Second-Generation Cephalosporins-Associated Drug-Induced Liver Disease: A Study in VigiBase with a Focus on the Elderly
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Case Reports
2.2. Characteristics of ADRs
2.3. Disproportionality Analysis
3. Discussion
3.1. Limitations
3.2. Strengths
4. Materials and Methods
4.1. Data Source and Analysis
4.2. Disproportionality Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onakpoya, I.J.; Heneghan, C.J.; Aronson, J.K. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature. BMC Med. 2016, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, R.J.; Tulkens, P.M. Hepatic safety of antibiotics used in primary care. J. Antimicrob. Chemother. 2011, 66, 1431–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammert, C.; Einarsson, S.; Saha, C.; Niklasson, A.; Bjornsson, E.; Chalasani, N. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: Search for signals. Hepatology 2008, 47, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Babai, S.; Auclert, L.; Le-Louët, H. Safety data and withdrawal of hepatotoxic drugs. Therapie 2018. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.; Preuss, C. Cephalosporins; StatPearls Publishing LLC: Treasure Island, FL, USA, 2020; ISBN NBK551517. [Google Scholar]
- Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Machado-Alba, J.E.; Valladales-Restrepo, L.F.; Gaviria-Mendoza, A.; Machado-Duque, M.E.; Figueras, A. Patterns of antibiotic prescription in Colombia: Are there differences between capital cities and municipalities? Antibiotics 2020, 9, 389. [Google Scholar] [CrossRef] [PubMed]
- Tartaglione, T.; Polk, R. Drug selection. Drug Intell. Clin. Pharm. 1985, 19, 188–198. [Google Scholar] [CrossRef]
- Glatt, A.E. Second-generation cephalosporins. Hosp. Pract. 1986, 21, 158A–158L. [Google Scholar] [CrossRef]
- Macy, E.; Contreras, R. Adverse reactions associated with oral and parenteral use of cephalosporins: A retrospective population-based analysis. J. Allergy Clin. Immunol. 2015, 135, 745–752.e5. [Google Scholar] [CrossRef]
- Heudorf, U.; Hausemann, A.; Steul, K. Surveillance of antibiotic agents according to § 23 of the German Infection Protection Act—data and results from hospitals in Frankfurt am Main, Germany, 2012–2017. Bundesgesundheitsblatt Gesundh. Gesundh. 2019, 62, 1092–1102. [Google Scholar] [CrossRef]
- Borde, J.P.; Kaier, K.; Steib-Bauert, M.; Vach, W.; Geibel-Zehender, A.; Busch, H.; Bertz, H.; Hug, M.; de With, K.; Kern, W.V. Feasibility and impact of an intensified antibiotic stewardship programme targeting cephalosporin and fluoroquinolone use in a tertiary care university medical center. BMC Infect. Dis. 2014, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, C.; Manoharan-Basil, S.S. Cultural Drivers of Antibiotic Consumption in High-Income Countries: A Global Ecological Analysis. Microb. Drug Resist. 2020, 26, 1063–1070. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [Green Version]
- Niriella, M.A.; Kumarasena, R.S.; Dassanayake, A.S.; Pathirana, A.; De Silva Hewavisenthi, J.; De Silva, H.J. Worsening cholestasis and possible cefuroxime-induced liver injury following “successful” therapeutic endoscopic retrograde cholangiopancreatography for a distal common bile duct stone: A case report. J. Med. Case Rep. 2016, 10, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Bjornsson, E.S.; Jonasson, J.G. Drug-Induced Cholestasis. Clin. Liver Dis. 2013, 17, 191–209. [Google Scholar] [CrossRef]
- Andrade, R.J.; Lucena, M.I.; Fernández, M.C.; Pelaez, G.; Pachkoria, K.; García-Ruiz, E.; García-Muñoz, B.; González-Grande, R.; Pizarro, A.; Durán, J.A.; et al. Drug-Induced Liver Injury: An Analysis of 461 Incidences Submitted to the Spanish Registry Over a 10-Year Period. Gastroenterology 2005, 129, 512–521. [Google Scholar] [CrossRef]
- Thiim, M.; Friedman, L.S. Hepatotoxicity of antibiotics and antifungals. Clin. Liver Dis. 2003, 7, 381–399. [Google Scholar] [CrossRef]
- Lucena, M.I.; Andrade, R.J.; Kaplowitz, N.; García-Cortes, M.; Fernández, M.C.; Romero-Gomez, M.; Bruguera, M.; Hallal, H.; Robles-Diaz, M.; Rodriguez-González, J.F.; et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: The influence of age and sex. Hepatology 2009, 49, 2001–2009. [Google Scholar] [CrossRef]
- Leise, M.D.; Poterucha, J.J.; Talwalkar, J.A. Drug-induced liver injury. Mayo Clin. Proc. 2014, 89, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Boyd, I. Ceftriaxone and Hepatitis in Patients 75 Years and Older. WHO Pharm. Newsl. 2018, 6, 24–30. [Google Scholar]
- Chalasani, N.; Fontana, R.J.; Bonkovsky, H.L.; Watkins, P.B.; Davern, T.; Serrano, J.; Yang, H.; Rochon, J. Causes, Clinical Features, and Outcomes From a Prospective Study of Drug-Induced Liver Injury in the United States. Gastroenterology 2008, 135, 1924–1934.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Bonkovsky, H.L.; Fontana, R.; Lee, W.; Stolz, A.; Talwalkar, J.; Reddy, K.R.; Watkins, P.B.; Navarro, V.; Barnhart, H.; et al. Features and outcomes of 899 patients with drug-induced liver injury: The DILIN prospective study. Gastroenterology 2015, 148, 1340–1352.e7. [Google Scholar] [CrossRef] [Green Version]
- Ekiz, F.; Üsküdar, O.; Şimşek, Z.; Yüksel, I.; Başar, Ö.; Altinbas, A.; Yüksel, O. Cefuroxime axetil-induced liver failure. Ann. Hepatol. 2010, 9, 306. [Google Scholar] [CrossRef]
- Qu, X.; Yin, C.; Sun, X.; Huang, S.; Li, C.; Dong, P.; Lu, X.; Zhang, Z.; Yin, A. Consumption of antibiotics in Chinese public general tertiary hospitals (2011-2014): Trends, pattern changes and regional differences. PLoS ONE 2018, 13, e0196668. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Liu, Y.; Shang, J.; Xie, Q.; Li, J.; Yan, M.; Xu, J.; Niu, J.; Liu, J.; Watkins, P.B.; et al. Incidence and Etiology of Drug-Induced Liver Injury in Mainland China. Gastroenterology 2019, 156, 2230–2241.e11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yang, L.; Liao, Z.; He, X.; Zhou, Y.; Guo, H. Epidemiology of drug-induced liver injury in China: A systematic analysis of the Chinese literature including 21 789 patients. Eur. J. Gastroenterol. Hepatol. 2013, 25, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Petronijevic, M.; Ilic, K. Associations of gender and age with the reporting of drug-induced hepatic failure: Data from the vigibase. J. Clin. Pharmacol. 2013, 53, 435–443. [Google Scholar] [CrossRef] [PubMed]
- George, N.; Chen, M.; Yuen, N.; Hunt, C.M.; Suzuki, A. Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury. Regul. Toxicol. Pharmacol. 2018, 94, 101–107. [Google Scholar] [CrossRef]
- Hunt, C.M.; Yuen, N.A.; Stirnadel-Farrant, H.A.; Suzuki, A. Age-related differences in reporting of drug-associated liver injury: Data-mining of WHO safety report database. Regul. Toxicol. Pharmacol. 2014, 70, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Andrade, R.J.; Bjornsson, E.; Lucena, M.I.; Lee, W.M.; Yuen, N.A.; Hunt, C.M.; Freston, J.W. Drugs associated with hepatotoxicity and their reporting frequency of liver adverse events in vigibaseTM: Unified list based on international collaborative work. Drug Saf. 2010, 33, 503–522. [Google Scholar] [CrossRef]
- Suzuki, A.; Yuen, N.A.; Ilic, K.; Miller, R.T.; Reese, M.J.; Brown, H.R.; Ambroso, J.I.; Falls, J.G.; Hunt, C.M. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBaseTM. Regul. Toxicol. Pharmacol. 2015, 72, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.J.; Hayashi, P.H.; Gu, J.; Reddy, K.R.; Barnhart, H.; Watkins, P.B.; Serrano, J.; Lee, W.M.; Chalasani, N.; Stolz, A.; et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology 2014, 147, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suk, K.T.; Kim, D.J.; Kim, C.H.; Park, S.H.; Yoon, J.H.; Kim, Y.S.; Baik, G.H.; Kim, J.B.; Kweon, Y.O.; Kim, B.I.; et al. A prospective nationwide study of drug-induced liver injury in korea. Am. J. Gastroenterol. 2012, 107, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Real, M.; Barnhill, M.S.; Higley, C.; Rosenberg, J.; Lewis, J.H. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf. 2019, 42, 365–387. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N.; et al. Drug-induced liver injury. Nat. Rev. Dis. Prim. 2019, 5, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindquist, M. VigiBase, the WHO Global ICSR Database System: Basic facts. Drug Inf. J. 2008, 42, 409–419. [Google Scholar] [CrossRef]
- Caster, O.; Sandberg, L.; Bergvall, T.; Watson, S.; Norén, G.N. vigiRank for statistical signal detection in pharmacovigilance: First results from prospective real-world use. Pharmacoepidemiol. Drug Saf. 2017, 26, 1006–1010. [Google Scholar] [CrossRef] [Green Version]
- Bihan, K.; Lebrun-Vignes, B.; Funck-Brentano, C.; Salem, J.E. Uses of pharmacovigilance databases: An overview. Therapie 2020, 75, 591–598. [Google Scholar] [CrossRef]
- Bate, A.; Lindquist, M.; Edwards, I.R.; Orre, R. A data mining approach for signal detection and analysis. Drug Saf. 2002, 25, 393–397. [Google Scholar] [CrossRef]
- Baan, E.J.; de Smet, V.A.; Hoeve, C.E.; Pacurariu, A.C.; Sturkenboom, M.C.J.M.; de Jongste, J.C.; Janssens, H.M.; Verhamme, K.M.C. Exploratory Study of Signals for Asthma Drugs in Children, Using the EudraVigilance Database of Spontaneous Reports. Drug Saf. 2020, 43, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Grundmark, B.; Holmberg, L.; Garmo, H.; Zethelius, B. Reducing the noise in signal detection of adverse drug reactions by standardizing the background: A pilot study on analyses of proportional reporting ratios-by-therapeutic area. Eur. J. Clin. Pharmacol. 2014, 70, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Reporting Adverse Drug Reactions-Definitions of Terms and Criteria for Their Use; Bankowski, Z.; Bruppacher, R.; Crusius, I.; Gallagher, J.; Kremer, G.; Venulet, J. (Eds.) Council for International Organizations of Medical Sciences (CIOMS): Geneva, Switzerland, 1999; ISBN 92 9036 071 2. [Google Scholar]
Characteristics | Overall a | 18–64 Years Old | ≥65 Years Old | |||
---|---|---|---|---|---|---|
N = 1343 | N = 684 | N = 371 | ||||
Gender | N | % | N | % | N | % |
Female | 624 | 46.46 | 330 | 48.25 | 184 | 49.60 |
Male | 632 | 47.06 | 350 | 51.17 | 182 | 49.06 |
Not known | 87 | 6.48 | 4 | 0.58 | 5 | 1.35 |
Region | N | % | N | % | N | % |
Asia | 452 | 33.66 | 264 | 38.60 | 140 | 37.74 |
Europe | 427 | 31.79 | 214 | 31.29 | 135 | 36.39 |
Americas | 382 | 28.44 | 168 | 24.56 | 70 | 18.87 |
Oceania | 78 | 5.81 | 35 | 5.11 | 26 | 7.01 |
Africa | 4 | 0.3 | 3 | 0.44 | 0 | 0 |
Report Type | N | % | N | % | N | % |
Spontaneous | 1019 | 75.87 | 491 | 71.78 | 277 | 74.66 |
Report from study | 48 | 3.57 | 23 | 3.36 | 16 | 4.31 |
Post Marketing Surveillance/Special monitoring | 46 | 3.43 | 29 | 4.24 | 13 | 3.5 |
Not known | 230 | 17.13 | 141 | 20.62 | 65 | 17.52 |
Notifier b | N = 1401 | % | N = 718 | % | N = 391 | % |
Health Care Professionals c | 758 | 54.10 | 401 | 55.85 | 232 | 59.34 |
Non-Health Care Professionals d | 72 | 5.14 | 39 | 5.43 | 20 | 5.12 |
Not known | 571 | 40.76 | 278 | 38.72 | 139 | 35.55 |
Seriousness e | N = 1416 | % | N = 717 | % | N = 396 | % |
Caused/Prolonged Hospitalization | 186 | 13.14 | 92 | 12.83 | 58 | 14.65 |
Life threatening | 32 | 2.26 | 14 | 1.95 | 10 | 2.53 |
Death | 30 | 2.12 | 11 | 1.53 | 16 | 4.04 |
Disabling/Incapacitating | 7 | 0.49 | 3 | 0.42 | 4 | 1.01 |
Congenital anomaly/Birth defect | 1 | 0.07 | 0 | 0 | 0 | 0 |
Not known | 1160 | 81.92 | 597 | 83.26 | 308 | 77.78 |
Serious | N | % | N | % | N | % |
Yes | 491 | 36.56 | 255 | 37.28 | 147 | 39.62 |
No | 137 | 10.2 | 80 | 117 | 48 | 12.94 |
Not known | 715 | 53.24 | 349 | 51.02 | 176 | 47.44 |
Second-generation cephalosporins f | N | % | N | % | N | % |
Cefuroxime | 480 | 35.74 | 260 | 38.01 | 130 | 35.04 |
Cefaclor | 220 | 16.38 | 100 | 14.62 | 32 | 8.63 |
Cefoxitin | 110 | 8.19 | 66 | 9.65 | 26 | 7.01 |
Cefotiam | 99 | 7.37 | 48 | 7.02 | 39 | 10.51 |
Cefotetan | 89 | 6.63 | 50 | 7.31 | 29 | 7.82 |
Cefmetazole | 81 | 6.03 | 40 | 5.85 | 34 | 9.16 |
Cefamandole | 81 | 6.03 | 37 | 5.41 | 24 | 6.47 |
Characteristics | Overall a | 18–64 | ≥65 | |||
---|---|---|---|---|---|---|
N = 1585 | N = 813 | N = 429 | ||||
ADR | N | % | N | % | N | % |
Hepatic function abnormal | 512 | 32.30% | 279 | 34.32% | 138 | 32.17% |
Jaundice | 236 | 14.89% | 115 | 14.15% | 64 | 14.92% |
Hepatitis | 166 | 10.47% | 93 | 11.44% | 36 | 8.39% |
Hyperbilirubinaemia | 112 | 7.07% | 51 | 6.27% | 33 | 7.69% |
Hepatitis cholestatic | 94 | 5.93% | 35 | 4.31% | 33 | 7.69% |
Hepatocellular injury | 68 | 4.29% | 43 | 5.29% | 14 | 3.26% |
Liver disorder | 58 | 3.66% | 32 | 3.94% | 22 | 5.13% |
Drug-induced liver injury | 45 | 2.84% | 25 | 3.08% | 8 | 1.86% |
Hepatic failure | 35 | 2.21% | 16 | 1.97% | 10 | 2.33% |
Cholestasis | 33 | 2.08% | 12 | 1.48% | 12 | 2.80% |
Outcome | ||||||
Recovered/resolved | 513 | 32.37% | 286 | 35.18% | 140 | 32.63% |
Recovering/resolving | 232 | 14.64% | 128 | 15.74% | 69 | 16.08% |
Not recovered/not resolved | 181 | 11.42% | 101 | 12.42% | 56 | 13.05% |
Fatal | 71 | 4.48% | 20 | 2.46% | 41 | 9.56% |
Recovered/resolved with sequelae | 16 | 1.01% | 9 | 1.11% | 2 | 0.47% |
Died–reaction may be contributory | 15 | 0.95% | 5 | 0.62% | 10 | 2.33% |
Died–unrelated to reaction | 12 | 0.76% | 4 | 0.49% | 8 | 1.86% |
Unknown | 660 | 41.64% | 260 | 31.98% | 103 | 24.01% |
Time to onset b | ||||||
1–7 days | 547 | 34.51% | 293 | 36.04% | 164 | 38.23% |
8–14 days | 185 | 11.67% | 111 | 13.65% | 52 | 12.12% |
15–29 days | 80 | 5.05% | 46 | 5.66% | 26 | 6.06% |
≥30 days | 71 | 4.48% | 42 | 5.17% | 22 | 5.13% |
Unknown | 702 | 44.29% | 321 | 39.48% | 165 | 38.46% |
Dechallenge Action—Drug withdrawn | 493 | 31.1% | 245 | 30.14% | 146 | 34.03% |
Dechallenge outcome | ||||||
Reaction abated | 385 | 78.09% | 198 | 80.82% | 105 | 71.92% |
No effect observed | 66 | 13.39% | 29 | 11.84% | 22 | 15.07% |
Effect unknown | 34 | 6.90% | 17 | 6.94% | 12 | 8.22% |
Fatal | 6 | 1.22% | 0 | 0.00% | 6 | 4.11% |
Missing data | 2 | 0.41% | 1 | 0.41% | 1 | 0.68% |
Cephalosporin | ADRs a | Overall b | ≥65 Years Old | 18–44 Years Old | 45–64 Years Old | ||||
---|---|---|---|---|---|---|---|---|---|
N | PRR (95% CI) | N | PRR (95% CI) | N | PRR (95% CI) | N | PRR (95% CI) | ||
Cefotetan | Jaundice | 37 | 2.73 (1.98, 4.71) | 10 | 3.15 (1.70, 4.86) | 14 | 2.10 (1.25, 3.35) | 7 | 1.39 (0.66, 2.05) |
Cefotiam | Liver disorder | 16 | 2.83 (1.74, 4.57) | 10 | 6.96 (3.75, 10.71) | 2 | 1.66 (0.41, 2.07) | 4 | 1.86 (0.7, 2.56) |
Cefuroxime | Hepatitis acute | 9 | 1.02 (0.53, 1.55) | 6 | 2.52 (1.13, 3.65) | 2 | 0.57 (0.14, 0.71) | 1 | 0.36 (0.05, 0.41) |
Cefuroxime | Hepatitis cholestatic | 48 | 2.03 (1.53, 3.55) | 18 | 2.04 (1.28, 3.32) | 5 | 0.72 (0.30, 1.02) | 12 | 1.57 (0.89, 2.46) |
Cefmetazole | Liver disorder | 12 | 3.20 (1.82, 5.01) | 5 | 5.58 (2.33, 7.91) | 2 | 2.97 (0.74, 3.71) | 5 | 4.17 (1.74, 5.90) |
Cephalosporin | ADRs a | ≥65 Years Old b | Female | Male | |||
---|---|---|---|---|---|---|---|
N | PRR (95% CI) | N | PRR (95% CI) | N | PRR (95% CI) | ||
Cefotetan | Jaundice | 10 | 3.15 (1.70, 4.86) | 9 | 6.11 (3.19, 9.30) | 1 | 0.58 (0.08, 0.66) |
Cefotiam | Liver disorder | 10 | 6.96 (3.75, 10.71) | 7 | 9.84 (4.71, 14.55) | 2 | 2.77 (0.69, 3.46) |
Cefaclor | Jaundice | 9 | 1.34 (0.70, 2.04) | 2 | 0.56 (0.14, 0.70) | 7 | 2.39 (1.14, 3.53) |
Cefuroxime | Hepatitis cholestatic | 18 | 2.04 (1.28, 3.32) | 6 | 1.38 (0.62, 2.00) | 12 | 2.72 (1.55, 4.27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipos, M.; Farcas, A.; Leucuta, D.C.; Bucsa, C.; Huruba, M.; Mogosan, C. Second-Generation Cephalosporins-Associated Drug-Induced Liver Disease: A Study in VigiBase with a Focus on the Elderly. Pharmaceuticals 2021, 14, 441. https://doi.org/10.3390/ph14050441
Sipos M, Farcas A, Leucuta DC, Bucsa C, Huruba M, Mogosan C. Second-Generation Cephalosporins-Associated Drug-Induced Liver Disease: A Study in VigiBase with a Focus on the Elderly. Pharmaceuticals. 2021; 14(5):441. https://doi.org/10.3390/ph14050441
Chicago/Turabian StyleSipos, Mariana, Andreea Farcas, Daniel Corneliu Leucuta, Camelia Bucsa, Madalina Huruba, and Cristina Mogosan. 2021. "Second-Generation Cephalosporins-Associated Drug-Induced Liver Disease: A Study in VigiBase with a Focus on the Elderly" Pharmaceuticals 14, no. 5: 441. https://doi.org/10.3390/ph14050441
APA StyleSipos, M., Farcas, A., Leucuta, D. C., Bucsa, C., Huruba, M., & Mogosan, C. (2021). Second-Generation Cephalosporins-Associated Drug-Induced Liver Disease: A Study in VigiBase with a Focus on the Elderly. Pharmaceuticals, 14(5), 441. https://doi.org/10.3390/ph14050441