Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Brief History of the Studies of FIASMAs in the SARS-CoV-2 Infection
3. Update (16 June 2021) on Studies with FIASMAs in the SARS-CoV-2 Infection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Shang, J.; Yang, Y.; Liu, C.; Wan, Y.; Geng, Q.; Wang, M.; Baric, R.; Li, F. Lysosomal proteases are a determinant of coronavirus tropism. J. Virol. 2018, 92, e01504–e01518. [Google Scholar] [CrossRef] [Green Version]
- Kornhuber, J.; Tripal, P.; Reichel, M.; Mühle, C.; Rhein, C.; Muehlbacher, M.; Groemer, T.W.; Gulbins, E. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): A novel pharmacological group of drugs with broad clinical applications. Cell. Physiol. Biochem. 2010, 26, 9–20. [Google Scholar] [CrossRef]
- Carpinteiro, A.; Edwards, M.J.; Hoffmann, M.; Kochs, G.; Gripp, B.; Weigang, S.; Adams, C.; Carpinteiro, E.; Gulbins, A.; Keitsch, S.; et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell. Rep. Med. 2020, 1, 100142. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, P.; Loas, G. Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): An opportunity against SARS-CoV-2 infection? J. Clin. Pharm. Ther. 2021, 1. [Google Scholar] [CrossRef]
- Claus, R.A.; Bunck, A.C.; Bockmeyer, C.L.; Brunkhorst, F.M.; Lösche, W.; Kinscherf, R.; Deigner, H.P. Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J. 2005, 19, 1719–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr.; Jahrling, P.B.; Laidlaw, M.; et al. Repurposing of clinically developed drugs for treatment of Middle East Respiratory Syndrome coronavirus infection. Antimicrob. Agents Chemother. 2014, 58, 4885–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother. 2014, 58, 4875–4884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, N.W. Solving the secretory acid sphingomyelinase puzzle: Insights from lysosome-mediated parasite invasion and plasma membrane repair. Cell. Microbiol. 2019, 21, e13065. [Google Scholar] [CrossRef]
- Mercer, J.; Schelhaas, M.; Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 2010, 79, 803–833. [Google Scholar] [CrossRef] [Green Version]
- Blaess, M.; Kaiser, L.; Sauer, M.; Deigner, H. Lysosomotropic active compounds—Hidden protection against COVID-19/SARS-CoV-2 Infection? Preprints 2020. [Google Scholar] [CrossRef]
- Blaess, M.; Kaiser, L.; Sommerfeld, O.; Csuk, R.; Deigner, H.P. Drugs, metabolites, and lung accumulating small lysosomotropic molecules: Multiple targeting impedes SARS-CoV-2 infection and progress to COVID-19. Int. J. Mol. Sci. 2021, 22, 1797. [Google Scholar] [CrossRef] [PubMed]
- Schloer, S.; Brunotte, L.; Goretzko, J.; Mecate-Zambrano, A.; Korthals, N.; Gerke, V.; Ludwig, S.; Rescher, U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerg. Microbes. Infect. 2020, 9, 2245–2255. [Google Scholar] [CrossRef]
- Chung, H.Y.; Claus, R.A. Keep your friends close, but your enemies closer: Role of acid sphingomyelinase during infection and host response. Front. Med. 2021, 21, 616500. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, W.; Fan, M.; Zhang, J.; Peng, Y.; Huang, F.; Wang, N.; He, L.; Zhang, L.; Holmdahl, R.; et al. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput. Struct. Biotechnol. J. 2021, 19, 1933–1943. [Google Scholar] [CrossRef] [PubMed]
- Cava, C.; Bertoli, G.; Castiglioni, I. In silico discovery of candidate drugs against Covid-19. Viruses 2020, 12, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabelli, C.; Wotring, J.W.; Zhang, C.J.; McCarty, S.M.; Fursmidt, R.; Frum, T.; Kadambi, N.S.; Amin, A.T.; O’Meara, T.R.; Pretto, C.D.; et al. RMorphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. bioRxiv 2020. [Google Scholar] [CrossRef]
- Yang, L.; Pei, R.J.; Li, H.; Ma, X.N.; Zhou, Y.; Zhu, F.H.; He, P.L.; Tang, W.; Zhang, Y.C.; Xiong, J.; et al. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol. Sin. 2020, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Z.; Shinn, P.; Itkin, Z.; Eastman, R.T.; Bostwick, R.; Rasmussen, L.; Huang, R.; Shen, M.; Hu, X.; Wilson, K.M.; et al. Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2. Front Pharmacol. 2021, 11, 592737. [Google Scholar] [CrossRef]
- Villoutreix, B.O.; Krishnamoorthy, R.; Tamouza, R.; Leboyer, M.; Beaune, P. Chemoinformatic analysis of psychotropic and antihistaminic drugs in the light of experimental anti-SARS-CoV-2 activities. Adv. Appl. Bioinform. Chem. 2021, 14, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, N.; Aimo, A.; Castiglione, V.; Padalino, C.; Emdin, M.; Tascini, C. Safety and efficacy of amiodarone in a patient with COVID-19. JACC Case Rep. 2020, 2, 1307–1310. [Google Scholar] [CrossRef]
- Arya, R.; Das, A.; Prashar, V.; Kumar, M. Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. ChemRxiv Preprint 2020. [Google Scholar] [CrossRef]
- Sencanski, M.; Perovic, V.; Pajovic, S.B.; Adzic, M.; Paessler, S.; Glisic, S. Drug repurposing for candidate SARS-CoV-2 main protease inhibitors by a novel in silico method. Molecules 2020, 25, 3830. [Google Scholar] [CrossRef]
- Dayer, M.R. Old drugs for newly emerging viral disease, COVID-19: Bioinformatic prospective. arXiv 2020, arXiv:2003.04524. [Google Scholar]
- Dayer, M.R. Old drugs for JAK-STAT pathway inhibition in COVID-19. arXiv 2020, arXiv:2010.12332. [Google Scholar]
- Zhou, Y.; Hou, Y.; Shen, J.; Mehra, R.; Kallianpur, A.; Culver, D.A.; Gack, M.U.; Farha, S.; Zein, J.; Comhair, S.; et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020, 18, e3000970. [Google Scholar] [CrossRef]
- Hsieh, K.; Wang, Y.; Chen, L.; Zhao, Z.; Savitz, S. Drug repurposing for COVID-19 using graph neural network with genetic, mechanistic, and epidemiological validation. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Straus, M.R.; Bidon, M.; Tang, T.; Whittaker, G.; Daniel, S. FDA approved calcium channel blockers inhibit SARS-CoV-2 infectivity in epithelial lung cells. bioRxiv 2020. [Google Scholar] [CrossRef]
- 28 Xiao, X.; Wang, C.; Chang, D.; Wang, Y.; Dong, X.; Jiao, T.; Zhao, Z.; Ren, L.; Dela Cruz, C.S.; Sharma, L.; et al. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front. Immunol. 2020, 11, 586572. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Zeng, H.L.; Peng, Y.; Jiang, X.; Shang, W.J. Calcium channel blocker amlodipine besylate is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discov. 2020, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Solaimanzadeh, I. Nifedipine and amlodipine are associated with improved mortality and decreased risk for intubation and mechanical ventilation in elderly patients hospitalized for COVID-19. Cureus 2020, 12, e8069. [Google Scholar] [PubMed]
- Darquennes, G.; Le Corre, P.; Le Moine, O.; Loas, G. Association between functional inhibitors of acid sphingomyelinase (FIASMAs) and reduced risk of death in COVID-19 patients: A retrospective cohort study. Pharmaceuticals 2021, 14, 226. [Google Scholar] [CrossRef]
- Nouri-Vaskeh, M.; Kalami, N.; Zand, R.; Soroureddin, Z.; Varshochi, M.; Ansarin, K.; Rezaee, H.; Taghizadieh, A.; Sadeghi, A.; Ahangari Maleki, M.; et al. A comparison of losartan and amlodipine effects on the outcomes of patient with COVID-19 and primary hypertension: A randomised clinical trial. Int. J. Clin. Pract. 2021, e14124. [Google Scholar] [CrossRef]
- Vatansever, E.C.; Yang, K.S.; Drelich, A.K.; Kratch, K.C.; Cho, C.C.; Kempaiah, K.R.; Hsu, J.C.; Mellott, D.M.; Xu, S.; Tseng, C.K.; et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc. Natl. Acad. Sci. USA 2021, 118, e2012201118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Sauvat, A.; Ciccosanti, F.; Colavita, F.; Di Rienzo, M.; Castilletti, C.; Capobianchi, M.R.; Kepp, O.; Zitvogel, L.; Fimia, G.M.; Piacentini, M.; et al. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell. Death Dis. 2020, 11, 656. [Google Scholar] [CrossRef]
- Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020, 64, e00819–e00820. [Google Scholar] [CrossRef]
- Chen, C.Z.; Xu, M.; Pradhan, M.; Gorshkov, K.; Petersen, J.D.; Straus, M.R.; Zhu, W.; Shinn, P.; Guo, H.; Shen, M.; et al. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol. Transl. Sci. 2020, 3, 1165–1175. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Chen, Y.; Wang, L.; An, W.; An, X.; Song, L.; Tong, Y.; Fan, H.; Lu, C. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief Bioinform. 2021, 22, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Liu, C.; Guo, Y.; He, Z.; Huang, X.; Jia, X.; Yang, T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J. Med. Virol. 2021, 93, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.H.; Wang, L.Q.; Liu, W.L.; An, X.P.; Liu, Z.D.; He, X.Q.; Song, L.H.; Tong, Y.G. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. 2020, 133, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Ginex, T.; Garaigorta, U.; Ramírez, D.; Castro, V.; Nozal, V. Host-directed FDA-approved drugs with antiviral activity against SARS-CoV-2 identified by hierarchical in silico/in vitro screening method. Pharmaceuticals 2021, 14, 332. [Google Scholar] [CrossRef]
- Weston, S.; Haupt, R.; Logue, J.; Matthews, K.; Frieman, M. BFDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Plaze, M.; Attali, D.; Prot, M.; Petit, A.C.; Blatzer, M.; Vinckier, F.; Levillayer, L.; Chiaravalli, J.; Perin-Dureau, F.; Cachia, A.; et al. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int. J. Antimicrob. Agents 2021, 57, 106274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chan, W.K.B.; Wang, Z.; Hur, J.; Xie, J.; Yu, H.; He, Y. Ontological and bioinformatic analysis of anti-coronavirus drugs and their implication for drug repurposing against COVID-19. Preprints 2020. [Google Scholar] [CrossRef]
- Weston, S.; Coleman, C.M.; Haupt, R.; Logue, J.; Matthews, K.; Li, Y.; Reyes, H.M.; Weiss, S.R.; Frieman, M.B. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol. 2020, 94, e01218–e01220. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Sánchez-Rico, M.; Vernet, R.; Jannot, A.S.; Neuraz, A.; Blanco, C.; Lemogne, C.; Airagnes, G.; Paris, N.; Daniel, C.; et al. AP-HP/Universities/INSERM COVID-19 research collaboration and AP-HP COVID CDR initiative. Observational study of chlorpromazine in hospitalized patients with COVID-19. Clin. Drug. Investig. 2021, 41, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; O’Meara, M.J.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Huttenhain, R.; et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020. [Google Scholar] [CrossRef]
- Norinder, U.; Tuck, A.; Norgren, K.; Munic Kos, V. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed. Pharmacother. 2020, 130, 110582. [Google Scholar] [CrossRef]
- Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362. [Google Scholar] [CrossRef]
- Wan, W.; Zhu, S.; Li, S.; Shang, W.; Zhang, R.; Li, H.; Liu, W.; Xiao, G.; Peng, K.; Zhang, L. High-throughput screening of an FDA-approved drug library identifies inhibitors against arenaviruses and SARS-CoV-2. ACS Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Yuan, S.; Yin, X.; Meng, X.; Chan, J.F.; Ye, Z.W.; Riva, L.; Pache, L.; Chan, C.C.; Lai, P.M.; Chan, C.C.; et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature 2021, 593, 418–423. [Google Scholar] [CrossRef]
- Xiong, H.L.; Cao, J.L.; Shen, C.G.; Ma, J.; Qiao, X.Y.; Shi, T.S.; Ge, S.X.; Ye, H.M.; Zhang, J.; Yuan, Q.; et al. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. Front. Pharmacol. 2021, 11, 609592. [Google Scholar] [CrossRef] [PubMed]
- Jehi, L.; Ji, X.; Milinovich, A.; Erzurum, S.; Rubin, B.P.; Gordon, S.; Young, J.B.; Kattan, M.W. Individualizing risk prediction for positive coronavirus disease 2019 testing: Results from 11,672 patients. Chest 2020, 158, 1364–1375. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Vernet, R.; Beeker, N.; Jannot, A.S.; Neuraz, A.; Salamanca, E.; Paris, N.; Daniel, C.; Gramfort, A.; et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: Results from an observational study. Mol. Psychiatry 2021, 1–14. [Google Scholar] [CrossRef]
- Fred, M.S.; Kuivanen, S.; Ugurlu, H.; Casarotto, P.C. Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine show antiviral activity against the novel variants in vitro. BioRxiv 2021. [Google Scholar] [CrossRef]
- Hou, Y.; Ge, S.; Li, X.; Wang, C.; He, H.; He, L. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis. Chem. Biol. Interact. 2021, 338, 109420. [Google Scholar] [CrossRef] [PubMed]
- Gelemanović, A.; Vidović, T.; Stepanić, V.; Trajković, K. Identification of 37 heterogeneous drug candidates for treatment of COVID-19 via a rational transcriptomics-based drug repurposing approach. Pharmaceuticals 2021, 14, 87. [Google Scholar] [CrossRef]
- Ge, S.; Wang, X.; Hou, Y.; Lv, Y.; Wang, C.; He, H. Repositioning of histamine H(1) receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2. Eur. J. Pharmacol. 2021, 896, 173897. [Google Scholar] [CrossRef]
- Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020, 178, 104786. [Google Scholar] [CrossRef]
- Ianevski, A.; Yao, R.; Fenstad, M.H.; Biza, S.; Zusinaite, E.; Reisberg, T.; Lysvand, H.; Løseth, K.; Landsem, V.M.; Fossum, J.; et al. Potential antiviral options against SARS-CoV-2 infection. Viruses 2020, 12, 642. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Peng, T.T.; Hsu, H.Y.; Lee, Y.Z.; Wu, S.H.; Lin, W.H.; Ke, Y.Y.; Hsu, T.A.; Yeh, T.K.; Huang, W.Z.; et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed. J. 2002, 4, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Afsar, M.; Khandelwal, N.; Chander, Y.; Riyesh, T.; Dedar, R.K.; Gulati, B.R.; Pal, Y.; Barua, S.; Tripathi, B.N.; et al. Emetine suppresses SARS-CoV-2 replication by inhibiting interaction of viral mRNA with eIF4E. Antivir. Res. 2021, 189, 105056. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.T.; Chao, T.L.; Kao, H.C.; Pang, Y.H.; Lee, W.H.; Hsieh, C.H.; Chang, S.Y.; Huang, H.C.; Juan, H.F. Enhancement of the IFN-beta-induced host signature informs repurposed drugs for COVID-19. Heliyon 2020, 6, e05646. [Google Scholar] [CrossRef] [PubMed]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp. Saudi J. Biol. Sci. 2021, 28, 1426–1432. [Google Scholar] [CrossRef]
- Hajjo, R.; Tropsha, A. A systems biology workflow for drug and vaccine repurposing: Identifying small-molecule BCG mimics to reduce or prevent COVID-19 mortality. Pharm. Res. 2020, 37, 212. [Google Scholar] [CrossRef]
- Sisakht, M.; Mahmoodzadeh, A.; Darabian, M. Plant-derived chemicals as potential inhibitors of SARS-CoV-2 main protease (6LU7), a virtual screening study. Phytother. Res. 2021. [Google Scholar] [CrossRef]
- Zimniak, M.; Kirschner, L.; Hilpert, H.; Seibel, J.; Bodem, J. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2. Sci. Rep. 2021, 11, 5890. [Google Scholar] [CrossRef]
- Creeden, J.F.; Imami, A.S.; Eby, H.M.; Gillman, C.; Becker, K.N.; Reigle, J.; Andari, E.; Pan, Z.K.; O’Donovan, S.M.; McCullumsmith, R.E.; et al. Fluoxetine as an anti-inflammatory therapy in SARS-CoV-2 infection. Biomed. Pharmacother. 2021, 138, 111437. [Google Scholar] [CrossRef]
- Duarte Rodrigo, R.R.; Copertino Jr Dennis, C.; Iñiguez Luis, P.; Marston Jez, L.; Nixon, D.F.; Powell Timothy, R. Repurposing FDA-approved drugs for COVID-19 using a data-driven approach. Chem. Rxiv. Preprint 2020. [Google Scholar] [CrossRef]
- O’Donovan, S.M.; Imami, A.; Eby, H.; Henkel, N.D.; Creeden, J.F.; Asah, S.; Zhang, X.; Wu, X.; Alnafisah, R.; Taylor, R.T.; et al. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci. Rep. 2021, 11, 4495. [Google Scholar] [CrossRef] [PubMed]
- Dechaumes, A.; Nekoua, M.P.; Belouzard, S.; Sane, F.; Engelmann, I.; Dubuisson, J.; Alidjinou, E.K.; Hober, D. Fluoxetine can inhibit SARS-CoV-2 in vitro. Microorganisms 2021, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Plaze, M.; Attali, D.; Petit, A.C.; Blatzer, M.; Simon-Loriere, E.; Vinckier, F.; Cachia, A.; Chrétien, F.; Gaillard, R. Repurposing chlorpromazine to treat COVID-19: The recovery study. Encephale 2020, S35–S39. [Google Scholar] [CrossRef] [PubMed]
- Nazeam, J.; Mohammed, E.Z.; Raafat, M.; Houssein, M.; Elkafoury, A.; Hamdy, D.; Jamil, L. Based on principles and insights of COVID-19 epidemiology, genome sequencing, and pathogenesis: Retrospective analysis of sinigrin and ProlixinRX (Fluphenazine) provides off-label drug candidates. SLAS Discov. 2020, 25, 1123–1140. [Google Scholar] [CrossRef] [PubMed]
- Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: A randomized clinical trial. JAMA 2020, 324, 2292–2300. [Google Scholar] [CrossRef]
- Seftel, D.; Boulware, D.R. Prospective cohort of fluvoxamine for early treatment of coronavirus disease 19. Open Forum Infect. Dis. 2021, 8, ofab050. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, L.R.; Norris, M.H.; Vashisht, R.; Bluhm, A.P.; Li, D.; Liao, Y.J.; Brown, A.; Butte, A.J.; Ostrov, D.A. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem. Biophys. Res. Commun. 2021, 538, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Sánchez, M.; Vernet, R.; Beeker, N.; Neuraz, A.; Blanco, C.; Olfson, M.; Lemogne, C.; Meneton, P.; Daniel, C.; et al. Association between hydroxyzine use and reduced mortality in patients hospitalized for coronavirus disease 2019: Results from a multicenter observational study. medRxiv 2020. [Google Scholar] [CrossRef]
- Artigas, L.; Coma, M.; Matos-Filipe, P.; Aguirre-Plans, J.; Farrés, J.; Valls, R.; Fernandez-Fuentes, N.; de la Haba-Rodriguez, J.; Olvera, A.; Barbera, J.; et al. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS ONE 2020, 15, e0240149. [Google Scholar] [CrossRef]
- Hazra, S.; Chaudhuri, A.G.; Tiwary, B.K.; Chakrabarti, N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci. 2020, 257, 118096. [Google Scholar] [CrossRef]
- Cheng, F.; Rao, S.; Mehra, R. COVID-19 treatment: Combining anti-inflammatory and antiviral therapeutics using a network-based approach. Cleve. Clin. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ramlall, V.; Zucker, J.; Tatonetti, N. Melatonin is significantly associated with survival of intubated COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Marinho, E.M.; Batista de Andrade Neto, J.; Silva, J.; Rocha da Silva, C.; Cavalcanti, B.C.; Marinho, E.S.; Nobre Júnior, H.V. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb. Pathog. 2020, 148, 104365. [Google Scholar] [CrossRef]
- Salas Rojas, M.; Silva Garcia, R.; Bini, E.; Pérez de la Cruz, V.; León Contreras, J.C.; Hernández Pando, R.; Bastida Gonzalez, F.; Davila-Gonzalez, E.; Orozco Morales, M.; Gamboa Domínguez, A.; et al. Quinacrine, an antimalarial drug with strong activity inhibiting SARS-CoV-2 viral replication in vitro. Viruses 2021, 13, 121. [Google Scholar] [CrossRef]
- Han, Y.; Duan, X.; Yang, L.; Nilsson-Payant, B.E.; Wang, P.; Duan, F.; Tang, X.; Yaron, T.M.; Zhang, T.; Uhl, S.; et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 2021, 589, 270–275. [Google Scholar] [CrossRef]
- Puhl, A.C.; Fritch, E.J.; Lane, T.R.; Tse, L.V.; Yount, B.L.; Sacramento, C.Q.; Fintelman-Rodrigues, N.; Tavella, T.A.; Maranhão Costa, F.T.; Weston, S.; et al. Repurposing the Ebola and Marburg virus inhibitors tilorone, quinacrine, and pyronaridine: In vitro activity against SARS-CoV-2 and potential mechanisms. ACS Omega 2021, 6, 7454–7468. [Google Scholar] [CrossRef]
- Udrea, A.M.; Avram, S.; Nistorescu, S.; Pascu, M.L.; Romanitan, M.O. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J. Photochem. Photobiol. B 2020, 211, 111997. [Google Scholar] [CrossRef]
- Birlutiu, V.; Birlutiu, R.M.; Iancu, G.M. Pityriasis rosea Gibert triggered by SARS-CoV-2 infection: A case report. Medicine 2021, 100, e25352. [Google Scholar] [CrossRef]
- Janabi, A.H.D. Molecular docking analysis of anti-severe acute respiratory syndrome-coronavirus 2 ligands against spike glycoprotein and the 3-chymotrypsin-like protease. J. Med. Signals Sens. 2021, 11, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.; Kronberg, R.M.; Stachura, P.; Ostermann, P.N.; Müller, L.; Schaal, H.; Bhatia, S.; Kather, J.N.; Borkhardt, A.; Pandyra, A.A.; et al. Deep transfer learning approach for automatic recognition of drug toxicity and inhibition of SARS-CoV-2. Viruses 2021, 13, 610. [Google Scholar] [CrossRef] [PubMed]
- Jade, D.; Ayyamperumal, S.; Tallapaneni, V.; Joghee Nanjan, C.M.; Barge, S.; Mohan, S.; Nanjan, M.J. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases. Eur. J. Pharmacol. 2021, 901, 174082. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liu, J.C.; Liang, S.; Meng, X.H.; Greenbaum, J.; Xiao, H.M.; Tan, L.J.; Deng, H.W. Drug repurposing for COVID-19 treatment by integrating network pharmacology and transcriptomics. Pharmaceutics 2021, 13, 545. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Ge, S.; Hou, Y.; Hu, T.; Lv, Y.; Wang, C.; He, H. Astemizole as a drug to inhibit the effect of SARS-COV-2 in vitro. Microb. Pathog. 2021, 156, 104929. [Google Scholar] [CrossRef]
- Ohashi, H.; Watashi, K.; Saso, W.; Shionoya, K.; Iwanami, S.; Hirokawa, T.; Shirai, T.; Kanaya, S.; Ito, Y.; Kim, K.S.; et al. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 2021, 24, 102367. [Google Scholar] [CrossRef]
- Le, B.L.; Andreoletti, G.; Oskotsky, T.; Vallejo-Gracia, A.; Rosales, R.; Yu, K.; Kosti, I.; Leon, K.E.; Bunis, D.G.; Li, C.; et al. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci. Rep. 2021, 11, 12310. [Google Scholar] [CrossRef] [PubMed]
- Imamura, K.; Sakurai, Y.; Enami, T.; Shibukawa, R.; Nishi, Y.; Ohta, A.; Shu, T.; Kawaguchi, J.; Okada, S.; Hoenen, T.; et al. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. FEBS Open Bio. 2021, 11, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, K.; Chen, C.Z.; Bostwick, R.; Rasmussen, L.; Tran, B.N.; Cheng, Y.S.; Xu, M.; Pradhan, M.; Henderson, M.; Zhu, W.; et al. The SARS-CoV-2 cytopathic effect is blocked by lysosome alkalizing small molecules. ACS Infect Dis. 2021, 7, 1389–1408. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.X.; Shang, W.J.; Yin, W.C.; Ge, H.; Wang, L.; Zhang, X.L.; Li, B.Q.; Li, H.L.; Xu, Y.C.; Xu, E.H.; et al. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol. Sin. 2021, 27, 1–11. [Google Scholar] [CrossRef]
- Eberle, R.J.; Olivier, D.S.; Amaral, M.S.; Gering, I.; Willbold, D.; Arni, R.K.; Coronado, M.A. The repurposed drugs suramin and quinacrine cooperatively inhibit SARS-CoV-2 3CL(pro) in vitro. Viruses 2021, 13, 873. [Google Scholar] [CrossRef]
- Carpinteiro, A.; Gripp, B.; Hoffmann, M.; Pöhlmann, S.; Hoertel, N.; Edwards, M.J.; Kamler, M.; Kornhuber, J.; Becker, K.A.; Gulbins, E. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J. Biol. Chem. 2021, 296, 100701. [Google Scholar] [CrossRef]
- Thompson, L.A.; Gurka, M.J.; Filipp, S.L.; Schatz, D.A.; Mercado, R.E.; Ostrov, D.A.; Atkinson, M.A.; Rasmussen, S.A. The influence of selection bias on identifying an association between allergy medication use and SARS-CoV-2 infection. E Clin. Med. 2021, 4, 100936. [Google Scholar] [CrossRef]
- Chavarría, A.P.; Vázquez, R.R.V.; Cherit, J.G.D.; Bello, H.H.; Suastegui, H.C.; Moreno-Castañeda, L.; Alanís Estrada, G.; Hernández, F.; González-Marcos, O.; Saucedo-Orozco, H.; et al. Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia by COVID-19. Comput. Struct. Biotechnol. J. 2021, 19, 1379–1390. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Lenze, E.J.; Reiersen, A.M.; Abellán, M.; De La Muela, P.; Vernet, R.; et al. Association between FIASMAs and reduced risk of intubation or death in individuals hospitalized for severe COVID-19: An observational multicenter study. Clin. Pharmacol. Ther. 2021. [Google Scholar] [CrossRef] [PubMed]
- Törnquist, K.; Asghar, M.Y.; Srinivasan, V.; Korhonen, L.; Lindholm, D. Sphingolipids as modulators of SARS-CoV-2 infection. Front. Cell. Dev. Biol. 2021, 9, 689854. [Google Scholar] [CrossRef] [PubMed]
- Tummino, T.A.; Rezelj, V.V.; Fischer, B.; Fischer, A.; O’Meara, M.J.; Monel, B.; Vallet, T.; White, K.M.; Zhang, Z.; Alon, A.; et al. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021, eabi4708. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, X.; Ai, Y.; Li, L.; Zhao, S.; Liu, Z.; Peng, Q.; Deng, S.; Huang, Y.; Mo, Y.; et al. Amitriptyline reduces sepsis-induced brain damage through TrkA signaling pathway. J. Mol. Neurosci. 2020, 70, 2049–2057. [Google Scholar] [CrossRef]
- Sukhatme, V.P.; Reiersen, A.M.; Vayttaden, S.J.; Sukhatme, V.V. Fluvoxamine: A review of its mechanism of action and its role in COVID-19. Front. Pharmacol. 2021, 12, 652688. [Google Scholar] [CrossRef]
FIASMAs | In Silico | (References) | In Vitro | (References) | In Vivo | (References) |
---|---|---|---|---|---|---|
Ambroxol | ❖ | [100] | ||||
Amiodarone | □□□ | [15,19,26] | ■■■ | [12,17,18] | ❖❖† | [20,103] |
Amitriptyline | □□□□□□ | [19,21,22,23,24,25] | ■ | [3] | ❖†❖† | [54,103] |
Amlodipine | □□□□□ | [19,23,24,26,89] | ■■■ | [27,28,29] | ❖❖❖❖†❖ | [29,30,31,32,103] |
Astemizole | □ | [93] | ||||
Benztropine | ■■ | [42,45] | ||||
Bepridil | □□ | [19,22] | ■ | [33] | ||
Carvedilol | □□□ | [19,25,34] | ❖❖ | [25,53] | ||
Cepharanthine | □□ | [35,39] | ■■■■■■ | [36,37,38,40,41,94] | ||
Chlorpromazine | □□□□ | [19,26,35,43] | ■■■■■ | [42,43,44,45,55] | ❖❖❖† | [45,46,73] |
Chlorprothixene | □ | [19] | ■ | [18] | ||
Clemastine | □□□□ | [19,35,47,48] | ■■ | [17,18] | ||
Clofazimine | □□ | [19,91] | ■■■■■■ | [28,41,49,50,51,95] | ❖ | [51] |
Clomiphene | ■■ | [52,96] | ||||
Clomipramine | □ | [19] | ■■■■ | [42,45,55,97] | ❖† | [54] |
Cloperastine | □□ | [35,47] | ||||
Cyclobenzaprine | □ | [19] | ||||
Cyproheptadine | □ | [19] | ||||
Desipramine | □ | [19] | ■■ | [3,55] | ||
Desloratadine | □□ | [19,48] | ■ | [56] | ||
Dicycloverine | ■ | [95] | ||||
Dilazep | □ | [57] | ||||
Doxepine | ■ | [58] | ||||
Emetine | □□□□□□ | [35,59,65,66,67,90] | ■■■■■■ | [60,61,62,63,64,98] | ||
Flunarizine | □ | [19] | ■ | [18] | ||
Fluoxetine | □□□□□ | [19,57,69,70,71] | ■■■■■■ | [3,12,18,55,68,72] | ❖❖† | [54,103] |
Fluphenazine | □□ | [19,74] | ■■ | [42,45] | ||
Flupenthixol | □ | [70] | ■■ | [17,55] | ||
Fluvoxamine | ■ | [55] | ❖❖ | [75,76] | ||
Hydroxyzine | □ | [48] | ■ | [77] | ❖❖❖†❖† | [77,78,101,103] |
Imipramine | □□ | [19,22] | ■■■ | [3,12,55] | ||
Loperamide | ■■ | [18,36] | ❖† | [103] | ||
Loratadine | □ | [19] | ■ | [56] | ❖❖ | [77,88] |
Maprotiline | □ | [19] | ■■ | [3,18] | ||
Melatonine | □□□□□□ | [25,26,34,79,80,81] | ❖❖❖❖ | [25,53,82,102] | ||
Nortriptyline | □ | [57] | ||||
Paroxetine | □ | [34] | ■ | [43] | ❖❖❖† | [53,54,103] |
Perphenazine | □ | [19] | ||||
Pimozide | ■■ | [33,55] | ||||
Promazine | □ | [19] | ||||
Promethazine | □□□ | [19,48,92] | ■ | [45] | ||
Protriptyline | □ | [19] | ||||
Quinacrine | □□□□ | [34,48,71,83] | ■■■■ | [84,85,86,99] | ||
Sertraline | ■■ | [13,28] | ❖† | [54] | ||
Tamoxifene | □□ | [48,92] | ■■ | [45,96] | ||
Thioridazine | □□ | [71,87] | ■ | [28] | ||
Trifluoperazine | □□ | [19,70] | ■ | [28] | ||
Triflupromazine | □ | [19] | ||||
Trimipramine | □□ | [19,22] | ■ | [37] |
FIASMA (Reference) | Study Design | Sample Size | FIASMA Prevalence | Outcome |
---|---|---|---|---|
Amiodarone [20] | * Case report | 1 | 100% | Case report of a 74-year-old man affected by respiratory failure related to COVID-19 who recovered after only supportive measures and amiodarone lasted 5 days. |
[103] | * Retrospective | 2602 | 1.27% | Mortality or intubation on hospitalized COVID-19 patients (N = 33 on amiodarone, N = 2569 without FIASMAs) HR = 1.26 (p = 0.14). |
Amitriptyline [54] | * Retrospective | 6924 | 0.56% | Mortality or intubation on hospitalized COVID-19 patients (N = 39 on amitriptyline, N = 6885 without antidepressants) HR = 0.85 (p = 0.59). |
[103] | * Retrospective | 2589 | 0.77% | Mortality or intubation on hospitalized COVID-19 patients (N = 20 on amitriptyline, N = 2569 without FIASMAs) HR = 0.54 (p = 0.12). |
Amlodipine [29] | Retrospective | 96 | 19.8% | Mortality on COVID-19 inpatients with hypertension as the only comorbidity. Patients on amlodipine (N = 19) or non-amlodipine (N = 77) had lower mortality (0% vs. 19.5%, p = 0.037). |
[30] | Retrospective | 65 | 36.9% ? | Mortality on elderly patients hospitalized for COVID-19; 24 were on amlodipine or nifedipine and 41 were not, 50% survived in the amlodipine or nifedipine group and 14.6% in the other group (p = 0.0036). |
[31] | Retrospective | 317 | 18.9% | Mortality on hospitalized COVID-19 patients; 60 were on amlodipine and 257 were not. Multiple logistic regression found lower mortality on patients on amlodipine (OR = 0.24, p = 0.0031). |
[32] | * Prospective randomized | 80 | 48.7% | Mortality. Losartan (N = 41) and amlodipine (N = 39) on patients with COVID-19 and primary hypertension. No significant difference of 30-day mortality rate. |
[103] | * Retrospective | 2666 | 3.64% | Mortality or intubation on hospitalized COVID-19 patients (N = 97 on amlodipine, N = 2569 without FIASMAs) HR = 0.7 (p = 0.037). |
Carvedilol [25] | Retrospective | 26,779 | 2.93% | PCR-positive. Patients tested for COVID-19 in Cleveland Clinic Health System; Carvedilol use (N = 785) was significantly associated with reduced likelihood of PCR positive to SARS-CoV-2 (OR = 0.74; p < 0.05). |
[53] | Retrospective | 11,672 | 2.96% | PCR-negative. Patients tested for COVID-19 in Cleveland Clinic Health System. Among 346 subjects on Carvedilol, 333 (96.2%) were PCR-negative and 13 (3.8%) were PCR-positive (p = 0.022). |
Chlorpromazine [73] | Observational | Prevalence of COVID-19. Low rate (4%) of symptomatic COVID-19 infection in patients treated by antipsychotics than the rate (14%) observed in nurses or physicians in the same departments of psychiatry. | ||
[46] | * Retrospective | 14,340 | 0.38% | Mortality or intubation on hospitalized COVID-19 patients (N = 55 on chlorpromazine, N = 14,285 without chlorpromazine); 23.6% deaths on chlorpromazine and 9% deaths on subjects without chlorpromazine HR = 2.01 (p = 0.16). |
Clomipramine [54] | * Retrospective | 6894 | 0.13% | Mortality or intubation on hospitalized COVID-19 patients (N = 9 on clomipramine, N = 6885 without antidepressants) HR = 0.44 (p = 0.4). |
Desloratadine [103] | * Retrospective | 2576 | 0.27% | Mortality or intubation on hospitalized COVID-19 patients (N = 7 on desloratadine, N = 2569 without FIASMAs) HR = 0.68 (p = 0.44). |
Fluoxetine [54] | * Retrospective | 6915 | 0.43% | Mortality or intubation on hospitalized COVID-19 patients (N = 30 on fluoxetine, N = 6885 without antidepressants) HR = 0.37 (p = 0.049). |
[103] | * Retrospective | 2583 | 0.54% | Mortality or intubation on 2583 hospitalized COVID-19 patients (N = 14 on fluoxetine, N = 2569 without FIASMAs) HR = 0.3 (p = 0.082). |
Fluvoxamine [75] | Double-blind randomized | 152 | 52.6% | Clinical deterioration within 15 days. Fluvoxamine (N = 80) vs. placebo (N = 72) on non-hospitalized adults. Less clinical deterioration within 15 days of randomization in fluvoxamine group (0/80) than in placebo group (6 /72) (log-rank p = 0.009). |
[76] | Prospective | 113 | 57.5% | Incidence of hospitalization was 0% (0 of 65) with fluvoxamine and 12.5% (6 of 48) without fluvoxamine (p = 0.005). |
Hydroxyzine [77] | Retrospective | 219,000 | 0.12% | Incidence PCR-positive. Prior usage of hydroxyzine (N = 269) was associated with reduced incidence of positive SARS-CoV-2 in individuals 61 years and above. |
[78] | * Retrospective | 7345 | 1.88% | Mortality or intubation on hospitalized COVID-19 patients (N = 138) on hydroxyzine), (N = 7207) without hydroxyzine; HR = 0.42 (p = 0.001). |
[101] | Retrospective | 230,376 | 1.7% | Incidence PCR-negative. Prior usage of hydroxyzine (N = 3909) was not associated with increased incidence of negative SARS-CoV-2 in individuals. Adjusted OR = 0.76 (p > 0.05). |
[103] | * Retrospective | 2600 | 1.19% | Mortality or intubation on hospitalized COVID-19 patients (N = 31 on hydroxyzine, N = 2569 without FIASMAs) HR = 0.43 (p = 0.04). |
Loperamide [103] | * Retrospective | 2578 | 0.35% | Mortality or intubation on hospitalized COVID-19 patients (N = 9 on loperamide, N = 2569 without FIASMAs) HR = 0.25 (p = 0.1). |
Loratadine [77] | Retrospective | 219,000 | 0.13% | Incidence PCR-positive. Prior usage of loratadine (N = 284) was associated with reduced incidence of positive SARS-CoV-2 in individuals 61 years and above. |
[88] | Case report | 1 | 100% | Case report (54-year-old female) of pityriasis rosea gibert associated with COVID-19 infection hospitalized and treated with 200 mg/day hydrocortisone hemisuccinate and loratadine 20 mg/day. Two weeks after admission, the patient was discharged with a negative RT-PCR and without respiratory symptoms. |
Melatonine [25] | Retrospective | 26,779 | 3.94% | Incidence PCR-positive. Patients tested for COVID-19 in Cleveland Clinic Health System. Melatonine use (n = 1055) was significantly associated with reduced likelihood of PCR-positive to SARS-CoV-2 (OR = 0.72; p < 0.05). |
[53] | Retrospective | 11,672 | 4.53% | Incidence PCR-positive. Patients tested for COVID-19 in Cleveland Clinic Health System. Among 529 subjects on melatonin, 513 (97%) were PCR-negative and 16 (3%) were PCR-positive (p = 0.001). |
[82] | Retrospective | 791 | Survival rate. Patients with COVID-19 infection. Melatonin exposure was associated with survival in COVID-19 patients. | |
[102] | Prospective longitudinal (before-after) | 110 | 20% | Survival scores. Five groups of 22 patients were receiving pentoxifylline and one group had also 5 mg of melatonine every 12 h for 5 days. The medications improved the survival scores, and several inflammation markers (CRP…) were diminished at the end of the treatment |
Paroxetine [53] | Retrospective | 11,672 | Incidence PCR-positive. Patients tested for COVID-19 in Cleveland Clinic Health System (7% PCR+). Among subjects on paroxetine, there was significant higher PCR-. | |
[54] | * Retrospective | 6948 | 0.91% | Mortality or intubation in hospitalized COVID-19 patients (N = 63 on paroxetine, N = 6885 without antidepressants) HR = 0.52 (p = 0.0006). |
[103] | * Retrospective | 2610 | 1.57% | Mortality or intubation on 2610 hospitalized COVID-19 patients (N = 41 on paroxetine, N = 2569 without FIASMAs) HR = 0.66 (p = 0.13). |
Sertraline [54] | * Retrospective | 6907 | 0.32% | Mortality or intubation in hospitalized COVID-19 patients (N = 22 on sertraline N = 6885 without antidepressants) HR = 0.68 (p = 0.13). |
[103] | * Retrospective | 2590 | 0.81% | Mortality or intubation on 2590 hospitalized COVID-19 patients (N = 21 on sertraline, N = 2569 without FIASMAs) HR = 0.57 (p = 0.11). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loas, G.; Le Corre, P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals 2021, 14, 691. https://doi.org/10.3390/ph14070691
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals. 2021; 14(7):691. https://doi.org/10.3390/ph14070691
Chicago/Turabian StyleLoas, Gwenolé, and Pascal Le Corre. 2021. "Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection" Pharmaceuticals 14, no. 7: 691. https://doi.org/10.3390/ph14070691
APA StyleLoas, G., & Le Corre, P. (2021). Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals, 14(7), 691. https://doi.org/10.3390/ph14070691