Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease
Abstract
:1. Introduction
2. Methods
3. Current Pharmacological Treatment
- Enjoyable leisure activities (per patient preference; mild cognitive impairment, mild to moderate dementia)—decreased neuropsychiatric symptoms and functional capacity, slowing memory loss.
- Mental stimulation programs (e.g., puzzles, word games, past/reminiscence therapy, indoor gardening, baking; mild to moderate dementia)—evidence for improved cognition and self-reported quality of life and well-being; no effect on functional status, mood, or behavior.
- Occupational therapy training in coping strategies and cognitive aides (mild to moderate dementia)—improved cognition.
- Structured physical exercise programs (mild to severe AD)—improved physical function, reduced neuropsychiatric symptoms (including depression), slower rate of functional decline, no improvement in cognition.
4. APOE and Alzheimer’s Disease
5. Insulin and Other Antidiabetics as a Potential Therapy for Alzheimer’s Disease
6. Intestinal Microbiota and Alzheimer’s Disease
7. Neuroinflammation in AD
7.1. Vascular Endothelial Growth Factor (VEGF)
7.2. Kisspeptin
8. Selective Serotonin Reuptake Inhibitors (SSRI)
8.1. Citalopram
8.2. Escitalopram
9. Natural Products and Alzheimer’s Disease
9.1. Resveratrol (RV)
9.2. Curcumin
10. Current Clinical Trials
10.1. BIIB092
10.2. GV1001
10.3. AR1001
10.4. CT1812
10.5. Montelukast
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
APP | amyloid precursor protein |
Aβ | amyloid-β protein |
APOE | gene encoding apolipoprotein E |
apoE | apolipoprotein E |
CSF | cerebrospinal fluid |
ABCA1 | ATP-binding cassette transporter |
AHP | Ca (2+)-dependent hippocampal after hyperpolarization |
AβOs | amyloid-β oligomers |
NHPs | non-human primates |
PKA | protein kinase A |
BBB | blood/brain barrier |
RBANS | Repeatable Battery for the Assessment of Neuropsychological Status |
MMSE | Mini-Mental State Examination |
VEGF | Vascular endothelial growth factor |
SSRI | selective serotonin reuptake inhibitors |
RV | resveratrol |
SIRT1 | silent information regulator-1 |
GSK-3β | glycogen synthase kinase-3β |
References
- Xin-Yu, L.; Lin-Po, Y.; Lan, Z. Stem cell therapy for Alzheimer’s disease. World J. Stem Cells 2020, 12, 787–802. [Google Scholar] [CrossRef]
- Calsolaro, V.; Antognoli, R.; Okoye, C.; Monzani, F. The use of antipsychotic drugs for treating behavioral symptoms in Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epperly, T.; Dunay, M.A.; Boice, J.I. Alzheimer disease: Pharmacologic an non pharmacologic therapies for cognitive and functional symptoms. Am. Fam. Physician 2017, 95, 771–778. [Google Scholar] [PubMed]
- Blesa, R.; Toriyama, K.; Ueda, K.; Knox, S.; Grossberg, G. Strategies for continued successful treatment in patients with Alzheimer’s Disease: An overview of switching between pharmacological agents. Curr. Alzheimer Res. 2018, 15, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Manzano, S.; Agüera, L.; Aguilar, M.; Olazarán, J. A review on tramiprosate (homotaurine) in Alzheimer’s Disease and other neurocognitive disorders. Front. Neurol. 2020, 11, 614. [Google Scholar] [CrossRef]
- Pluta, R.; Ułamek-Kozioł, M.; Januszewski, S.; Czuczwar, S.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging 2020, 12, 5539–5550. [Google Scholar] [CrossRef]
- Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s Disease: Current and future. J. Alzheimer’s Dis. 2019, 779–794. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.W. Alzheimer’s disease: Early diagnosis and treatment. Hong Kong Med. J. 2012, 18, 228–237, PMID: 22865186. [Google Scholar] [PubMed]
- Rusek, M.; Pluta, R.; Ułamek-Kozioł, M.; Czuczwar, S.J. Ketogenic diet in Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 3892. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Ji, X.; Lv, R.; Pei, J.J.; Du, Y.; Shen, C.; Hou, X. Targetting exosomes as a new biomarker and therapeutic approach for Alzheimer’s Disease. Clin. Interven. Aging 2020, 15, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; et al. The beta-secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry. 2021, 89, 745–756. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017, 40, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.P.; Yin, X.; Sawant, N.; Reddy, P.H. Protective effects of anti-depressant citalopram against abnormal app processing and amyloid beta-induced mitochondrial dynamics, biogenesis, mitophagy and synaptic toxicities in Alzheimer’s disease. Hum. Mol. Genet. 2021, ddab054. [Google Scholar] [CrossRef]
- Craft, S. Insulin resistance syndrome and Alzheimer disease: Pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis. Assoc. Disord. 2006, 20, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Lefrançois, D.; Virgili, J.; Planel, E.; Giguere, Y.; Marette, A.; Calon, F. Insulin reverses the high-fat diet-induced increase in brain Abeta and improves memory in an animal model of Alzheimer disease. Diabetes 2014, 63, 4291–4301. [Google Scholar] [CrossRef]
- Muñoz, S.S.; Garner, B.; Ooi, L. Understanding the role of ApoE fragments in Alzheimer’s disease. Neurochem. Res. 2019, 44, 1297–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahrle, S.E.; Jiang, H.; Parsadanian, M.; Kim, J.; Li, A.; Knoten, A.; Jain, S.; Hirsch-Reinshagen, V.; Wellington, C.L.; Bales, K.R.; et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Investig. 2008, 118, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P.E.; Cirrito, J.R.; Wesson, D.E.; Lee, C.Y.; Karlo, J.C.; Zinn, A.E.; Casali, B.T.; Restivo, J.L.; Goebel, W.D.; James, M.J.; et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 2012, 335, 1503–1506. [Google Scholar] [CrossRef] [Green Version]
- Lowe, M.N.; Plosker, G.L. Bexarotene. Am. J. Clin. Dermatol. 2000, 1, 245–250, discussion 251–252. [Google Scholar] [CrossRef]
- Muñoz-Cabrera, J.M.; Sandoval-Hernández, A.G.; Niño, A.; Báez, T.; Bustos-Rangel, A.; Cardona-Gómez, G.P.; Múnera, A.; Arboleda, G. Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimers disease. PLoS ONE 2019, 14, e0223578. [Google Scholar] [CrossRef]
- Fitz, N.F.; Cronican, A.A.; Lefterov, I.; Koldamova, R. Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 2013, 340, 924-c. [Google Scholar] [CrossRef] [Green Version]
- Veeraraghavalu, K.; Zhang, C.; Miller, S.; Hefendehl, J.K.; Rajapaksha, T.W.; Ulrich, J.; Jucker, M.; Holtzman, D.M.; Tanzi, R.E.; Vassar, R.; et al. Comment on “ApoE-directed therapeutics rapidly clear β -amyloid and reverse deficits in AD mouse models”. Science 2013, 340, 924-f. [Google Scholar] [CrossRef] [Green Version]
- Ghosal, K.; Haag, M.; Verghese, P.B.; West, T.; Veenstra, T.; Braunstein, J.B.; Bateman, R.J.; Holtzman, D.M.; Landreth, G.E. A randomized controlled study to evaluate the effect of bexarotene on amyloid-β and apolipoprotein E metabolism in healthy subjects. Alzheimers Dement. 2016, 2, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.L.; Zhong, K.; Kinney, J.W.; Heaney, C.; Moll-Tudla, J.; Joshi, A.; Pontecorvo, M.; Devous, M.; Tang, A.; Bena, J. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer’s disease. Alzheimers Res. Ther. 2016, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehm-Cagan, A.; Bar, R.; Liraz, O.; Bielicki, J.K.; Johansson, J.O.; Michaelson, D.M. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J. Alzheimers Dis. 2016, 54, 1219–1233. [Google Scholar] [CrossRef]
- Hori, Y.; Hashimoto, T.; Nomoto, H.; Hyman, B.T.; Iwatsubo, T. Role of apolipoprotein E in β -Amyloidogenesis: Isoform-specific effects on protofibril to fibril conversion of abeta in vitro and brain abeta deposition in vivo. J. Biol. Chem. 2015, 290, 15163–15174. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Serrano-Pozo, A.; Hori, Y.; Adams, K.W.; Takeda, S.; Banerji, A.O.; Mitani, A.; Joyner, D.; Thyssen, D.H.; Bacskai, B.J.; et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide. J. Neurosci. 2012, 32, 15181–15192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.C.; Zhao, N.; Fu, Y.; Wang, N.; Linares, C.; Tsai, C.W.; Bu, G. ApoE4 accelerates early seeding of amyloid pathology. Neuron 2017, 96, 1024–1032.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, F.; Hori, Y.; Hudry, E.; Bauer, A.Q.; Jiang, H.; Mahan, T.E.; Lefton, K.B.; Zhang, T.J.; Dearborn, J.T.; Kim, J. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Abeta amyloidosis. J. Neurosci. 2014, 34, 7281–7292. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Li, A.; Xiong, M.; Bien-Ly, N.; Jiang, H.; Zhang, Y.; Finn, M.B.; Hoyle, R.; Keyser, J.; Lefton, K.B.; et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J. Clin. Investig. 2018, 128, 2144–2155. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, K.; Cantillana, V.; Wang, H.; Sullivan, P.M.; Kolls, B.J.; Ge, X.; Lin, Y.; Mace, B.; Laskowitz, D.T. ApoE mimetic improves pathology and memory in a model of Alzheimer’s disease. Brain Res. 2020, 1733, 146685. [Google Scholar] [CrossRef]
- Ulrich, J.D.; Ulland, T.K.; Mahan, T.E.; Nyström, S.; Nilsson, K.P.; Song, W.M.; Zhou, Y.; Reinartz, M.; Choi, S.; Jiang, H.; et al. ApoE facilitates the microglial response to amyloid plaque pathology. J. Exp. Med. 2018, 215, 1047–1058. [Google Scholar] [CrossRef]
- Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 2017, 549, 523–527. [Google Scholar] [CrossRef]
- Castellano, J.M.; Deane, R.; Gottesdiener, A.J.; Verghese, P.B.; Stewart, F.R.; West, T.; Paoletti, A.C.; Kasper, T.R.; DeMattos, R.B.; Zlokovic, B.V.; et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Abeta clearance in a mouse model of beta-amyloidosis. Proc. Natl. Acad. Sci. USA 2012, 109, 15502–15507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, T.V.; Liao, F.; Francis, C.M.; Robinson, G.O.; Serrano, J.R.; Jiang, H.; Roh, J.; Finn, M.B.; Sullivan, P.M.; Esparza, T.J. Age-dependent effects of apoe reduction using antisense oligonucleotides in a model of beta-amyloidosis. Neuron 2017, 96, 1013–1023.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surguchov, A. Caveolin: A new link between diabetes and AD. Cell Mol Neurobiol. 2020, 40, 1059–1066. [Google Scholar] [CrossRef]
- Hallschmid, M. Intranasal insulin. J. Neuroendocrinol. 2021, 33, el2934. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; Ávila-Funes, J.A.; Aguilar-Salinas, C.A. Pathophysiological mechanisms linking type 2 diabetes and dementia: Review of evidence from clinical, translational and epidemiological research. Curr. Diabetes Rev. 2019, 15, 456–470. [Google Scholar] [CrossRef]
- Dubey, S.K.; Lakshmi, K.K.; Krishna, K.V.; Agrawal, M.; Singhvi, G.; Saha, R.N.; Saraf, S.; Saraf, S.; Shukla, R.; Alexander, A. Insulin mediated novel therapies for the treatment of Alzheimer’s disease. Life Sci. 2020, 249, 117540. [Google Scholar] [CrossRef]
- Pardeshi, R.; Bolshette, N.; Gadhave, K.; Ahire, A.; Ahmed, S.; Cassano, T.; Gupta, V.B.; Lahkar, M. Insulin signaling: An opportunistic target to minify the risk of Alzheimer’s disease. Psychoneuroendocrinology 2017, 83, 159–171. [Google Scholar] [CrossRef]
- Watson, G.S.; Craft, S. Modulation of memory by insulin and glucose: Neuropsychological observations in Alzheimer’s disease. Eur. J. Pharmacol. 2004, 490, 97–113. [Google Scholar] [CrossRef]
- Aljanabi, N.M.; Mamtani, S.; Al-Ghuraibawi, M.M.H.; Yadav, S.; Nasr, L. Alzheimer’s and hyperglycemia: Role of the insulin signaling pathway and GSK-3 inhibition in paving a path to dementia. Cureus 2020, 12, e6885. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, G.; Davis-Plourde, K.; Conner, S.; Himali, J.J.; Beiser, A.S.; Lee, A.; Rawlings, A.M.; Sedaghat, S.; Ding, J.; Moshier, E.; et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: Pooled analysis from 5 cohorts. PLoS ONE 2019, 14, e0212293. [Google Scholar] [CrossRef]
- Maimaiti, S.; Anderson, K.; DeMoll, C.; Brewer, L.D.; Rauh, B.A.; Gant, J.C.; Blalock, E.M.; Porter, N.M.; Thibault, O. Intranasal insulin improves age-related cognitive deficits and reverses electrophysiological correlates of brain aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 1, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Claxton, A.; Baker, L.D.; Wilkinson, C.W.; Trittschuh, E.H.; Chapman, D.; Watson, G.S.; Cholerton, B.; Plymate, S.R.; Arbuckle, M.; Craft, S. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J. Alzheimers Dis. 2013, 35, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Reger, M.A.; Watson, G.S.; Green, P.S.; Baker, L.D.; Cholerton, B.; Fishel, M.A.; Plymate, S.R.; Cherrier, M.M.; Schellenberg, G.D.; Frey, W.H. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J. Alzheimers Dis. 2008, 13, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Brunner, Y.F.; Kofoet, A.; Benedict, C.; Freiherr, J. Central insulin administration improves odor-cued reactivation of spatial memory in young men. J. Clin. Endocrinol. Metab. 2015, 100, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, S.; Raman, R.; Chow, T.W.; Rafii, M.S.; Sun, C.K.; Rissman, R.A.; Donohue, M.C.; Brewer, J.B.; Jenkins, C.; Harless, K.; et al. Safety, Efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: A randomized clinical trial. JAMA Neurol. 2020, 77, 1099–1109. [Google Scholar] [CrossRef]
- Rosenbloom, M.; Barclay, T.R.; Kashyap, B.; Hage, L.; O’Keefe, L.R.; Svitak, A.; Pyle, M.; Frey, W.; Hanson, L.R. A phase ii, single-center, randomized, double-blind, placebo-controlled study of the safety and therapeutic efficacy of intranasal glulisine in amnestic mild cognitive impairment and probable mild Alzheimer’s disease. Drugs Aging 2021. [CrossRef]
- Hallschmid, M. Intranasal insulin for Alzheimer’s disease. CNS Drugs 2021, 35, 21–37. [Google Scholar] [CrossRef]
- Batista, A.F.; Forny-Germano, L.; Clarke, J.R.; Lyra, E.; Silva, N.M.; Brito-Moreira, J.; Boehnke, S.E.; Winterborn, A.; Coe, B.C.; Lablans, A.; et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J. Pathol. 2018, 245, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Norambuena, A.; Wallrabe, H.; McMahon, L.; Silva, A.; Swanson, E.; Khan, S.S.; Baerthlein, D.; Kodis, E.; Oddo, S.; Mandell, J.W.; et al. mTOR and neuronal cell cycle reentry: How impaired brain insulin signaling promotes Alzheimer’s disease. Alzheimers Dement. 2017, 13, 152–167. [Google Scholar] [CrossRef] [Green Version]
- De Felice, F.G.; Wu, D.; Lambert, M.P.; Fernandez, S.J.; Velasco, P.T.; Lacor, P.N.; Bigio, E.H.; Jerecic, J.; Acton, P.J.; Shughrue, P.J.; et al. Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol. Aging 2008, 29, 1334–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Forny-Germano, L.; Lyra e Silva, N.M.; Batista, A.F.; Brito-Moreira, J.; Gralle, M.; Boehnke, S.E.; Coe, B.C.; Lablans, A.; Marques, S.A.; Martinez, A.M.B.; et al. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 2014, 34, 13629–13643. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.; Feng, L.; Yap, K.; Lee, T.S.; Tan, C.H.; Winblad, B. Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimer’s Dis. 2014, 4, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.; Ma, Y.; Christophi, C.; Florez, H.; Golden, S.H.; Hazuda, H.; Crandall, J.; Venditti, E.; Watson, K.; Jeffries, S. Metformin, lifestyle intervention, and cognition in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2017, 40, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Jiménez, M.; Zaarkti, A.; García-Arnés, J.A.; García-Casares, N. Antidiabetic drugs in Alzheimer’s disease and mild cognitive impairment: A systematic review. Dement. Geriatr. Cogn. Disord. 2020, 49, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Kesika, P.; Suganthy, N.; Sivamaruthi, B.S.; Chaiyasut, C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci. 2021, 264, 118627. [Google Scholar] [CrossRef]
- Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; et al. Reduction of Aβ amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 2017, 7, 41802. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, R.; Stone, T.W. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem. Res. 2016, 41, 2819–2935. [Google Scholar] [CrossRef] [PubMed]
- Wekerle, H. The gut-brain connection: Triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology 2016, 55 (Suppl. 2), ii68–ii75. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, M.; Dell’Osso, B.; Panzica, G.; Malgaroli, A.; Banfi, G.; Zanaboni Dina, C.; Galentino, R.; Porta, M. Dietary Neurotransmitters: A narrative review on current knowledge. Nutrients 2018, 10, 591. [Google Scholar] [CrossRef] [Green Version]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef]
- Borre, Y.E.; Moloney, R.D.; Clarke, G.; Dinan, T.G.; Cryan, J.F. The impact of microbiota on brain and behavior: Mechanisms and therapeutic potential. Adv. Exp. Med. Biol. 2014, 817, 373–403. [Google Scholar] [CrossRef]
- Quigley, E.M. Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 2017, 17, 94. [Google Scholar] [CrossRef]
- Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis. 2017, 58, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Links between gut microbes and depression strengthened. Nature 2019, 566, 7. [CrossRef] [PubMed]
- Alam, R.; Abdolmaleky, H.M.; Zhou, J.R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017, 174, 651–660. [Google Scholar] [CrossRef]
- Johnson, K.V.; Foster, K.R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 2018, 16, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Wang, Q. Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst. Biol. 2016, 10 (Suppl. 3), 63. [Google Scholar] [CrossRef] [Green Version]
- Bostanciklioğlu, M. The role of gut microbiota in pathogenesis of Alzheimer’s disease. J. Appl. Microbiol. 2019, 127, 954–967. [Google Scholar] [CrossRef]
- Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 2019, 80, 633–643. [Google Scholar] [CrossRef]
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 2017, 49, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Fujimura, Y.; Mimura, I.; Fujii, Y.; Nguyen, N.L.; Arakawa, K.; Morita, H. Cultivable butyrate-producing bacteria of elderly Japanese diagnosed with Alzheimer’s disease. J. Microbiol. 2018, 56, 760–771. [Google Scholar] [CrossRef]
- Doulberis, M.; Kotronis, G.; Gialamprinou, D.; Polyzos, S.A.; Papaefthymiou, A.; Katsinelos, P.; Kountouras, J. Alzheimer’s disease and gastrointestinal microbiota; impact of Helicobacter pylori infection involvement. Int. J. Neurosci. 2021, 131, 289–301. [Google Scholar] [CrossRef]
- Bu, X.L.; Yao, X.Q.; Jiao, S.S.; Zeng, F.; Liu, Y.H.; Xiang, Y.; Liang, C.R.; Wang, Q.H.; Wang, X.; Cao, H.Y.; et al. A study on the association between infectious burden and Alzheimer’s disease. Eur. J. Neurol. 2015, 22, 1519–1525. [Google Scholar] [CrossRef]
- Wang, X.L.; Zeng, J.; Yang, Y.; Xiong, Y.; Zhang, Z.H.; Qiu, M.; Yan, X.; Sun, X.Y.; Tuo, Q.Z.; Liu, R.; et al. Helicobacter pylori filtrate induces Alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3β. J. Alzheimers Dis. 2015, 43, 153–165. [Google Scholar] [CrossRef]
- Zhao, Y.; Jaber, V.; Lukiw, W.J. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus. Front. Cell Infect. Microbiol. 2017, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Itzhaki, R.F. Herpes simplex virus type 1 and Alzheimer’s disease: Possible mechanisms and signposts. FASEB J. 2017, 31, 3216–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovheim, H.; Olsson, J.; Weidung, B.; Johansson, A.; Eriksson, S.; Hallmans, G.; Elgh, F. Interaction between Cytomegalovirus and Herpes Simplex Virus Type 1 Associated with the Risk of Alzheimer’s Disease Development. J. Alzheimers Dis. 2018, 61, 939–945. [Google Scholar] [CrossRef]
- Bubak, A.N.; Como, C.N.; Coughlan, C.M.; Johnson, N.R.; Hassell, J.E.; Mescher, T.; Niemeyer, C.S.; Mahalingam, R.; Cohrs, R.J.; Boyd, T.D.; et al. Varicella-Zoster Virus infection of primary human spinal astrocytes produces intracellular amylin, amyloid-beta, and an amyloidogenic extracellular environment. J. Infect. Dis. 2020, 221, 1088–1097. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Keilhoff, G.; Dobrowolny, H.; Steiner, J. Binding varicella zoster virus: An underestimated facet of insulin-degrading enzyme’s implication for Alzheimer’s disease pathology? Eur. Arch. Psychiatry Clin. Neurosci. 2019, 270, 495–496. [Google Scholar] [CrossRef]
- Talwar, P.; Gupta, R.; Kushwaha, S.; Agarwal, R.; Saso, L.; Kukreti, S.; Kukreti, R. Viral induced oxidative and inflammatory response in Alzheimer’s disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach. Curr. Neuropharmacol. 2019, 17, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Bonfili, L.; Cecarini, V.; Berardi, S.; Scarpona, S.; Suchodolski, J.S.; Nasuti, C.; Fiorini, D.; Boarelli, M.C.; Rossi, G.; Eleuteri, A.M. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 2017, 7, 2426. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Sugahara, H.; Shimada, K.; Mitsuyama, E.; Kuhara, T.; Yasuoka, A.; Kondo, T.; Abe, K.; Xiao, J.Z. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep. 2017, 7, 13510. [Google Scholar] [CrossRef]
- Ano, Y.; Ayabe, T.; Kutsukake, T.; Ohya, R.; Takaichi, Y.; Uchida, S.; Yamada, K.; Uchida, K.; Takashima, A.; Nakayama, H. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiol. Aging 2018, 72, 23–31. [Google Scholar] [CrossRef]
- Abraham, D.; Feher, J.; Scuderi, G.L.; Szabo, D.; Dobolyi, A.; Cservenak, M.; Juhasz, J.; Ligeti, P.; Pongor, S.; Gomez-Cabrera, M.C.; et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol. 2019, 115, 122–131. [Google Scholar] [CrossRef]
- Chen, D.; Yang, X.; Yang, J.; Lai, G.; Yong, T.; Tang, X.; Shuai, O.; Zhou, G.; Xie, Y.; Wu, Q. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front. Aging Neurosci. 2017, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes 2015, 6, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kuhara, T.; Oki, M.; Xiao, J.Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: A randomised, double-blind, placebo-controlled trial. Benef. Microbes 2019, 10, 511–520. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Heidari-Soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr. 2019, 38, 2569–2575. [Google Scholar] [CrossRef]
- Den, H.; Dong, X.; Chen, M.; Zou, Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment—A meta-analysis of randomized controlled trials. Aging 2020, 12, 4010–4039. [Google Scholar] [CrossRef]
- Farokhi-Sisakht, F.; Farhoudi, M.; Sadigh-Eteghad, S.; Mahmoudi, J.; Mohaddes, G. Cognitive rehabilitation improves ischemic stroke-induced cognitive impairment: Role of growth factors. J. Stroke Cerebrovasc. Dis. 2019, 28, 104299. [Google Scholar] [CrossRef]
- Feng, L.; Han, C.X.; Cao, S.Y.; Zhang, H.M.; Wu, G.Y. Deficits in motor and cognitive functions in an adult mouse model of hypoxia-ischemia induced stroke. Sci. Rep. 2020, 10, 20646. [Google Scholar] [CrossRef] [PubMed]
- Cohan, C.H.; Neumann, J.T.; Dave, K.R.; Alekseyenko, A.; Binkert, M.; Stransky, K.; Lin, H.W.; Barnes, C.A.; Wright, C.B.; Perez-Pinzon, M.A. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS ONE 2015, 10, e0124918. [Google Scholar] [CrossRef]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef]
- Pluta, R.; Furmaga-Jabłońska, W.; Maciejewski, R.; Ułamek-Kozioł, M.; Jabłoński, M. Brain ischemia activates β- and γ secretase cleavage of amyloid precursor protein: Significance in sporadic Alzheimer’s disease. Mol. Neurobiol. 2013, 47, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H.; Oliver, D.M. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019, 8, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; Pollak, S.; Chaney, M.; et al. ABAD direcly links Aß to mitochondrial toxicity in Alzheimer’s disease. Science 2004, 304, 448–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mairet-Coello, G.; Courchet, J.; Pieraut, S.; Courchet, V.; Maximov, A.; Polleux, F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 2013, 78, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.C.; Perry, G.; Moreira, P.I. Mitochondrial traffic jams in Alzheimer’s disease—Pinpointing the roadblocks. Biochim. Biophys. Acta 2016, 1862, 1909–1917. [Google Scholar] [CrossRef]
- Mandelkow, E.M.; Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 2003, 24, 1079–1085. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 2015, 521, 525–528. [Google Scholar] [CrossRef]
- Ma, K.; Chen, G.; Li, W.; Kepp, O.; Zhu, Y.; Chen, Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front. Cell Dev. Biol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Sorrentino, V.; Romani, M.; Mouchiroud, L.; Beck, J.S.; Zhang, H.; D’Amico, D.; Moullan, N.; Potenza, F.; Schmid, A.W.; Rietsch, S.; et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 2017, 552, 187–193. [Google Scholar] [CrossRef]
- Tran, M.; Reddy, P.H. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front. Neurosci. 2021, 14, 612757. [Google Scholar] [CrossRef]
- Medala, V.K.; Gollapelli, B.; Dewanjee, S.; Ogunmokun, G.; Kandimalla, R.; Vallamkondu, J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer’s disease. J. Neurosci. Res. 2021, 99, 1120–1135. [Google Scholar] [CrossRef]
- Mattam, U.; Talari, N.K.; Paripati, A.K.; Krishnamoorthy, T.; Sepuri, N.B.V. Kisspeptin preserves mitochondrial function by inducing mitophagy and autophagy in aging rat brain hippocampus and human neuronal cell line. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118852. [Google Scholar] [CrossRef]
- Liu, X.; Chu, B.; Jin, S.; Li, M.; Xu, Y.; Yang, H.; Feng, Z.; Bi, J.; Wang, P. Vascular endothelial growth factor alleviates mitochondrial dysfunction and suppression of mitochondrial biogenesis in models of Alzheimer’s disease. Int. J. Neurosci. 2021, 131, 154–162. [Google Scholar] [CrossRef]
- Wang, P.; Xie, Z.H.; Guo, Y.J.; Zhao, C.; Jiang, H.; Song, Y.; Zheng-Yu, Z.; Chao, L.; Shun-Liang, X.; Jian-Zhong, B. VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2011, 411, 620–626. [Google Scholar] [CrossRef]
- Chilumuri, A.; Ashioti, M.; Nercessian, A.N.; Milton, N.G. Immunolocalization of kisspeptin associated with amyloid-β deposits in the pons of an Alzheimer’s disease patient. J. Neurodegener. Dis. 2013, 2013, 879710. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi Khonacha, S.; Janahmadi, M.; Motamedi, F. Kisspeptin-13 improves spatial memory consolidation and retrieval against amyloid-beta pathology. Iran J. Pharm. Res. 2019, 18 (Suppl. 1), 169–181. [Google Scholar] [CrossRef]
- Porsteinsson, A.P.; Drye, L.T.; Pollock, B.; Devanand, D.P.; Frangakis, C.; Ismail, Z.; Marano, C.; Meinert, C.L.; Mintzer, J.E.; Munro, C.A.; et al. Effect of citalopram on agitation in Alzheimer disease: The CitAD randomized clinical trial. JAMA 2014, 311, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Wang, J.; Xin, C.; Kong, L.; Wang, C. Effect of memantine combined with citalopram on cognition of BPSD and moderate Alzheimer’s disease: A clinical trial. Exp. Ther. Med. 2019, 17, 1625–1630. [Google Scholar] [CrossRef] [Green Version]
- Cirrito, J.R.; Wallace, C.E.; Yan, P.; Davis, T.A.; Gardiner, W.D.; Doherty, B.M.; King, D.; Yuede, C.M.; Lee, J.M.; Sheline, Y.I. Effect of escitalopram on Abeta levels and plaque load in an Alzheimer mouse model. Neurology 2020, 95, e2666–e2674. [Google Scholar] [CrossRef]
- Sheline, Y.I.; Snider, B.J.; Beer, J.C.; Seok, D.; Fagan, A.M.; Suckow, R.F.; Lee, J.M.; Waligorska, T.; Korecka, M.; Aselcioglu, I.; et al. Effect of escitalopram dose and treatment duration on CSF Abeta levels in healthy older adults: A controlled clinical trial. Neurology 2020, 95, e2658–e2665. [Google Scholar] [CrossRef]
- Aga, V.M. When and how to treat agitation in Alzheimer’s disease dementia with citalopram and escitalopram. Am. J. Geriatr. Psychiatry 2019, 27, 1099–1107. [Google Scholar] [CrossRef]
- Bartels, C.; Wagner, M.; Wolfsgruber, S.; Ehrenreich, H.; Schneider, A.; Alzheimer’s Disease Neuroimaging Initiative. Impact of ssri therapy on risk of conversion from mild cognitive impairment to Alzheimer’s dementia in individuals with previous depression. Am. J. Psychiatry 2018, 175, 232–241. [Google Scholar] [CrossRef]
- Lyons, L.; El-Beltagy, M.; Bennett, G.; Wigmore, P. Fluoxetine counteracts the cognitive and cellular effects of 5-fluorouracil in the rat hippocampus by a mechanism of prevention rather than recovery. PLoS ONE 2012, 7, e30010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.J.; Gong, W.G.; Ren, Q.G.; Zhang, Z.J. Escitalopram alleviates Alzheimer’s disease-type Tau pathologies in the aged P301L Tau transgenic mice. J. Alzheimers Dis. 2020, 77, 807–819. [Google Scholar] [CrossRef]
- Ren, Q.G.; Wang, Y.J.; Gong, W.G.; Zhou, Q.D.; Xu, L.; Zhang, Z.J. Escitalopram ameliorates forskolin-induced Tau hyperphosphorylation in HEK239/tau441 cells. J. Mol. Neurosci. 2015, 56, 500–508. [Google Scholar] [CrossRef]
- Wang, Y.J.; Ren, Q.G.; Gong, W.G.; Wu, D.; Tang, X.; Li, X.L.; Wu, F.F.; Bai, F.; Xu, L.; Zhang, Z.J. Escitalopram attenuates beta-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3beta pathway. Oncotarget 2016, 7, 13328–13339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosín-Tomàs, M.; Senserrich, J.; Arumí-Planas, M.; Alquézar, C.; Pallàs, M.; Martín-Requero, A.; Suñol, C.; Kaliman, P.; Sanfeliu, C. Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from alzheimer’s disease patients. Nutrients 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Huang, N.; Xu, S.; Luo, Y.; Li, Y.; Jin, H.; Yu, C.; Shi, J.; Jin, F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J. Nutr. Biochem. 2021, 88, 108552. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Akter, R.; Bhattacharya, T.; Abdel-Dai, M.M.; Alkahtani, S.; Arafah, M.W.; Al-Johani, N.S.; Alhoshani, N.M.; Alkeraishan, N.; Alhenaky, A.; et al. Resveratrol and neuroprotection: Impact and its therapeutic potential in a Alzheimer’s disease. Front. Pharmacol. 2020, 1, 619024. [Google Scholar] [CrossRef] [PubMed]
- Griñán-Ferré, C.; Bellver-Sanchis, A.; Izquierdo, V.; Corpas, R.; Roig-Soriano, J.; Chillón, M.; Andres-Lacueva, C.; Somogyvári, M.; Sőti, C.; Sanfeliu, C.; et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev. 2021, 67, 101271. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, M.; Moco, S. Resveratrol and its human metabolites-effects on metabolic health and obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Sarroca, S.; Gatius, A.; Rodríguez-Farré, E.; Vilchez, D.; Pallàs, M.; Griñán-Ferré, C.; Sanfeliu, C.; Corpas, R. Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer’s disease via modulation of proteolytic mechanisms. J. Nutr. Biochem. 2021, 89, 108569. [Google Scholar] [CrossRef] [PubMed]
- Marambaud, P.; Zhao, Z.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem. 2005, 280, 37377–37382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regitz, C.; Fitzenberger, E.; Mahn, F.L.; Dubling, L.M.; Wenzel, U. Resveratrol reduces amyloid-β(Aβ1–42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur. J. Nutr. 2016, 55, 741–747. [Google Scholar] [CrossRef]
- Corpas, R.; Griñán-Ferré, C.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C. Resveratrol induces brain resilience against alzheimer neurodegeneration through proteostasis enhancement. Mol. Neurobiol. 2019, 56, 1502–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jardim, F.R.; de Rossi, F.T.; Nascimento, M.X.; da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; de Oliveira, M.R. Resveratrol and brain mitochondria: A review. Mol. Neurobiol. 2018, 55, 2085–2101. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.H.; Kang, E.B.; Oh, Y.S.; Yang, D.S.; Cho, J.Y. Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp. Neurol. 2017, 288, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A. Neuroprotective effects of resveratrol: Potential mechanisms. Neurochem. Int. 2010, 57, 621–622. [Google Scholar] [CrossRef]
- Mansur, A.P.; Roggerio, A.; Goes, M.F.S.; Avakian, S.D.; Leal, D.P.; Maranhão, R.C.; Strunz, C.M.C. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial. Int. J. Cardiol. 2017, 227, 788–794. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Yang, B.; Huang, T.; Meng, N.; Xu, L.; Xing, Q.; Zhang, Y.; Zhang, K.; Li, Q.; et al. Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav. Brain Res. 2018, 339, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simão, F.; Matté, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol preconditioning modulates inflammatory response in the rat hippocampus following global cerebral ischemia. Neurochem. Int. 2012, 61, 659–665. [Google Scholar] [CrossRef]
- Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflamm. 2017, 14, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.; et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s. disease. Ann. N. Y. Acad. Sci. 2017, 1403, 142–149. [Google Scholar] [CrossRef]
- Zhao, H.F.; Li, N.; Wang, Q.; Cheng, Z.J.; Li, X.M.; Liu, T.T. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 2015, 310, 641–649. [Google Scholar] [CrossRef]
- Rempe, R.G.; Hartz, A.M.S.; Bauer, B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J. Cereb. Blood Flow Metab. 2016, 36, 1481–1507. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, A.; Carpéné, C.; Mercader, J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients 2018, 10, 1651. [Google Scholar] [CrossRef] [Green Version]
- Marwarha, G.; Raza, S.; Meiers, C.; Ghribi, O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta 2014, 1842, 1587–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Chaterjee, P.; Sharma, P.K.; Singh, A.K.; Gupta, A.; Gill, K.; Tripathi, M.; Dey, A.B.; Dey, S. Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease. PLoS ONE 2013, 8, e61560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarente, L. Calorie restriction and sirtuins revisited. Genes Dev. 2013, 27, 2072–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, A.; Imai, S. Hypothalamic Sirt1 in aging. Aging 2014, 6, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Ye, B.; Chen, P.; Wang, Q.; Fan, C.; Shu, Y.; Xiang, M. Cognitive decline, dementia, Alzheimer’s disease and presbycusis: Examination of the possible molecular mechanism. Front. Neurosci. 2018, 12, 394. [Google Scholar] [CrossRef]
- Cao, W.; Dou, Y.; Li, A. Resveratrol boosts cognitive function by targeting SIRT1. Neurochem. Res. 2018, 43, 1705–1713. [Google Scholar] [CrossRef]
- Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892–5901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 2015, 6, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, A.K.; Gray, D.J.; Lu, J.; Gu, L. Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem. 2011, 126, 982–988. [Google Scholar] [CrossRef]
- Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C.J. Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drugs 2012, 21, 1123–1140. [Google Scholar] [CrossRef]
- Strimpakos, A.S.; Sharma, R.A. Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Signal. 2008, 10, 511–545. [Google Scholar] [CrossRef]
- Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 2018, 26, 266–277. [Google Scholar] [CrossRef]
- Zheng, K.; Dai, X.; Xiao, N.; Wu, X.; Wei, Z.; Fang, W.; Zhu, Y.; Zhang, J.; Chen, X. Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-amyloid pathology in 5×FAD transgenic mice. Mol. Neurobiol. 2017, 54, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, R.M.C.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; et al. Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3 inhibitors. J. Med. Chem. 2016, 59, 531–544. [Google Scholar] [CrossRef]
- Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce -amyloid production in a model of Alzheimer’s Disease. Pharmacol. Rep. 2011, 63, 1101–1108. [Google Scholar] [CrossRef]
- Samy, D.M.; Ismail, C.A.; Nassra, R.A.; Zeitoun, T.M.; Nomair, A.M. Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: Erythropoietin versus curcumin. Eur. J. Pharmacol. 2016, 770, 52–60. [Google Scholar] [CrossRef]
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742–750. [Google Scholar] [CrossRef]
- Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; et al. Protective effects of indian spice curcumin against amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis. 2018, 61, 843–866. [Google Scholar] [CrossRef]
- Feng, H.L.; Dang, H.Z.; Fan, H.; Chen, X.P.; Rao, Y.X.; Ren, Y.; Yang, J.D.; Shi, J.; Wang, P.W.; Tian, J.Z. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int. J. Immunopathol. Pharmacol. 2016, 29, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Isik, A.T.; Celik, T.; Ulusoy, G.; Ongoru, O.; Elibol, B.; Doruk, H.; Bozoglu, E.; Kayir, H.; Mas, M.R.; Akman, S. Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age 2009, 31, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Venigalla, M.; Sonego, S.; Gyengesi, E.; Sharman, M.J.; Munch, G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 2016, 95, 63–74. [Google Scholar] [CrossRef]
- Tang, M.; Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis. 2017, 58, 1003–1016. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/ct2/show/record/NCT04308304?term=NCT04308304&draw=2&rank=1 (accessed on 16 March 2020).
- Available online: https://clinicaltrials.gov/ct2/show/NCT03352557?recrs=abd&cond=Alzheimer+Disease&draw=2&rank=12 (accessed on 24 November 2017).
- Available online: https://clinicaltrials.gov/ct2/show/NCT03959553?recrs=abd&cond=Alzheimer+Disease&draw=2 (accessed on 22 May 2019).
- AR1001. Available online: https://clinicaltrials.gov/ct2/show/NCT03625622?recrs=abd&cond=Alzheimer+Disease&draw=2&rank=25 (accessed on 10 August 2018).
- CT1812. Available online: https://clinicaltrials.gov/ct2/show/NCT03507790?recrs=abd&cond=Alzheimer+Disease&draw=2&rank=28 (accessed on 25 April 2018).
- MON. Available online: https://clinicaltrials.gov/ct2/show/NCT03991988?recrs=abd&cond=Alzheimer+Disease&draw=2 (accessed on 19 June 2019).
- Qureshi, I.A.; Tirucherai, G.; Ahlijanian, M.K.; Kolaitis, G.; Bechtold, C.; Grundman, M. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement. 2018, 4, 746–755. [Google Scholar] [CrossRef]
- Grundman, M.; Morgan, R.; Lickliter, J.D.; Schneider, L.S.; DeKosky, S.; Izzo, N.J.; Guttendorf, R.; Higgin, M.; Pribyl, J.; Mozzoni, K.; et al. A phase 1 clinical trial of the sigma-2 receptor complex allosteric antagonist CT1812, a novel therapeutic candidate for Alzheimer’s disease. Alzheimers Dement. 2019, 5, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Hippius, H.; Neundörfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci. 2003, 5, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Lee, H.; Seo, J. Impact of genetic risk factors for Alzheimer’s disease on brain glucose metabolism. Mol. Neurobiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.F.; Camargos, E.F.; Martini, L.L.L.; Machado, F.V.; Novaes, M.R.C.G. Use of psychotropic agents to treat agitation and aggression in Brazilian patients with Alzheimer’s disease: A naturalistic and multicenter study. Psychiatry Res. 2021, 295, 113591. [Google Scholar] [CrossRef] [PubMed]
- Schierle, S.; Merk, D. Therapeutic modulation of retinoid X receptors—SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin. Ther. Pat. 2019, 29, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra, E.; Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; et al. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxid. Med. Cell Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Ouyang, L.; Januszewski, S.; Li, Y.; Czuczwar, S.J. Participation of amyloid and Tau protein in post-ischemic neurodegeneration of the hippocampus of a nature identical to Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 2460. [Google Scholar] [CrossRef]
- Pluta, R.; Ułamek-Kozioł, M.; Kocki, J.; Bogucki, J.; Januszewski, S.; Bogucka-Kocka, A.; Czuczwar, S.J. Expression of the Tau Protein and Amyloid Protein Precursor Processing Genes in the CA3 Area of the Hippocampus in the Ischemic Model of Alzheimer’s Disease in the Rat. Mol. Neurobiol. 2020, 57, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Pluta, R.; Januszewski, S.; Czuczwar, S.J. Myricetin as a promising molecule for the treatment of post-ischemic brain neurodegeneration. Nutrients 2021, 13, 342. [Google Scholar] [CrossRef]
- Ułamek-Kozioł, M.; Czuczwar, S.J.; Januszewski, S.; Pluta, R. Substantiation for the use of curcumin during the development of neurodegeneration after brain ischemia. Int. J. Mol. Sci. 2020, 212, 517. [Google Scholar] [CrossRef] [Green Version]
- Baazaoui, N.; Iqbal, K. A novel therapeutic approach to treat Alzheimer’s disease by neurotrophic support during the period of synaptic compensation. J. Alzheimers Dis. 2018, 62, 1211–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Wang, Y.; Liu, Y.; Dai, C.-L.; Tung, Y.-C.; Liu, F.; Iqbal, K. Prenatal to early postnatal neurotrophic treatment prevents Alzheimer-like behavior and pathology in mice. Alzheimers Res. Ther. 2020, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Deshmukh, R. β-lactam antibiotics to tame down molecular pathways of Alzheimer’s disease. Eur. J. Pharmacol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Guzman- Martinez, L.; Calfio, C.; Farias, G.A.; Vilches, C.; Pietro, R.; Maccioni, R.B. New frontiers in the prevention, diagnosis, and treatment of Alzheimer’s disease. J. Alzheimers Dis. 2021. [Google Scholar] [CrossRef]
- Corbo, R.M.; Businaro, R.; Scarabino, D. Leukocyte telomere length and plasma interleukin-1β and interleukin-18 levels in mild cognitive impairment and Alzheimer’s disease: New biomarkers for diagnosis and disease progression? Neural Regen. Res. 2021, 16, 1397–1398. [Google Scholar] [CrossRef]
Drugs | Dosage of the Medicine | Adverse Effects | Metabolism | References | |
---|---|---|---|---|---|
Cholinesterase inhibitors | Donepezil (Aricept) | 5 mg orally at bedtime for 4 to 6 weeks, then 10 mg orally at bedtime; can increase to 23 mg at bedtime after 3 weeks at 10-mg dose | Atrioventricular block, decreased appetite, diarrhea, dizziness, headache, hypertension, nausea, syncope, torsades de pointes, vomiting, weight loss | CYP2D6, CYP3A4 | [3,4,8] |
Galantamine (Razadyne) | Immediate release: 4 mg orally 2 times per day for 4 weeks, then increase to 8 mg 2 times per day for 4 weeks, then 12 mg 2 times per day Extended release: 8 mg orally per day for 4 weeks, then increase to 16 mg per day for 4 weeks, then 24 mg per day When switching from oral to transdermal administration, if total daily dosage of galantamine is less than 6 mg, use 4.6-mg patch. If total daily dosage is 6 to 12 mg, use 9.5-mg patch | Atrioventricular block, decreased appetite, diarrhea, dizziness, headache, nausea, vomiting, weight loss | CYP2D6, CYP3A4 | [3,4,8] | |
Rivastigmine (Exelon) | For Alzheimer disease: 1.5 mg orally 2 times per day for 2 weeks, then increase each dose in 1.5-mg increments every 2 weeks as tolerated to maximal dosage of 12 mg per day. Transdermal patch (for Alzheimer disease and Parkinson disease dementia): 4.6-mg patch every 24 h for 4 weeks, then 9.5-mg patch every 24 h for 4 weeks, then 13.3-mg patch every 24 h | Abdominal pain, atrial fibrillation, atrioventricular block, decreased appetite, diarrhea, dizziness, headache, myocardial infarction, nausea, vomiting | Non-hepatic | [3,4,8] | |
N-methyl-D-aspartate receptor antagonist | Memantine (Namenda) | Immediate release: 5 mg orally per day for 1 week, then 5 mg 2 times per day for 1 week, then 10 mg every morning and 5 mg every night for 1 week, then 10 mg 2 times per day Extended release (approved but not yet available): 7 mg orally per day for 1 week, then increase in 7-mg increments every week to target dosage of 28 mg per day | Confusion, constipation, diarrhea, dizziness, vomiting; rarely, cerebrovascular event or acute kidney injury | Non-hepatic | [3,4,8] |
Combination drug and vitamin E | Memantine/donepezil (Namzaric) | 7 mg/10 mg orally at bedtime for 4 weeks, then increase by 7 mg/10 mg every week as tolerated to target dosage of 28 mg/10 mg every night | Decreased appetite, diarrhea, heart block, syncope, vomiting | [3] | |
Vitamin E | 1000 IU orally 2 times per day | Hemorrhage (including cerebral); may increase all-cause mortality |
Compounds/Drugs | Probable Mechanism of Action | Type of Research | Effects | References | ||
---|---|---|---|---|---|---|
Clinical Trials | Animal Model of Alzheimer’s Disease | In Vitro | ||||
Bexarotene | ↓ ABCA1, ABCG1 expression ↑ ApoE lipidation | + | ↓ Soluble or insoluble Aβ ↓ Aβ plaques Improved memory ↑ HDL levels | [19] | ||
Improved cognitive function Improved baseline synaptic transmission and synaptic plasticity ↓ Astrogliosis and reactive microglia in both cortex and hippocampus ↑ Expression of APOE (limited to CA1 hippocampal) | [21] | |||||
↓ Memory deficits ↓ Interstitial fluid Aβ level No effect on amyloid deposition | [22] | |||||
↓ Soluble Aβ40 No effect on plaque burden that exhibit Aβ amyloidosis | [23] | |||||
+ | ↑ ApoE concentrations by 25% No effect on Aβ peptide metabolism Adverse reactions (non-significant) | [24] | ||||
No effect on amyloid burden in apoE4 carriers Significant correlation between ↑ serum Aβ1-42 and ↓ in brain amyloid in apoE4 noncarriers, significant adverse reactions | [25] | |||||
ADCS-6253 | Directly activates ABCA1 expression | + | APOE4 knock-in only ↑ ApoE4 lipidation ↑ ABCA1 expression ↓ Aβ and phosphorylated tau | [26] | ||
HJ6.3–monoclonal antibody against apoE | Blocking apoE and Aβ interaction | + | ↓ Soluble and insoluble Aβ ↓ Microglia ↓ Brain Aβ plaques ↑ Plasma Aβ ↓ Pro-inflammatory cytokines | [30] | ||
HAE-4 | Blocking apoE and Aβ interaction | + | ↓ accumulation of Aβ in the brain | [31] | ||
CN-105 | ApoE mimetic | + | ↓ Soluble Aβ ↓ Aβ plaques Improved memory | [32] | ||
Anti-APOE antisense oligonucleotides | Silencing APOE | + | ↓ Soluble APOE ↓ Soluble and insoluble Aβ ↓ Aβ plaques ↓ Dystrophic neurites | [36] | ||
Intranasal insulin | Reduced AHP | + | ↓ Cognitive impairment, improves memory in | [45] | ||
+ | patients without (epsilon4-,) improves verbal memory | [47] | ||||
Liraglutide | Glucagon-like peptide-1 analog Activation of protein kinase A (PKA) signaling pathway | + | Prevented the “loss of brain insulin receptors and synapses, and reversed memory impairment” induced by AβOs ↓ AD-related insulin receptor ↓ Synaptic and tau pathologies in specific brain regions | [52] | ||
Probiotic therapy with the SLAB 51 cocktail | ↑ Intestinal metabolites of the short-chain fatty acid type | + | Impede the formation of toxic soluble amyloid aggregates ↑ Cognitive function ↓ Aβ aggregates ↓ Brain injuries Partial restoration of altered neuronal proteolytic pathway | [87] | ||
Dipeptides of tryptophan-tyrosine and tryptophan-methionine | Suppression of the inflammatory response of microglia ↑ Aβ phagocytosis | + | Improve cognitive function ↓ Hippocampal long-term potential deficit ↓ Memory impairment | [89] | ||
Selenium or selenium with probiotic | Anti-inflammatory and antioxidant effects ↑ Total glutathione and the quantitative insulin sensitivity check index (QUICKI) | + | ↓ High sensitivity C-reactive protein Improvement of lipidogram results ↑ Cognitive function | [94] | ||
VEGF | Anti-inflammatory effects | + | Improved spatial learning and memory along with ↓ Aβ levels | [113] | ||
+ | ↑ cell viability ↓ ROS production Improved mitochondrial structure and function ↑Number of mitochondria ↑ Stimulation of mitochondrial biogenesis | |||||
+ | ↓ Memory impairment ↑ Levels of choline acetyltransferase ↓ Aβ accumulation | [114] | ||||
Kisspeptin | Activates the hypothalamic-pituitary-gonadal axis | + | Induces mitophagy and autophagy processes | [112] | ||
+ | ↑ Number of mitochondria ↑ Complex I activity ↑ ATP levels | |||||
+ | ↑ Spatial memory consolidation and retrieval Alleviated Aβ-induced memory impairment | [116] | ||||
Citalopram | Selective serotonin reuptake inhibitor | + | ↓ Levels of the mitochondrial fission genes ↑ Fusion, biogenesis, autophagy, mitophagy, and synaptic genes ↑ Number of mitochondria and cell survival rates | [14] | ||
+ | ↑ Cognitive impairment Cardiovascular side effects | [117] | ||||
Escitalopram | + | ↓ Aβ level in CSF | [119] | |||
Selective serotonin reuptake inhibitor | ↓ Plaque load Inhibition of amyloid plaque growth | |||||
+ | ↓ Aβ42 level in CSF | [120] | ||||
+ | Inhibition of tau hyperphosphorylation | [125,126] | ||||
Resveratrol | Stimulating proteasomal proteolysis Stimulating factors such as expression of brain-derived neurotrophic factor precursor, neuronal growth factor, and neurotrophin 3 Anti-inflammatory, antioxidant and anti-apoptotic action Induces autophagy and mitophagy Activator of silent information regulator-1 (SIRT1) | + | ↓ Astrocyte and microglia activation and suppression of the inflammatory response in the hippocampus | [134,135,136,142] | ||
+ | ↓ MMP-9 levels in CSF ↓ Aβ40 levels in CSF ↑ Macrophage-derived chemokine, fibroblast growth factor-2 and interleukin (IL)-4 levels ↓ Plasma concentrations of pro-inflammatory mediators, including IL-1r4, IL-12P40, IL-12P70, and TNF-α ↓ Brain volume (excluding CSF, brain stem, and cerebellum) ↑ Ventricular volume | [143] | ||||
+ | ↓ MMP-9 levels in CSF | [144,145] | ||||
Curcumin | Affects Aβ plaque aggregation and tau protein hyperphosphorylation Antioxidant, anti-inflammatory, antidiabetic, antiviral, antiproliferative, antioxidant, pro-apoptotic as well as anti-amyloidogenic action Regulates levels of PS-1 and GSK-3β | + | Improvements in verbal and visual memory ↓ Tau accumulation in the amygdala | [160] | ||
+ | ↓ Aβ production ↓ Synaptic degradation Improving spatial learning ↓ Memory impairment | [161] | ||||
+ | Improving cognitive function ↓ Apoptosis and oxidative stress processes ↓ Aβ accumulation | [164] | ||||
+ | ↓ Aβ production | [163] |
Drugs/Substances | Dosage | Time-Dependent Therapy | Route of Administration | Diagnostic Tool/Tests | Patients | References |
---|---|---|---|---|---|---|
Bexarotene | 225 mg or placebo twice daily | For 5 days | Oral | Applied “stable isotope labeling kinetics (SILK-ApoE and SILK-Aβ) to measure the effect of bexarotene on the turnover rate of apoE and Aβ peptides and stable isotope spike absolute quantitation (SISAQ) to quantitate their concentrations” in CSF | Healthy volunteers; aged 21 to 49 years (average 32 years old); with APOE ε3/ε3 genotype | [24] |
Intranasal insulin | 10, 20, 40, or 60 IU or placebo five times a day | Cognition was tested 15 min after treatment and blood was drawn immediately after insulin/placebo administration and 45 min after treatment | Intranasal | Verbal declarative memory measures (Story Recall and Hopkins Verbal Learning Test) A test of selective attention (Stroop Color-Word test) A visual working memory measure (Self-Ordered Pointing Task) A test of psychomotor processing speed (Digit Symbol) | Participants with (epsilon4+or epsilon4-) the APOE- epsilon4 allele with memory-impaired with either probable AD or amnestic MCI or multiple domain MCI with amnestic features (mean age of about 77) and cognitively normal older (epsilon4+or epsilon4-) as control groups (mean age of about 74) | [47] |
Selenium or selenium with probiotic | Selenium (200 μg/day) plus probiotic (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum) (2 × 109 CFU/day each), selenium (200 μg/day) or placebo | For 12 weeks | Oral | Cognition was tested using the Mini-Mental State Examination (MMSE) biomarkers of inflammation and oxidative stress, metabolic profiles and plasma glucose | Patients with AD (aged 55 to 100 years) | [94] |
Citalopram | Dosing began at 10 mg/day with planned titration to 30 mg/day over 3 weeks based on response and tolerability or placebo | Psychosocial intervention plus either citalopram or placebo for 9 weeks | Oral | Assessment of agitation, hostility/uncooperativeness, and disinhibition—Neurobehavioral Rating Scale agitation subscale (NBRS-A) the modified Alzheimer Disease Cooperative Study-Clinical Global Impression of Change (mADCS-CGIC) Cohen-Mansfield Agitation Inventory (CMAI) Neuropsychiatric Inventory (NPI) Activities of daily living (ADLs) Caregiver distress; cognitive safety (MMSE) | Patients with probable AD and clinically significant agitation | [117] |
Escitalopram | 20 mg or 30 mg/day or placebo | For 2 or 8 weeks | Oral | Lumbar punctures to sample CSF levels before and after treatment | Cognitively normal older adults (aged 50 to 84 years) | [120] |
Resveratrol | up to 1 g by mouth twice daily (500 mg once daily (with a dose escalation by 500-mg increments every 13 weeks, ending with 1000 mg twice daily) | For 52 weeks | Oral | “Magnetic microspheres internally coded with two fluorescent dyes to measure markers of neurodegeneration (Millipore, Cat#: HNABTMAG-68K)” | Patients with mild-moderate AD | [143,144,145] |
Curcumin | 90 mg or placebo twice daily—(180 mg/day) | for 18 months | Oral | Verbal (Buschke Selective Reminding Test [SRT]) Visual (Brief Visual Memory Test-Revised [BVMT-R]) Memory attention (Trail Making A) Assessment of amyloid and tau accumulation in the brain (2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile positron emission tomography (FDDNP-PET) | Middle-aged and older adults without dementia (age 51 to 84 years) | [160] |
ClinicalTrials.gov Identifier | Type of Clinical Trial | Phase | Compounds/Drug Tested | Dosage/Route of Administration | Characteristics of the Clinical Trial | Characteristics of the Patients | References | |
---|---|---|---|---|---|---|---|---|
Age of the Patient | Diagnosis | |||||||
NCT04308304 | A randomized, double-blind, placebo-controlled study | I | MK-1942-005 or placebo | 8 mg to ≤ 50 mg/orally | Evaluation of the safety and pharmacokinetics of MK-1942 and donepezil when co-administered to participants Evaluation of whether the combination increases the incidence or severity of adverse events | 50 to 85 years | With AD with mild-to-moderate cognitive impairment stably treated with donepezil. | [171] |
NCT03352557 | A randomized, double-blind, placebo-controlled, parallel-group study | II | BIIB092 or placebo | No data/intravenous (IV) infusion (once every 4 weeks or once every 12 weeks) | Evaluation of the safety and tolerability of BIIB092 in participants Evaluation of the efficacy of multiple doses of BIIB092 in slowing cognitive and functional impairment in participants Evaluation of the long-term safety and tolerability of BIIB092 in participants | 50 to 80 years | With mild cognitive impairment due to AD or with mild AD | [172] |
NCT03959553 | A multicenter, randomized, double-blind, placebo-controlled, dose finding, parallel-group study | IIa | GV1001 | 0.56 mg and 1.12 mg/subcutaneously (once weekly for 4 weeks then every 2 weeks through week 24) | Evaluation of the efficacy and safety of GV1001 | 55 to 85 years | With moderate AD | [173] |
NCT03625622 | A double-blinded, randomized, placebo-controlled study | II | AR1001 | 10 mg or 30 mg/orally (once daily for 26 weeks) | Evaluation of the efficacy and safety of AR1001 | 50 to 80 years | With mild to moderate AD | [174] |
NCT03507790 | A multi-center, randomized, double-blind, placebo-controlled, parallel group multicenter study | II | CT1812 | 100 mg or 300 mg/administered once daily for 6 months | Evaluation of the safety of two doses of CT1812 Evaluation of the effect of CT1812 on biomarkers | 50 to 85 years | with mild to moderate AD | [175] |
NCT03991988 | A one-year, double-blind placebo-controlled randomized clinical trial that compares montelukast to placebo | II | Montelukast | 10, 20 to 40 mg | Evaluation of the cognitive function, CSF biomarkers and neuroimaging (cerebral perfusion and markers of vascular brain damage) | 50 years and older | with mild cognitive impairment and early AD dementia | [176] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miziak, B.; Błaszczyk, B.; Czuczwar, S.J. Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease. Pharmaceuticals 2021, 14, 458. https://doi.org/10.3390/ph14050458
Miziak B, Błaszczyk B, Czuczwar SJ. Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease. Pharmaceuticals. 2021; 14(5):458. https://doi.org/10.3390/ph14050458
Chicago/Turabian StyleMiziak, Barbara, Barbara Błaszczyk, and Stanisław J. Czuczwar. 2021. "Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease" Pharmaceuticals 14, no. 5: 458. https://doi.org/10.3390/ph14050458
APA StyleMiziak, B., Błaszczyk, B., & Czuczwar, S. J. (2021). Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease. Pharmaceuticals, 14(5), 458. https://doi.org/10.3390/ph14050458