Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation
Abstract
:1. Introduction
2. Results
2.1. Organic Modifier Effects
2.2. Resolution and Selectivity
2.3. Method Validation
2.4. Enantioseparation in Commercial Tablet Matrices
2.5. Intermolecular Interactions Revealed by Molecular Docking
3. Discussion
3.1. Immobilized CSA Column
3.2. Enantioseparation
3.3. Molecular Docking and Chromatographic Enantioseparation
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Instrumentation and Chromatographic Conditions
4.3. Preparation of the Immobilized CSP
4.3.1. Conversion of Epoxy Groups and Immobilization of Diamine Spacer
4.3.2. Oxidation of CSA
4.3.3. Immobilization of CSA
4.4. Preparation of Bulk Samples
4.5. Method Validation
4.6. Determination of Enantiomers in Commercial Tablets
4.7. Data Evaluation
4.8. Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chankvetadze, B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Analyt. Chem. 2020, 122, 115709. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Saito, M.; Yashima, E.; Okamoto, Y. Enantioseparation using selected polysaccharides as chiral buffer additives in capillary electrophoresis. J. Chromatogr. A 1997, 773, 331–338. [Google Scholar] [CrossRef]
- Berthod, A. Chiral Recognition in Separation Methods; Springer: Berlin/Heidelberg, Germeny, 2010. [Google Scholar]
- Ikai, T.; Okamoto, Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem. Rev. 2009, 109, 6077–6101. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J. Chromatogr. A 2012, 1269, 26–51. [Google Scholar] [CrossRef]
- Shen, J.; Ikai, T.; Okamoto, Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J. Chromatogr. A 2014, 1363, 51–61. [Google Scholar] [CrossRef]
- Niedermeier, S.; Matarashvili, I.; Chankvetadze, B.; Scriba, G.K.E. Simultaneous determination of dextromepromazine and related substances 2-methoxyphenothiazine and levomepromazine sulfoxide in levomepromazine on a cellulose tris(4-methylbenzoate) chiral column. J. Pharm. Biomed. Anal. 2018, 158, 294–299. [Google Scholar] [CrossRef]
- Okamoto, Y.; Aburatani, R.; Hatada, K. Cellulose tribenzoate derivates as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. 1987, 389, 95–102. [Google Scholar] [CrossRef]
- Francotte, E.; Huynh, D. Immobilized halogenophenylcarbamate derivatives of cellulose as novel stationary phases for enantioselective drug analysis. J. Chromatogr. A 2002, 27, 421–429. [Google Scholar] [CrossRef]
- Francotte, E.; Zhang, T. Preparation and evaluation of immobilized 4-methylbenzoylcellulose stationary phases for enantioselective separations. J. Chromatogr. A 2016, 1467, 214–220. [Google Scholar] [CrossRef]
- Geryk, R.; Kalíková, K.; Vozka, J.; Plecitá, D.; Schmid, M.G.; Tesařová, E. Enantioselective potential of chiral stationary phases based on immobilized polysaccharides in reversed phase mode. J. Chromatogr. A 2014, 1363, 155–161. [Google Scholar] [CrossRef]
- Bezhitashvili, L.; Bardavelidze, A.; Ordjonikidze, T.; Chankvetadze, L.; Chity, M.; Farkas, T.; Chankvetadze, B. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. J. Chromatogr. A 2017, 1482, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bezhitashvili, L.; Bardavelidze, A.; Mskhiladze, A.; Gumustas, M.; Ozkan, S.A.; Volonterio, A.; Farkas, T.; Chankvetadze, B. Application of cellulose 3,5-dichlorophenylcarbamate covalently immobilized on superficially porous silica for the separation of enantiomers in high-performance liquid chromatography. J. Chromatogr. A 2018, 1571, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 1996, 68, 3498–3501. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Ikai, T.; Yamamoto, C.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on monolithic silica columns containing a covalently attached 3,5-dimethylphenylcarbamate derivative of cellulose. J. Chromatogr. A 2004, 1042, 55–60. [Google Scholar] [CrossRef]
- Tsioupi, D.A.; Stefan-Vanstaden, R.-I.; Kapnissi-Christodoulou, C.P. Chiral selectors in CE: Recent developments and applications. Electrophoresis 2013, 34, 178–204. [Google Scholar] [CrossRef]
- Nishi, H. Enantiomer separation of basic drugs by capillary electrophoresis using ionic and neutral polysaccharides as chiral selectors. J. Chromatogr. A 1996, 735, 345–351. [Google Scholar] [CrossRef]
- Gotti, R.; Cavrini, V.; Andrisano, V.; Mascellani, G. Dermatan sulfate as useful chiral selector in capillary electrophoresis. J. Chromatogr. A 1998, 814, 205–211. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, Y.; Chen, J.; Xu, G.; Yu, T.; Hua, X.; Zhang, J. Investigation of chondroitin sulfate D and chondroitin sulfate E as novel chiral selectors in capillary electrophoresis. Anal. Bioanal. Chem. 2014, 406, 1557–1566. [Google Scholar] [CrossRef]
- Aguda, A.H.; Panwar, P.; Du, X.; Nguyen, N.T.; Brayer, G.D.; Brömme, D. Structural basis of collagen fiber degradation by cathepsin K. Proc. Natl. Acad. Sci. USA 2014, 111, 17474–17479. [Google Scholar] [CrossRef] [Green Version]
- El Deeb, S.; Ma, B.N.; Gust, R. Development and validation of a LC method for the separation and determination of the anticancer-active Fe(III) (4-methoxy-salophene) using the new second-generation monolith. J. Sep. Sci. 2012, 35, 3434–3438. [Google Scholar] [CrossRef]
- Kaminski, L.; El Deeb, S.; Wätzig, H. Repeatability of monolithic HPLC columns while using a flow program. J. Sep. Sci. 2008, 31, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- El Deeb, S.; Preu, L.; Wätzig, H. A strategy to develop fast RP-HPLC methods using monolithic silica columns. J. Sep. Sci. 2007, 30, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Mallik, R.; Hage, D.S. High-performance affinity monolith chromatography: Development and evaluation of human serum albumin columns. J. Pharm. Biomed. Anal. 2008, 46, 820–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallik, R.; Jiang, T.; Hage, D.S. Development of an affinity silica monolith containing human serum albumin for chiral separations. Anal. Chem. 2004, 76, 7013–7022. [Google Scholar] [CrossRef] [PubMed]
- Pfaunmiller, E.L.; Hartmann, M.; Dupper, C.M.; Soman, S.; Hage, D.S. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography. J. Chromatogr. A 2012, 1269, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Pfaunmiller, E.L.; Paulemond, M.L.; Dupper, C.M.; Hage, D.S. Affinity monolith chromatography: A review of principles and recent analytical applications. Anal. Bioanal. Chem. 2013, 405, 2133–2145. [Google Scholar] [CrossRef] [Green Version]
- Gotti, R.; Fiori, J.; Calleri, E.; Temporini, C.; Lubda, D.; Massolini, G. Chiral capillary liquid chromatography based on penicillin G acylase immobilized on monolithic epoxy silica column. J. Chromatogr. A 2012, 1234, 45–49. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Tan, G.; Zhang, X.; Zhu, Z.; Chai, Y. Molecular modeling study of chiral separation and recognition mechanism of β-adrenergic antagonists by capillary electrophoresis. Int. J. Mol. Sci. 2012, 13, 710–725. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Wang, X.; Yu, J.; Song, Y.; Guo, X. Enantioseparation and molecular modeling study of five β-adrenergic blockers on Chiralpak IC column. Chirality 2019, 31, 502–512. [Google Scholar] [CrossRef]
- Karlsson, A.; Nystrom, A. Addition of organic modifiers to control retention order of enantiomers of dihydropyridines on chiral-AGP. Anal. Chem. 2001, 53, 135–139. [Google Scholar] [CrossRef]
- Jibuti, G.; Mskhiladze, A.; Takaishvili, N.; Karchkhadze, M.; Chankvetadze, L.; Farkas, T.; Chankvetadze, B. HPLC separation of dihydropyridine derivatives enantiomers with emphasis on elution order using polysaccharide-based chiral columns. J. Sep. Sci. 2012, 35, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, Y.; Zhou, L.; Yu, J.; Wang, J.; Guo, X. Study of the enantiomeric separation of the anticholinergic drugs on two immobilized polysaccharide-based chiral stationary phases by HPLC and the possible chiral recognition mechanisms. Electrophoresis 2018, 39, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C. Stereolabile chiral compounds: Analysis by dynamic chromatography and stopped-flow methods. Chem. Soc. Rev. 2005, 34, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Sabia, R.; Ciogli, A.; Pierini, M.; Gasparrini, F.; Villani, C. Dynamic high performance liquid chromatography on chiral stationary phases. Low temperature separation of the interconverting enantiomers of diazepam, flunitrazepam, prazepam and tetrazepam. J. Chromatogr. A 2014, 1363, 144–149. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liu, Y.; Sun, C.; Wang, X.; Pham-Huy, C. Effect of temperature on enantiomer separation of oxzepam and lorazepam by high-performance liquid chromatography on a β-cyclodextrin derivatized bonded chiral stationary phase. J. Chromatogr. Sci. 2004, 42, 62–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiko, N.A.; Vchislo, N.V.; Stepanova, L.G.; Larina, L.I. Condensation of 2-alkoxypropenals with N,N-and N,O-1,2-binucleophiles. A route to 2-(1’-alkoxyvinyl)imidazolidines and -oxazolidines. Chem. Heterocycl. Compd. 2008, 44, 1466–1471. [Google Scholar] [CrossRef]
- Tabani, H.; Mahyari, M.; Sahragard, A.; Fakhari, A.R.; Shaabani, A. Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral drugs by capillary electrophoresis. Electrophoresis 2015, 36, 305–311. [Google Scholar] [CrossRef]
- Amut, E.; Fu, Q.; Fang, Q.; Liu, R.; Xiao, A.; Zeng, A.; Chang, C. In situ polymerization preparation of chiral molecular imprinting polymers monolithic column for amlodipine and its recognition properties study. J. Polym. Res. 2010, 17, 401–409. [Google Scholar] [CrossRef]
- Zhu, B.; Zhao, F.; Yu, J.; Wang, Z.; Song, Y.; Li, Q. Chiral separation and a molecular modeling study of eight azole antifungals on the cellulose tris(3,5-dichlorophenylcarbamate) chiral stationary phase. N. J. Chem. 2018, 42, 13421–13429. [Google Scholar] [CrossRef]
- Yashima, E.; Yamada, M.; Kaida, Y.; Okamoto, Y. Computational studies on chiral discrimination mechanism of cellulose trisphenylcarbamate. J. Chromatogr. A 1995, 694, 347–354. [Google Scholar] [CrossRef]
- Szabó, Z.-I.; Tóth, G.; Völgyi, G.; Komjáti, B.; Hancu, G.; Szente, L.; Sohajda, T.; Béni, S.; Muntean, D.-L.; Noszál, B. Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling. J. Pharm. Biomed. Anal. 2016, 117, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Peluso, P.; Dessì, A.; Dallocchio, R.; Mamane, V.; Cossu, S. Recent studies of docking and molecular dynamics simulation for liquid-phase enantioseparations. Electrophoresis 2019, 40, 1881–1896. [Google Scholar] [CrossRef] [PubMed]
- Sardella, R.; Camaioni, E.; Macchiarulo, A.; Gioiello, A.; Marinozzi, M.; Carotti, A. Computational studies in enantioselective liquid chromatography: Forty years of evolution in docking- and molecular dynamics-based simulations. Trends Anal. Chem. 2020, 122, 115703. [Google Scholar] [CrossRef]
- Ali, I.; Suhail, M.; Asnin, L. Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP. Chirality 2018, 30, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Raikar, P.; Gurupadayya, B.; Mandal, S.P.; Narhari, R.; Subramanyam, S.; Srinivasu, G.; Rajan, S.; Saikumar, M.; Koganti, S. Bioanalytical chiral chromatographic technique and docking studies for enantioselective separation of meclizine hydrochloride: Application to pharmacokinetic study in rabbits. Chirality 2020, 32, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
Parameter | AML | VER |
---|---|---|
(min) | 2.2 ± 3.3 × 10−3 | 2.2 ± 2.0 × 10−3 |
(min) | 3.2 ± 3.7 × 10−2 | 3.6 ± 0.2 |
Rs | 3.2 ± 8.5 × 10−2 | 3.6 ± 8.5 × 10−2 |
1.4 ± 3.0 × 10−3 | 1.4 ± 3.0 × 10−3 | |
2.5 ± 7.4 × 10−2 | 2.9 ± 0.2 | |
1.8 ± 2.8 × 10−2 | 2.1 ± 0.1 | |
4532 ± 408 | 4407 ± 368 | |
1049 ± 92 | 589 ± 36 |
Parameter | AML | VER | ||
---|---|---|---|---|
Range (µg/mL) | 50–120 | 50–120 | 50–200 | 50–200 |
Linearity (R2) | 0.9995 | 0.9985 | 0.9989 | 0.9988 |
Regression | y = 95.3 × 103 x + 132.6 × 104 | y = 102.9 × 103 x − 373.7 × 104 | y = 90.5 × 103 x + 147.5 × 104 | y = 80.8 × 103 x − 102.3 × 104 |
LOD a (µg/mL) | 2 | 3 | 4 | 6 |
LOQ b (µg/mL) | 6 | 10 | 11 | 17 |
Intraday precision * | 1.0–1.3% | 1.0–1.3% | 0.5–1.2% | 0.5–1.2% |
Interday precision ** | 1.2–1.8% | 1.2–1.8% | 1.1–1.2% | 1.1–1.2% |
Accuracy | 99–102% | 98–102% | 95–102% | 98–104% |
Enantiomer | Type of Interaction | Functional Group | Distance (Å) | ΔG a (kcal/mol) | ΔΔG b (kcal/mol) |
---|---|---|---|---|---|
R-(+)-amlodipine | Electrostatic * | S-O···N | 4.42 | −4.84 | 0.96 |
Electrostatic * | -O···N | 4.48 | |||
Hydrogen bond | -OH···O- | 2.09 | |||
Hydrogen bond | -O-···HN | 2.13 | |||
Hydrogen bond | S=O···HN | 1.80 | |||
Hydrogen bond | S=O···HN | 2.33 | |||
S-(−)-amlodipine | Electrostatic * | S=O···N | 3.71 | −3.88 | |
Hydrogen bond | -O-···HN | 2.03 | |||
Hydrogen bond | S=O···HN | 1.61 | |||
Electrostatic ** | S-O···chlorophenyl ring | 3.59 | |||
R-(+)−verapamil | Hydrogen bond | -O-···HN | 2.20 | −3.81 | 0.73 |
π-Sulfur | S···dimetoxyphenyl ring | 5.92 | |||
π-Sulfur | S···dimetoxyphenyl ring | 5.53 | |||
S-(−)-verapamil | Hydrogen bond | S=O···HN | 2.35 | −3.08 | |
Electrostatic * | S-O···N | 4.53 | |||
π-Sulfur | S···dimetoxyphenyl ring | 4.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratih, R.; Wätzig, H.; Azminah, A.; Asmari, M.; Peters, B.; El Deeb, S. Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation. Pharmaceuticals 2021, 14, 98. https://doi.org/10.3390/ph14020098
Ratih R, Wätzig H, Azminah A, Asmari M, Peters B, El Deeb S. Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation. Pharmaceuticals. 2021; 14(2):98. https://doi.org/10.3390/ph14020098
Chicago/Turabian StyleRatih, Ratih, Hermann Wätzig, Azminah Azminah, Mufarreh Asmari, Benjamin Peters, and Sami El Deeb. 2021. "Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation" Pharmaceuticals 14, no. 2: 98. https://doi.org/10.3390/ph14020098
APA StyleRatih, R., Wätzig, H., Azminah, A., Asmari, M., Peters, B., & El Deeb, S. (2021). Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation. Pharmaceuticals, 14(2), 98. https://doi.org/10.3390/ph14020098