Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties
Abstract
:1. Introduction
2. Results
2.1. Liquid and Vapor Phases EOs Chemical Composition
2.2. Antibacterial Activities of P. Cembra, P. Mughus, P. Abies, and A. Alba EOs
2.3. Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
4.3. Headspace GC-MS Analysis
4.4. Antibacterial Activities of the Pinaceae Essential Oils
4.4.1. Bacterial Strains
4.4.2. Minimum Inhibitory Concentration (MIC)
4.4.3. Minimum Bactericidal Concentration (MBC)
4.4.4. Agar Diffusion Method
4.4.5. Vapor Phase Test (VPT)
4.5. Antioxidant Activity
4.5.1. DPPH Scavenging Activity Assay
4.5.2. ABTS Radical Scavenging Assay
4.5.3. IC50 and TEAC Calculation
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardini, S.; Tiezzi, A.; Masci, V.L.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Kamiie, Y.; Sagisaka, M.; Nagaki, M. Essential oil composition of Lavandula angustifolia “Hidcote”: Comparison of hydrodistillation and supercritical fluid extraction methods. Trans. Mater. Res. Soc. Jpn. 2014, 39, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016, 21, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elyemni, M.; Louaste, B.; Nechad, I.; Elkamli, T.; Bouia, A.; Taleb, M.; Chaouch, M.; Eloutassi, N. Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Sci. World J. 2019, 2019, 3659432. [Google Scholar] [CrossRef] [Green Version]
- Garzoli, S.; Božović, M.; Baldisserotto, A.; Sabatino, M.; Cesa, S.; Pepi, F.; Vicentini, C.B.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Foeniculum vulgare Miller—new approaches. Nat. Prod. Res. 2017, 32, 1254–1259. [Google Scholar] [CrossRef]
- Božović, M.; Garzoli, S.; Baldisserotto, A.; Romagnoli, C.; Pepi, F.; Cesa, S.; Vertuani, S.; Manfredini, S.; Ragno, R. Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Ind. Crop. Prod. 2018, 117, 317–321. [Google Scholar] [CrossRef]
- Hendawy, S.; El Gendy, A.; Omer, E.; Pistelli, L.; Pistelli, L. Growth, Yield and Chemical Composition of Essential Oil of Mentha piperita var. multimentha Grown Under Different Agro-ecological Locations in Egypt. J. Essent. Oil Bear. Plants 2018, 21, 23–39. [Google Scholar] [CrossRef]
- Chen, S.-X.; Yang, K.; Xiang, J.-Y.; Raymond Kwaku, O.; Han, J.-X.; Zhu, X.-A.; Huang, Y.-T.; Liu, L.-J.; Shen, S.-B.; Li, H.-Z.; et al. Comparison of Chemical Compositions of the Pepper EOs From Different Cultivars and Their AChE Inhibitory Activity. Nat. Prod. Commun. 2020, 15, 1934578X20971469. [Google Scholar]
- Edris, A.E. Pharmaceutical and therapeutic Potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-a review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. BioMed Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef]
- Basholli-Salihu, M.; Schuster, R.; Hajdari, A.; Mulla, D.; Viernstein, H.; Mustafa, B.; Mueller, M. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp. Pharm. Biol. 2017, 55, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- de Lavor, É.M.; Fernandes, A.W.C.; de Andrade Teles, R.B.; Leal, A.E.B.P.; de Oliveira, R.G., Jr.; Silva, M.G.; de Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araújo, M.T.; Coutinho, H.D.M.; et al. Essential Oils and Their Major Compounds in the Treatment of Chronic Inflammation: A Review of Antioxidant Potential in Preclinical Studies and Molecular Mechanisms. Oxidative Med. Cell. Longev. 2018, 2018, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterfalvi, A.; Miko, E.; Nagy, T.; Reger, B.; Simon, D.; Miseta, A.; Czéh, B.; Szereday, L. Much More Than a Pleasant Scent: A Review on Essential Oils Supporting the Immune System. Molecules 2019, 24, 4530. [Google Scholar] [CrossRef] [Green Version]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Husnu Can Baser, K.; Buchbauer, G. Handbook of Essential Oils; Routledge: Milton Park, UK, 2015. [Google Scholar]
- Ran, J.-H.; Shen, T.-T.; Wu, H.; Gong, X.; Wang, X.-Q. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol. Phylogenetics Evol. 2018, 129, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.G. Evolution and Diversity of Woody and Seed Plants. In Plant Systematics; Elsevier: New York, NY, USA, 2019; pp. 131–165. [Google Scholar]
- Bağci, E.; Diğrak, M. Antimicrobial Activity of Essential Oils of someAbies (Fir) Species from Turkey. Flavour Fragr. J. 1996, 11, 251–256. [Google Scholar] [CrossRef]
- Hong, E.-J.; Na, K.-J.; Choi, I.-G.; Choi, K.-C.; Jeung, E.-B. Antibacterial and Antifungal Effects of Essential Oils from Coniferous Trees. Biol. Pharm. Bull. 2004, 27, 863–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lungu, C.; Tuchilus, C.; Aprotosoaie, A.C.; Oprea, A.; Malterud, K.E.; Miron, A. Chemical, Antioxidant and Antimicrobial Investigations of Pinus cembra L. Bark and Needles. Molecules 2011, 16, 7773–7788. [Google Scholar] [CrossRef] [Green Version]
- Politeo, O.; Skočibušić, M.; Maravić, A.; Ruscic, M.; Milos, M. Chemical Composition and Antimicrobial Activity of the Essential Oil of Endemic Dalmatian Black Pine (Pinus nigra ssp. dalmatica). Chem. Biodivers. 2011, 8, 540–547. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, Z.; Gao, H.; Jia, L.-R.; He, Q. Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oil from Pine Needle (Cedrus deodara). J. Food Sci. 2012, 77, C824–C829. [Google Scholar] [CrossRef]
- Ismail, A.; Hanana, M.; Gargouri, S.; Jamoussi, B.; Hamrouni, L.; Amri, I. Comparative study of two coniferous species (Pinus pinaster Aiton and Cupressus sempervirens L. var. dupreziana [A. Camus] Silba) essential oils: Chemical composition and biological activity. Chil. J. Agric. Res. 2013, 73, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Liu, Z.; Li, Z. Chemical Composition and Antioxidant Activity of Essential Oil of Six Pinus Taxa Native to China. Molecules 2015, 20, 9380–9392. [Google Scholar] [CrossRef] [Green Version]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Mihajilov-Krstev, T.; Stojanović-Radić, Z.Z.; Cvetković, V.J.; Mitrović, T.L.; Marin, P.D.; Zlatković, B.; Stojanović, G.S. Comparative study of the essential oils of four Pinus species: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crop. Prod. 2018, 111, 55–62. [Google Scholar] [CrossRef]
- Gatsing, D.; Tchakoute, V.; Ngamga, D.; Kuiate, J.; Tamokou, J.; Nji-Nkah, B.; Tchouanguep, F.; Fodouop, S. In vitro antibacterial activity of Crinum purpurascens Herb. leaf extract against the Salmonella species causing typhoid fever and its toxicological evaluation. Iran. J. Med. Sci. 2009, 34, 126–136. [Google Scholar]
- Lis, A.; Kalinowska, A.; Krajewska, A.; Mellor, K. Chemical Composition of the Essential Oils from Different Morphological Parts of Pinus cembra L. Chem. Biodivers. 2017, 14, e1600345. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, C.L.; Spac, A.; Brebu, C.M.; Miron, A.; Popa, G. Composition and antioxidant and antimicrobial activities of the essential oils of a full-grown Pinus cembra L. tree from the Calimani Mountains (Romania). J. Serb. Chem. Soc. 2013, 78, 27–37. [Google Scholar] [CrossRef]
- Chizzola, R.; Müllner, K. Variability of volatiles in Pinus cembra L. within and between trees from a stand in the Salzburg Alps (Austria) as assessed by essential oil and SPME analysis. Genet. Resour. Crop. Evol. 2020, 68, 567–579. [Google Scholar] [CrossRef]
- Nikolić, B.; Todosijevićb, M.; Ratknića, M.; Đorđevićc, I.; Stankovićd, I.; Cvetkovićd, M.D.; Marine, P.; Teševićb, V. Terpenes and n-alkanes in needles of Pinus cembra. NPC 2018, 13, 1035–1037. [Google Scholar]
- Lis, A.; Lukas, M.; Mellor, K. Comparison of Chemical Composition of the Essential Oils from Different Botanical Organs of Pinus mugo Growing in Poland. Chem. Biodivers. 2019, 16, e1900397. [Google Scholar] [CrossRef] [PubMed]
- Kurti, F.; Giorgi, A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; et al. Chemical composition, antioxidant and antimicrobial activities of essential oils of different Pinus species from Kosovo. J. Essent. Oil Res. 2019, 31, 263–275. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Karanfilova, I.C.; Panovska, T.K.; Stanoeva, I.P.; Stefova, M.; Kulevanova, S. Chemical Characterization and Antioxidant Activity of Mountain Pine (Pinus mugo Turra, Pinaceae) from Republic of Macedonia. Rec. Nat. Prod. 2019, 13, 50–63. [Google Scholar] [CrossRef]
- Stevanovic, T.; Garneau, F.-X.; Jean, F.-I.; Vilotic, D.; Petrović, S.; Ruzic, N. The essential oil composition of Pinus mugo Turra from Serbia. Flavour Fragr. J. 2004, 20, 96–97. [Google Scholar] [CrossRef]
- Radulescu, V.; Saviuc, C.; Chifiriuc, C.; Oprea, E.; Ilies, D.C.; Marutescu, L.; Lazar, V. Chemical composition and antimicrobial activity of essential oil from shoots spruce (Picea abies L.). Rev. Chim. 2011, 62, 69–72. [Google Scholar]
- Chalchat, J.-C.; Sidibé, L.; Maksimovic, Z.A.; Petrovic, S.D.; Gorunovic, M.S. Essential Oil of Abies alba Mill., Pinaceae, from the Pilot Production in Montenegro. J. Essent. Oil Res. 2001, 13, 288–289. [Google Scholar] [CrossRef]
- Wajs, A.; Urbańska, J.; Zaleśkiewicz, E.; Bonikowski, R. Composition of Essential Oil from Seeds and Cones of Abies alba. Nat. Prod. Commun. 2010, 5, 1291–1294. [Google Scholar] [CrossRef] [Green Version]
- Wajs-Bonikowska, A.; Sienkiewiczb, M.; Stobieckaa, A.; Macia, A.; Szokac, L.; Karna, E. Chemical Composition and Biological Activity of Abies alba and A. Koreana Seed and Cone Essential Oils and Characterization of Their Seed Hydrolates. Chem. Biodivers. 2015, 12, 407–418. [Google Scholar] [CrossRef]
- Tümen, I.; Hafızoğlu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and Constituents of Essential Oil from Cones of Pinaceae spp. Natively Grown in Turkey. Molecules 2010, 15, 5797–5806. [Google Scholar] [CrossRef] [Green Version]
- Sedláková, J.; Lojková, L.; Kubáň, V. Gas Chromatographic determination of monoterpenes in spruce needles (Picea abies, P. omorica, and P. pungens) after supercritical fluid extraction. Chem. Pap. 2003, 57, 359–363. [Google Scholar]
- Pereira, R.L.; Pereira, A.M.; Ferreira, M.O.S.; Fontenelle, R.; Saker-Sampaio, S.S.; Santos, H.N.; Bandeira, P.A.; Vasconcelos, M.A.N.; Queiroz, J.; Braz-Filho, R.H.; et al. Evaluation of the antimicrobial and antioxidant activity of 7-hydroxy-4′,6-dimethoxy-isoflavone and essential oil from Myroxylon peruiferum L.f. An. Acad. Bras. Ciências 2019, 91, e20180204. [Google Scholar] [CrossRef] [PubMed]
- Donadu, M.G.; Le, N.T.; Ho, D.V.; Doan, T.Q.; Le, A.T.; Raal, A.; Usai, M.; Marchetti, M.; Sanna, G.; Madeddu, S.; et al. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Haman, N.; Morozova, K.; Tonon, G.; Scampicchio, M.; Ferrentino, G. Antimicrobial Effect of Picea abies Extracts on E. coli Growth. Molecules 2019, 24, 4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartnig, T.; Still, F.; Reinthaler, F. Antimicrobial activity of the essential oil of young pine shoots (Picea abies L.). J. Ethnopharmacol. 1991, 35, 155–157. [Google Scholar] [CrossRef]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and Antimicrobial Properties of Essential Oils of Five Moroccan Pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Trajkovska-Dokic, E.; Kaftandzieva, A.; Kulevanova, S. Antimicrobial activity of needle essential oil of Pinus peuce Griseb. (Pinaceae) from Macedonian flora. Maced. Pharm. Bull. 2012, 57, 25–36. [Google Scholar] [CrossRef]
- Da Silva, A.C.R.; Lopes, P.M.; De Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
- Freitas, P.R.; De Araújo, A.C.J.; Barbosa, C.R.D.S.; Muniz, D.F.; Da Silva, A.C.A.; Rocha, J.E.; Oliveira-Tintino, C.D.D.M.; Ribeiro-Filho, J.; Da Silva, L.E.; Confortin, C.; et al. GC-MS-FID and potentiation of the antibiotic activity of the essential oil of Baccharis reticulata (ruiz & pav.) pers. and α-pinene. Ind. Crop. Prod. 2020, 145, 112106. [Google Scholar] [CrossRef]
- Hippeli, S.; Graßmann, J.; Vollmann, R.; Elstner, E.F. Latschenkieferöl: Möglicher Wirkmechanismus für antientzündliche Wirkung. Pharm. Zeitung. 2004, 149, 35–36. [Google Scholar]
- Cole, R.A.; Bansal, A.; Moriarity, D.M.; Haber, W.A.; Setzer, W.N. Chemical composition and cytotoxic activity of the leaf essential oil of Eugenia zuchowskiae from Monteverde, Costa Rica. J. Nat. Med. 2007, 61, 414–417. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Cherrat, L.; Espina, L.; Lorán, S.; Rota, C.; Pagán, R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov. Food Sci. Emerg. Technol. 2011, 12, 320–329. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical composition of the essential oil of thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Djerrad, Z.; Kadik, L.; Djouahri, A. Chemical variability and antioxidant activities among Pinus halepensis Mill. essential oils provenances, depending on geographic variation and environmental conditions. Ind. Crop. Prod. 2015, 74, 440–449. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural Monoterpenes: Much More than Only a Scent. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Turchetti, G.; Giacomello, P.; Tiezzi, A.; Masci, V.L.; Ovidi, E. Liquid and Vapour Phase of Lavandin (Lavandula × intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules 2019, 24, 2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, A.; Garzoli, S.; Sabatino, M.; Tadić, V.; Costantini, S.; Ragno, R.; Božović, M. Chemical composition and antimicrobial activity of essential oil of Helichrysum italicum (Roth) G. Don fil. (Asteraceae) from Montenegro. Nat. Prod. Res. 2020, 34, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-H.; Hsia, S.-M.; Wu, C.-H.; Ko, S.-Y.; Chen, M.Y.; Shih, Y.-H.; Shieh, T.-M.; Chuang, L.-C.; Wu, C.-Y. Evaluation of the Antibacterial Potential of Liquid and Vapor Phase Phenolic Essential Oil Compounds against Oral Microorganisms. PLoS ONE 2016, 11, e0163147. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
N° | COMPONENT 1 | LRI 2 | LRI 3 | Pc(%) 4 | Pc(%) 5 | Pm(%) 6 | Pm(%) 7 |
---|---|---|---|---|---|---|---|
1 | α-pinene | 1019 | 1021 | 44.0 | 65.6 | 16.6 | 31.6 |
2 | camphene | 1062 | 1065 | 1.6 | 2.3 | 1.6 | 2.9 |
3 | β-pinene | 1098 | 1099 | 12.5 | 12.4 | 43.3 | 42.3 |
4 | β-thujene | 1120 | 1118 | 0.3 | 0.2 | 0.3 | - |
5 | α-phellandrene | 1158 | 1160 | - | - | - | 0.7 |
6 | limonene | 1197 | 1198 | 14.8 | 8.2 | 9.5 | 7.8 |
7 | β-phellandrene | 1210 | 1207 | - | - | 16.0 | - |
8 | γ-terpinene | 1270 | 1241 | 19.7 | 11.0 | 0.3 | 13.3 |
9 | p-cymene | 1270 | 1268 | 0.1 | Tr | 0.2 | 0.2 |
10 | terpinolene | 1285 | 1282 | 0.5 | 0.2 | 2.1 | 1.1 |
11 | p-cymenene | 1431 | 1435 | - | - | 0.1 | - |
12 | copaene | 1491 | 1487 | - | - | 0.1 | - |
13 | bornyl acetate | 1571 | 1567 | - | - | 3.0 | - |
14 | thymol methyl ether | 1576 | 1575 | 1.2 | tr | - | - |
15 | β-caryophyllene | 1620 | 1619 | 0.4 | - | 3.6 | 0.1 |
16 | α-terpineol | 1655 | 1655 | 0.2 | - | 0.2 | tr |
17 | humulene | 1670 | 1667 | 0.5 | - | 1.1 | - |
18 | γ-muurolene | 1674 | 1673 | 0.4 | - | 0.3 | - |
19 | α-muurolene | 1691 | 1690 | 2.4 | - | 0.9 | - |
20 | δ-cadinene | 1760 | 1758 | 1.4 | - | 0.5 | - |
SUM | 100.0 | 99.9 | 99.7 | 100.0 | |||
Monoterpenes | 93.7 | 99.9 | 93.2 | 100.0 | |||
Sesquiterpenes | 5.1 | - | 6.5 | - | |||
Other | 1.2 | - | - | - |
N° | COMPONENT 1 | LRI 2 | LRI 3 | Pa(%) 4 | Pa(%) 5 | Aa(%) 6 | Aa(%) 7 |
---|---|---|---|---|---|---|---|
1 | santene | 980 | 984 | 0.7 | 1.9 | 1.4 | 4.2 |
2 | α-pinene | 1019 | 1021 | 20.2 | 34.5 | 30.8 | 51.3 |
3 | camphene | 1062 | 1065 | 7.2 | 10.5 | 11.2 | 16.5 |
4 | β-pinene | 1098 | 1099 | 44.7 | 43.8 | 7.5 | 7.3 |
5 | limonene | 1197 | 1198 | 14.2 | 8.0 | 32.5 | 19.0 |
6 | γ-terpinene | 1240 | 1241 | 0.3 | 0.1 | 1.1 | 1.2 |
7 | p-cymene | 1270 | 1268 | 0.2 | 0.1 | - | - |
8 | terpinolene | 1285 | 1282 | 0.6 | 0.2 | 0.5 | 0.1 |
9 | α-longipinene | 1480 | 1477 | 0.3 | - | 0.9 | - |
10 | camphor | 1506 | 1507 | 1.2 | 0.2 | - | - |
11 | bornyl acetate | 1571 | 1567 | 3.7 | 0.3 | 4.2 | 0.4 |
12 | longifolene | 1585 | 1583 | 1.1 | - | 0.6 | - |
13 | β-caryophyllene | 1620 | 1619 | 1.3 | - | 5.8 | - |
14 | α-himachalene | 1641 | 1637 | - | - | 0.3 | - |
15 | citronellol acetate | 1646 | 1644 | - | - | 0.4 | - |
16 | α-terpineol | 1655 | 1655 | 0.4 | tr | 0.2 | - |
17 | humulene | 1670 | 1667 | - | - | 1.6 | - |
18 | γ-muurolene | 1674 | 1673 | 0.4 | - | 0.3 | - |
19 | borneol | 1677 | 1675 | 2.1 | 0.2 | - | - |
20 | δ-cadinene | 1760 | 1758 | 0.9 | - | 0.6 | - |
21 | caryophyllene oxide | 1895 | 1892 | - | - | 0.1 | - |
SUM | 99.5 | 99.8 | 100.0 | 100.0 | |||
Monoterpenes | 94.8 | 97.9 | 88.4 | 95.8 | |||
Sesquiterpenes | 4.0 | 0.2 | 9.9 | - | |||
Other | 0.7 | 1.9 | 1.7 | 4.2 |
Strains | Pinus cembra | ||||
---|---|---|---|---|---|
MIC 1 | MBC 2 | MBC/MIC Ratio | IZ 3 | Vapor IZ 4 | |
E. coli | 53.12 | 53.12 | 1 | 0.00 | 0.00 |
P. fluorescens | 53.12 | 53.12 | 1 | 0.00 | 0.00 |
A. bohemicus | 26.56 | 26.56 | 1 | 17.67 ± 0.58 | 67.33 ± 2.52 |
K. marina | 53.12 | 53.12 | 1 | 9.33 ± 0.58 | 80.00 ± 0.00 |
B. cereus | 26.56 | 53.12 | 2 | 11.67 ± 1.15 | 80.00 ± 0.00 |
Strains | Pinus mugo | ||||
---|---|---|---|---|---|
MIC 1 | MBC 2 | MBC/MIC Ratio | IZ 3 | Vapor IZ 4 | |
E. coli | 52.16 | 52.16 | 1 | 9.67 ± 0.58 | 0.00 |
P. fluorescens | 52.16 | 52.16 | 1 | 0.00 | 0.00 |
A. bohemicus | 26.56 | 26.56 | 1 | 25.33 ± 4.51 | 41 ± 10.15 |
K. marina | 52.16 | 52.16 | 1 | 11.33 ± 1.15 | 80.00 ± 0.00 |
B. cereus | 26.56 | 52.16 | 2 | 15.67 ± 1.15 | 76.67 ± 5.77 |
Strains/Origin | Picea abies | ||||
---|---|---|---|---|---|
MIC 1 | MBC 2 | MBC/MIC Ratio | IZ 3 | Vapor IZ 4 | |
E. coli | 53.12 | 53.12 | 1 | 0.00 | 0.00 |
P. fluorescens | 53.12 | 53.12 | 1 | 0.00 | 0.00 |
A. bohemicus | 13.28 | 26.56 | 2 | 18.67 ± 1.53 | 76.67 ± 5.77 |
K. marina | 53.12 | 53.12 | 1 | 9.67 ± 1.15 | 80.00 ± 0.00 |
B. cereus | 26.56 | 53.12 | 2 | 11.67 ± 1.53 | 80.00 ± 0.00 |
Strains/Origin | Abies alba | ||||
---|---|---|---|---|---|
MIC 1 | MBC 2 | MBC/MIC Ratio | IZ 3 | Vapor IZ 4 | |
E. coli | 51.28 | 51.28 | 1 | 0.00 | 0.00 |
P. fluorescens | 51.28 | 51.28 | 1 | 0.00 | 0.00 |
A. bohemicus | 12.82 | 25.64 | 2 | 19.67 ± 0.58 | 80.00 ±00 |
K. marina | 51.28 | 51.28 | 1 | 7.67 ± 1.15 | 80.00 ± 00 |
B. cereus | 12.82 | 25.64 | 2 | 15.00 ± 2.65 | 66.67 ± 11.55 |
Assay | Values Expressed as | P. cembra | P. mugo | P. abies | A. alba |
---|---|---|---|---|---|
DPPH | IC50 * | 13.01 ± 0.86 | 3.08 ± 0.65 | 13.05 ± 3.09 | 7.84 ± 1.70 |
TEAC ** | 1.63 ± 0.46 | 7.65 ± 1.33 | 1.68 ± 0.64 | 3.01 ± 0.48 | |
ABTS | IC50 * | 44.90 ± 2.06 | 43.08 ±6.95 | 45.00 ± 6.26 | 44.23 ± 1.10 |
TEAC ** | 13.26 ± 1.45 | 14.01 ± 2.01 | 13.26 ± 0.52 | 13.65 ± 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals 2021, 14, 134. https://doi.org/10.3390/ph14020134
Garzoli S, Masci VL, Caradonna V, Tiezzi A, Giacomello P, Ovidi E. Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals. 2021; 14(2):134. https://doi.org/10.3390/ph14020134
Chicago/Turabian StyleGarzoli, Stefania, Valentina Laghezza Masci, Valentina Caradonna, Antonio Tiezzi, Pierluigi Giacomello, and Elisa Ovidi. 2021. "Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties" Pharmaceuticals 14, no. 2: 134. https://doi.org/10.3390/ph14020134
APA StyleGarzoli, S., Masci, V. L., Caradonna, V., Tiezzi, A., Giacomello, P., & Ovidi, E. (2021). Liquid and Vapor Phase of Four Conifer-Derived Essential Oils: Comparison of Chemical Compositions and Antimicrobial and Antioxidant Properties. Pharmaceuticals, 14(2), 134. https://doi.org/10.3390/ph14020134