Gene Polymorphisms of the Renin-Angiotensin System and Bleeding Complications of Warfarin: Genetic-Based Machine Learning Models
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Patients and Data Collection
4.2. Genotyping Methods
4.3. Statistical Analysis and Machine Learning Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | angiotensin I-converting enzyme |
AGT | angiotensinogen |
AGTR | angiotensin receptor |
AORs | adjusted odds ratios |
AUROC | area under the receiver-operating curve |
INRs | international normalized ratios |
LD | linkage disequilibrium |
NNG | number needed to genotype |
ORs | odds ratios |
PAI-1 | plasminogen activator inhibitor-1 |
PLATO | Platelet Inhibition and Patient Outcomes |
RAS | renin–angiotensin system |
REN | renin |
RF | random forest |
SVM | support vector machine |
SNPs | single nucleotide polymorphisms |
WRS | weighted risk score |
References
- Elias, D.J.; Topol, E.J. Warfarin pharmacogenomics: A big step forward for individualized medicine: Enlightened dosing of warfarin. Eur. J. Hum. Genet. 2008, 16, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 2440–2492. [Google Scholar] [CrossRef]
- Marie, I.; Leprince, P.; Menard, J.F.; Tharasse, C.; Levesque, H. Risk factors of vitamin K antagonist overcoagulation. QJM Int. J. Med. 2012, 105, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, T.; Nishinaka, T.; Terada, T.; Yonezawa, K. Relationship between aging and dosage of warfarin: The current status of warfarin anticoagulant therapy for Japanese outpatients in a department of cardiovascular medicine. J. Cardiol. 2009, 53, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffett, B.S.; Ung, M.; Bomgaars, L. Risk factors for elevated INR values during warfarin therapy in hospitalized pediatric patients. Pediatr. Blood Cancer 2012, 58, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Pourgholi, L.; Goodarzynejad, H.; Mandegary, A.; Ziaee, S.; Talasaz, A.H.; Jalali, A.; Boroumand, M. Gene polymorphisms and the risk of warfarin-induced bleeding complications at therapeutic international normalized ratio (INR). Toxicol. Appl. Pharmacol. 2016, 309, 37–43. [Google Scholar] [CrossRef]
- Yee, J.; Kim, W.; Chang, B.C.; Chung, J.E.; Lee, K.E.; Gwak, H.S. APOB gene polymorphisms may affect the risk of minor or minimal bleeding complications in patients on warfarin maintaining therapeutic INR. Eur. J. Hum. Genet. 2019, 27, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.; Kim, W.; Chang, B.C.; Chung, J.E.; Lee, K.E.; Gwak, H.S. Genetic variations in the transcription factors GATA4 and GATA6 and bleeding complications in patients receiving warfarin therapy. Drug Des. Devel. Ther. 2019, 13, 1717–1727. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.B.; Schultz, L.E.; Steiner, H.E.; Kittles, R.A.; Cavallari, L.H.; Karnes, J.H. Warfarin Pharmacogenomics in Diverse Populations. Pharmacotherapy 2017, 37, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.E. The renin-angiotensin system and fibrinolysis. Am. J. Cardiol. 1997, 79, 12–16. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.; Lorenzo, O.; Rupérez, M.; Esteban, V.; Suzuki, Y.; Mezzano, S.; Plaza, J.J.; Egido, J. Role of the renin-angiotensin system in vascular diseases: Expanding the field. Hypertension 2001, 38, 1382–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.G.; Staessen, J.A. Genetic polymorphisms in the renin-angiotensin system: Relevance for susceptibility to cardiovascular disease. Eur. J. Pharmacol. 2000, 410, 289–302. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Jiao, X.; Wei, G. Genetic association of angiotensin-converting enzyme I/D polymorphism with intracranial hemorrhage: An updated meta-analysis of 39 case-control studies. World Neurosurg. 2019, 134, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Shiotani, A.; Nishi, R.; Yamanaka, Y.; Murao, T.; Matsumoto, H.; Tarumi, K.-I.; Kamada, T.; Sakakibara, T.; Haruma, K. Renin-angiotensin system associated with risk of upper GI mucosal injury induced by low dose aspirin: Renin angiotensin system genes’ polymorphism. Dig. Dis. Sci. 2011, 56, 465–471. [Google Scholar] [CrossRef]
- Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [Green Version]
- Pannu, A. Artificial intelligence and its application in different areas. Artif. Intell. 2015, 4, 79–84. [Google Scholar]
- Mathur, P.; Srivastava, S.; Xu, X.; Mehta, J.L. Artificial intelligence, machine learning, and cardiovascular disease. Clin. Med. Insights Cardiol. 2020, 14. [Google Scholar] [CrossRef] [PubMed]
- Cuocolo, R.; Perillo, T.; De Rosa, E.; Ugga, L.; Petretta, M. Current applications of big data and machine learning in cardiology. J. Geriatr. Cardiol. 2019, 16, 601–607. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, P.; Gao, Z.; Wang, R.; Khalighi, K. Ensemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dose. PLoS ONE 2018, 13, e0205872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgun, E.; Limdi, N.A.; Duarte, C.W. High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. Bioinformatics 2011, 27, 1384–1389. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.H.; Wu, F.; Lo, C.L.; Tai, C.T. Predicting warfarin dosage from clinical data: A supervised learning approach. Artif. Intell. Med. 2012, 56, 27–34. [Google Scholar] [CrossRef]
- Hubert, C.; Houot, A.; Corvol, P.; Soubrier, F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 1991, 266, 15377–15383. [Google Scholar] [CrossRef]
- Rigat, B.; Hubert, C.; Corvol, P.; Soubrier, R. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992, 20, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, K.L.; Du, Z.-Q.; Eisenmann, J.C.; Rothschild, M.F. An alternative method for genotyping of the ACE I/D polymorphism. Mol. Biol. Rep. 2008, 36, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Dilley, A.; Saidi, P.; Evatt, B.; Austin, H.; Zawadsky, J.; Harwood, D.; Ellingsen, D.; Barnhart, E.; Phillips, D.; Hooper, W.C.; et al. Deletion polymorphism in the angiotensin-converting enzyme gene as a thrombophilic risk factor after hip arthroplasty. Thromb. Haemost. 1998, 80, 869–873. [Google Scholar] [CrossRef]
- Jackson, A.; Brown, K.; Langdown, J.; Luddington, R.; Baglin, T. Effect of the angiotensin-converting enzyme gene deletion polymorphism on the risk of venous thromboembolism. Br. J. Haematol. 2000, 111, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Roy, S.; Sharma, V.; Kaul, S.; Jyothy, A.; Munshi, A. Association of ACE gene I/D polymorphism and ACE levels with hemorrhagic stroke: Comparison with ischemic stroke. Neurol. Sci. 2015, 36, 137–142. [Google Scholar] [CrossRef]
- Pola, E.; Gaetani, E.; Pola, R.; Papaleo, P.; Flex, A.; Aloi, F.; De Santis, V.; Santoliquido, A.; Pola, P. Angiotensin-converting enzyme gene polymorphism may influence blood loss in a geriatric population undergoing total hip arthroplasty. J. Am. Geriatr. Soc. 2002, 50, 2025–2028. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.-M.; Wang, R.-Y.; Fann, C.S.J.; Chen, J.-W.; Jong, Y.-S.; Jou, Y.-S.; Yang, H.-C.; Kang, C.-S.; Chen, C.-C.; Chang, H.-C.; et al. Fine-mapping angiotensin-converting enzyme gene: Separate QTLs identified for hypertension and for ACE activity. PLoS ONE 2013, 8, e56119. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodríguez, N.; Posadas-Romero, C.; Molina, T.V.; Vallejo, M.; Del-Valle-Mondragón, L.; Rámirez-Bello, J.; Valladares, A.; Cruz-López, M.; Vargas-Alarcón, G. Single nucleotide polymorphisms of the angiotensin-converting enzyme (ACE) gene are associated with essential hypertension and increased ACE enzyme levels in Mexican individuals. PLoS ONE 2013, 8, e65700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 2017, 550, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Cassis, L.A.; Kooi, C.W.V.; Daugherty, A. Structure and functions of angiotensinogen. Hypertens. Res. 2016, 39, 492–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, A.B.; Green, D. Kinetics of the human renin and human substrate reaction. Cardiovasc. Res. 1971, 5, 86–89. [Google Scholar] [CrossRef]
- Yanai, K.; Nibu, Y.; Murakami, K.; Fukamizu, A. A cis-acting DNA element located between TATA box and transcription initiation site is critical in response to regulatory sequences in human angiotensinogen gene. J. Biol. Chem. 1996, 271, 15981–15986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.Y.; Zhou, J.; Narayanan, C.S.; Cui, Y.; Kumar, A. Role of C/A polymorphism at -20 on the expression of human angiotensinogen gene. Hypertension 1999, 33, 108–115. [Google Scholar] [CrossRef]
- Ishigami, T.; Tamura, K.; Fujita, T.; Kobayashi, I.; Hibi, K.; Kihara, M.; Toya, Y.; Ochiai, H.; Umemura, S. Angiotensinogen gene polymorphism near transcription start site and blood pressure: Role of a T-to-C transition at intron I. Hypertension 1999, 34, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Negovan, A.; Voidăzan, S.; Pantea, M.; Moldovan, V.; Bățagă, S.; Cozlea, L.; Mocan, S.; Banescu, C. AGT A-20C (rs5050) gene polymorphism and ulcer occurrence in patients treated with low-dose aspirin: A case-control study. Rev. Romana Med. Lab. 2015, 23, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Helin, K.; Stoll, M.; Meffert, S.; Stroth, U.; Unger, T. The role of angiotensin receptors in cardiovascular diseases. Revista Română Medicină Laborator 1997, 29, 23–29. [Google Scholar] [CrossRef]
- Su, X.; Lee, L.; Li, X.; Lv, J.; Hu, Y.; Zhan, S.; Cao, W.; Mei, L.; Tang, Y.-M.; Wang, D.; et al. Association between angiotensinogen, angiotensin II receptor genes, and blood pressure response to an angiotensin-converting enzyme inhibitor. Circulation 2007, 115, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees; Chapman and Hall: London, UK, 1984. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Mehran, R.; Rao, S.V.; Bhatt, D.L.; Gibson, C.M.; Caixeta, A.; Eikelboom, J.; Kaul, S.; Wiviott, S.D.; Menon, V.; Nikolsky, E.; et al. Standardized bleeding definitions for cardiovascular clinical trials: A consensus report from the Bleeding Academic Research Consortium. Circulation 2011, 123, 2736–2747. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Philippe, J.; Germain, S.; Mathieu, F.; Jeunemaître, X.; Corvol, P.; Pinet, F. Functionality of two new polymorphisms in the human renin gene enhancer region. J. Hypertens. 2002, 20, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Griessenauer, C.J.; Tubbs, R.S.; Foreman, P.M.; Chua, M.H.; Vyas, N.A.; Lipsky, R.H.; Lin, M.; Iyer, R.; Haridas, R.; Walters, B.C.; et al. Association of renin-angiotensin system genetic polymorphisms and aneurysmal subarachnoid hemorrhage J. Neurosurg. 2018, 128, 86–93. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
Characteristics. | Bleeding Complication, Number (%) | p | |
---|---|---|---|
Presence (n = 21) | Absence (n = 121) | ||
Sex | 0.705 | ||
Male | 8 (38.1) | 44 (36.4) | |
Female | 13 (61.9) | 77 (63.6) | |
Age (y) | 0.106 | ||
<65 | 11 (52.4) | 85 (70.2) | |
≥65 | 10 (47.6) | 36 (29.8) | |
Mean ± SD | 62.0 ± 11.2 | 58.7 ± 10.0 | 0.168 |
Body weight (kg) Mean ± SD | 58.6 ± 10.7 | 58.7 ± 10.4 | 0.989 |
Body mass index (kg/m2) Mean ± SD | 22.3 ± 2.3 | 22.5 ± 2.8 | 0.756 |
Comorbidity | |||
Hypertension | 6 (28.6) | 33 (27.3) | 0.902 |
Diabetes mellitus | 3 (14.3) | 10 (8.3) | 0.377 |
Chronic heart failure | 7 (33.3) | 25 (20.7) | 0.199 |
Atrial fibrillation | 17 (81) | 70 (57.9) | 0.045 |
Myocardial infarction | 2 (9.5) | 2 (1.7) | 0.104 |
Comedication | |||
Angiotensin-converting-enzyme inhibitor | 2 (10.5) | 19 (18.8) | 0.383 |
Angiotensin II receptor blocker | 4 (21.1) | 19 (18.8) | 0.820 |
Antiplatelet drugs a | 0 (0) | 4 (3.8) | 0.398 |
Calcium channel blocker | 4 (21.1) | 19 (18.8) | 0.820 |
Diuretics | 9 (47.4) | 35 (34.7) | 0.291 |
Statins | 0 (0) | 4 (4.0) | 0.378 |
INR increasing drugs b | 0 (0) | 1 (1.0) | 1.000 |
INR decreasing drugs c | 1 (5.3) | 0 (0) | 1.000 |
Valve position | 0.740 | ||
Aortic | 6 (28.6) | 28 (23.1) | |
Mitral | 9 (42.9) | 66 (54.5) | |
Double d | 5 (23.8) | 20 (16.5) | |
Tricuspid e | 1 (4.8) | 7 (5.8) | |
Valve type | 0.418 | ||
St. Jude Medical | 7 (38.9) | 39 (34.2) | |
CarboMedics | 6 (33.3) | 32 (28.1) | |
ATS | 2 (11.1) | 15 (13.2) | |
MIRA | 1 (5.6) | 9 (7.9) | |
Duromedics | 2 (11.1) | 6 (5.3) | |
OnX | 0 (0) | 4 (3.5) | |
Others f | 0 (0) | 9 (7.9) | |
INR Mean ± SD | 2.41 ± 0.07 | 2.45 ± 0.10 | 0.143 |
Follow-up time (y) Mean ± SD | 14.27 ± 6.20 | 14.48 ± 7.59 | 0.886 |
Gene Polymorphism | Allele Change | Minor Allele Frequency | Grouped Genotypes | Bleeding Complication, Number (%) | p | |
---|---|---|---|---|---|---|
Presence (n = 21) | Absence (n = 121) | |||||
VKORC1 | C>T | 0.113 | CC, CT | 3 (14.3) | 27 (22.3) | 0.405 |
rs9934438 | TT | 18 (85.7) | 94 (77.7) | |||
CYP2C9 | A>C | 0.043 | AA | 18 (85.7) | 111 (92.5) | 0.304 |
rs1057910 | AC | 3 (14.3) | 9 (7.5) | |||
AGT | G>T | 0.128 | GG | 19 (90.5) | 87 (72.5) | 0.079 |
rs7079 | GT, TT | 2 (9.5) | 33 (27.5) | |||
AGT | A>G | 0.180 | AA, AG | 5 (23.8) | 42 (34.7) | 0.327 |
rs699 | GG | 16 (76.2) | 79 (65.3) | |||
AGT | T>C | 0.401 | TT, TC | 19 (90.5) | 99 (81.8) | 0.529 |
rs11122576 | CC | 2 (9.5) | 22 (18.2) | |||
AGT | T>G | 0.165 | TT | 8 (38.1) | 89 (73.6) | 0.001 |
rs5050 | TG, GG | 13 (61.9) | 32 (26.4) | |||
REN | C>T | 0.225 | CC | 14 (66.7) | 71 (58.7) | 0.491 |
rs2368564 | CT, TT | 7 (33.3) | 50 (41.3) | |||
REN | G>A | 0.373 | GG | 7 (33.3) | 52 (43.0) | 0.408 |
rs12750834 | GA, AA | 14 (66.7) | 69 (57.0) | |||
ACE | C>T | 0.465 | CC, CT | 18 (85.7) | 78 (64.5) | 0.055 |
rs1800764 | TT | 3 (14.3) | 43 (35.5) | |||
ACE | G>C | 0.437 | GG, GC | 18 (85.7) | 76 (62.8) | 0.041 |
rs4341 | CC | 3 (14.3) | 45 (37.2) | |||
ACE | A>G | 0.486 | AA, AG | 20 (95.2) | 84 (69.4) | 0.014 |
rs4353 | GG | 1 (4.8) | 37 (30.6) | |||
AGTR1 | T>A | 0.094 | TT | 17 (85.0) | 97 (81.5) | 1.000 |
rs275651 | TA, AA | 3 (15.0) | 22 (18.5) | |||
AGTR1 | A>G | 0.190 | AA, AG | 11 (52.4) | 36 (29.8) | 0.042 |
rs2640543 | GG | 10 (47.6) | 85 (70.2) | |||
AGTR1 | C>T | 0.254 | CC | 3 (14.3) | 6 (5.0) | 0.130 |
rs5182 | CT, TT | 18 (85.7) | 115 (95.0) | |||
AGTR1 | A>C | 0.060 | AA | 18 (85.7) | 107 (88.4) | 0.718 |
rs5186 | AC | 3 (14.3) | 14 (11.6) | |||
AGTR2 | G>A | 0.310 | GG | 3 (14.3) | 20 (16.5) | 1.000 |
rs1403543 | GA, AA | 18 (85.7) | 101 (83.5) |
Variables | Unadjusted OR (95% CI) | Adjusted OR (95% CI) | Attributable Risk (%) |
---|---|---|---|
Male | 1.08 (0.41–2.80) | ||
Age ≥ 65 y | 2.15 (0.84–5.50) | ||
Atrial fibrillation | 3.10 (0.98–9.75) | ||
ACE H2/H2 | 0.14 (0.02–1.08) | 0.12 (0.02–0.99) * | 88.0 a |
AGT rs5050 G allele | 4.52 (1.72–11.91) | 5.04 (1.80–14.11) ** | 80.2 |
AGTR1 rs2640543 A allele | 2.60 (1.01–6.65) | 3.17 (1.13–8.89) * | 68.5 |
Weighted Risk Score Percentile | Bleeding Complications | Odds Ratio (95% CI) | |
---|---|---|---|
Presence | Absence | ||
25th percentile | 1 (3.4) | 28 (96.6) | 0.25 (0.03–1.95) |
25–75th percentile | 13 (12.7) | 89 (87.3) | 1 (reference) |
75th percentile | 7 (63.6) | 4 (36.4) | 11.98 (3.08–46.65) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Yee, J.; Chang, B.-C.; Gwak, H.-S. Gene Polymorphisms of the Renin-Angiotensin System and Bleeding Complications of Warfarin: Genetic-Based Machine Learning Models. Pharmaceuticals 2021, 14, 824. https://doi.org/10.3390/ph14080824
Kim J-H, Yee J, Chang B-C, Gwak H-S. Gene Polymorphisms of the Renin-Angiotensin System and Bleeding Complications of Warfarin: Genetic-Based Machine Learning Models. Pharmaceuticals. 2021; 14(8):824. https://doi.org/10.3390/ph14080824
Chicago/Turabian StyleKim, Joo-Hee, Jeong Yee, Byung-Chul Chang, and Hye-Sun Gwak. 2021. "Gene Polymorphisms of the Renin-Angiotensin System and Bleeding Complications of Warfarin: Genetic-Based Machine Learning Models" Pharmaceuticals 14, no. 8: 824. https://doi.org/10.3390/ph14080824
APA StyleKim, J. -H., Yee, J., Chang, B. -C., & Gwak, H. -S. (2021). Gene Polymorphisms of the Renin-Angiotensin System and Bleeding Complications of Warfarin: Genetic-Based Machine Learning Models. Pharmaceuticals, 14(8), 824. https://doi.org/10.3390/ph14080824