Vesicles: A Double-Edged Sword in Sepsis" Pharmaceuticals 14, no. 8: 829. https://doi.org/10.3390/ph14080829
APA StyleBurgelman, M., Vandendriessche, C., & Vandenbroucke, R. E. (2021). Extracellular Vesicles: A Double-Edged Sword in Sepsis. Pharmaceuticals, 14(8), 829. https://doi.org/10.3390/ph14080829