Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Exploring the X-ray Crystallographic Data of Known Preclinical Fusion Inhibitors
2.2. Molecular Surface Analysis
2.3. Molecular Dynamic Simulations of the Phase II Clinical Candidate JNJ-53718678
2.4. Recross Docking Studies of (Pre)Clinical Candidates at the RSV F Protein
2.5. Molecular Docking Studies of the Benzimidazole-Based Derivatives 1–158 as Anti-RSV Agents
2.6. Structure-Based Pharmacophore Analysis
2.7. In Silico Evaluation of ADME Properties
3. Material and Methods
3.1. Ligand and Protein Preparation
3.2. Molecular Surface Analysis
3.3. Molecular Dynamic of JNJ-53718678
3.4. Molecular Docking Studies
3.5. Structure-Based Pharmacophore Analysis
3.6. In Silico Evaluation ADME Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Strategy for the Global Respiratory Syncytial Virus Surveillance Project Based on the Influenza Platform; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/who-strategy-for-global-respiratory-syncytial-virus-surveillance-project-based-on-the-influenza-platform (accessed on 2 December 2019).
- Domachowske, J.B.; Anderson, E.J.; Goldstein, M. The Future of Respiratory Syncytial Virus Disease Prevention and Treatment. Infect. Dis. Ther. 2021, 10, 47–60. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mavunda, K.; Krilov, L.R. Current State of Respiratory Syncytial Virus Disease and Management. Infect. Dis. Ther. 2021, 10, 5–16. [Google Scholar] [CrossRef]
- Zhu, Q.; McAuliffe, J.M.; Patel, N.K.; Palmer-Hill, F.J.; Yang, C.; Liang, B.; Su, L.; Zhu, W.; Wachter, L.; Wilson, S.; et al. Analysis of Respiratory Syncytial Virus Preclinical and Clinical Variants Resistant to Neutralization by Monoclonal Antibodies Palivizumab and/or Motavizumab. J. Infect. Dis. 2011, 203, 674–682. [Google Scholar] [CrossRef]
- Yasui, Y.; Yamaji, Y.; Sawada, A.; Ito, T.; Nakayama, T. Cell Fusion Assay by Expression of Respiratory Syncytial Virus (RSV) Fusion Protein to Analyze the Mutation of Palivizumab-Resistant Strains. J. Virol. Methods 2016, 231, 48–55. [Google Scholar] [CrossRef]
- Jorquera, P.A.; Tripp, R.A. Respiratory Syncytial Virus: Prospects for New and Emerging Therapeutics. Expert Rev. Respir. Med. 2017, 11, 609–615. [Google Scholar] [CrossRef]
- Tang, W.; Li, M.; Liu, Y.; Liang, N.; Yang, Z.; Zhao, Y.; Wu, S.; Lu, S.; Li, Y.; Liu, F. Small Molecule Inhibits Respiratory Syncytial Virus Entry and Infection by Blocking the Interaction of the Viral Fusion Protein with the Cell Membrane. FASEB J. 2019, 33, 4287–4299. [Google Scholar] [CrossRef]
- Walsh, E.E.; Hruska, J. Monoclonal Antibodies to Respiratory Syncytial Virus Proteins: Identification of the Fusion Protein. J. Virol. 1983, 47, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockerill, G.S.; Good, J.A.D.; Mathews, N. State of the Art in Respiratory Syncytial Virus Drug Discovery and Development. J. Med. Chem. 2019, 62, 3206–3227. [Google Scholar] [CrossRef] [PubMed]
- Dubovi, E.J.; Geratz, J.D.; Tidwell, R.R. Inhibition of Respiratory Syncytial Virus by Bis(5-Amidino-2-Benzimidazolyl)Methane. Virology 1980, 103, 502–504. [Google Scholar] [CrossRef]
- Boido, V.; Paglietti, G.; Tonelli, M.; Vitale, G. Non-nucleoside benzimidazoles as antiviral drugs against HCV and RSV infections. In RNA-Viruses. Enzymatic and Receptor Inhibitors; Università degli Studi di Cagliari: Cagliari, Italy, 2009; pp. 40–91. ISBN 978-81-308-0329-6. [Google Scholar]
- Cianci, C.; Langley, D.R.; Dischino, D.D.; Sun, Y.; Yu, K.L.; Stanley, A.; Roach, J.; Li, Z.; Dalterio, R.; Colonno, R.; et al. Targeting a Binding Pocket within the Trimer-of-Hairpins: Small-Molecule Inhibition of Viral Fusion. Proc. Natl. Acad. Sci. USA 2004, 101, 15046–15051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battles, M.B.; Langedijk, J.P.; Furmanova-Hollenstein, P.; Chaiwatpongsakorn, S.; Costello, H.M.; Kwanten, L.; Vranckx, L.; Vink, P.; Jaensch, S.; Jonckers, T.H.M.; et al. Molecular Mechanism of Respiratory Syncytial Virus Fusion Inhibitors. Nat. Chem. Biol. 2016, 12, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Heylen, E.; Neyts, J.; Jochmans, D. Drug Candidates and Model Systems in Respiratory Syncytial Virus Antiviral Drug Discovery. Biochem. Pharmacol. 2017, 127, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Behzadi, M.A.; Leyva-Grado, V.H. Overview of Current Therapeutics and Novel Candidates against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front. Microbiol. 2019, 10, 1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Li, C.; Chen, D.; Zheng, X.; Yun, H.; Gao, L.; Shen, H.C. Discovery of Methylsulfonyl Indazoles as Potent and Orally Active Respiratory Syncytial Virus(RSV) Fusion Inhibitors. Eur. J. Med. Chem. 2017, 138, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Pribut, N.; Kaiser, T.M.; Wilson, R.J.; Jecs, E.; Dentmon, Z.W.; Pelly, S.C.; Sharma, S.; Bartsch, P.W.; Burger, P.B.; Hwang, S.S.; et al. Accelerated Discovery of Potent Fusion Inhibitors for Respiratory Syncytial Virus. ACS Infect. Dis. 2020, 6, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Nam, H.H.; Adams, P.L.; Krafft, A.; Ince, W.L.; El-Kamary, S.S.; Sims, A.C. Advances in Respiratory Virus Therapeutics–A Meeting Report from the 6th Isirv Antiviral Group Conference. Antivir. Res. 2019, 167, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, G.S. JNJ-5371678, Defining a Role for Fusion Inhibitors in the Treatment of Respiratory Syncytial Virus. J. Med. Chem. 2020, 63, 8043–8045. [Google Scholar] [CrossRef]
- DeVincenzo, J.; Tait, D.; Efthimiou, J.; Mori, J.; Kim, Y.I.; Thomas, E.; Wilson, L.; Harland, R.; Mathews, N.; Cockerill, S.; et al. A Randomized, Placebo-Controlled, Respiratory Syncytial Virus Human Challenge Study of the Antiviral Efficacy, Safety, and Pharmacokinetics of RV521, an Inhibitor of the RSV-f Protein. Antimicrob. Agents Chemother. 2020, 64, e01884-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichero, E.; Tonelli, M.; Novelli, F.; Tasso, B.; Delogu, I.; Loddo, R.; Bruno, O.; Fossa, P. Benzimidazole-Based Derivatives as Privileged Scaffold Developed for the Treatment of the RSV Infection: A Computational Study Exploring the Potency and Cytotoxicity Profiles. J. Enzym. Inhib. Med. Chem. 2017, 32, 375–402. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Novelli, F.; Tasso, B.; Vazzana, I.; Sparatore, A.; Boido, V.; Sparatore, F.; La Colla, P.; Sanna, G.; Giliberti, G.; et al. Antiviral activity of benzimidazole derivatives. III. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents. Bioorganic Med. Chem. 2014, 22, 4893–4909. [Google Scholar] [CrossRef]
- Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; et al. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorganic Med. Chem. 2010, 18, 2937–2953. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Paglietti, G.; Boido, V.; Sparatore, F.; Marongiu, F.; Marongiu, E.; La Colla, P.; Loddo, R. Antiviral activity of benzimidazole derivatives. I. Antiviral activity of 1-substituted-2-[(benzotriazol-1/2-yl)methyl]benzimidazoles. Chem. Biodivers. 2008, 5, 2386–2401. [Google Scholar] [CrossRef]
- van de Waterbeemd, H.; Gifford, E. ADMET in Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The Protein Data Bank. Acta Crystallogr. Sect. D 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Roymans, D.; Alnajjar, S.S.; Battles, M.B.; Sitthicharoenchai, P.; Furmanova-Hollenstein, P.; Rigaux, P.; Berg, J.V.; den Kwanten, L.; Ginderen, M.V.; Verheyen, N.; et al. Therapeutic Efficacy of a Respiratory Syncytial Virus Fusion Inhibitor. Nat. Commun. 2017, 8, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockerill, G.S.; Angell, R.M.; Bedernjak, A.; Chuckowree, I.; Fraser, I.; Gascon-Simorte, J.; Gilman, M.S.A.; Good, J.A.D.; Harland, R.; Johnson, S.M.; et al. Discovery of Sisunatovir (RV521), an Inhibitor of Respiratory Syncytial Virus Fusion. J. Med. Chem. 2021, 64, 3658–3676. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
- Daoud, I.; Melkemi, N.; Salah, T.; Ghalem, S. Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Comput. Biol. Chem. 2018, 74, 304–326. [Google Scholar] [CrossRef]
- Chen, Y.C. Beware of Docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [Green Version]
- 33 LeadIT by BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augudtin, Germany. Available online: www.biosolveit.de (accessed on 3 December 2021).
- Chemical Computing Group ULC. Molecular Operating Environment (MOE); Chemical Computing Group ULC: Montreal, QC, Canada, 2021; Available online: http://www.chemcomp.com/ (accessed on 3 December 2021).
- The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC. Available online: https://pymol.org/2/ (accessed on 3 December 2021).
- Vendeville, S.; Tahri, A.; Hu, L.; Demin, S.; Cooymans, L.; Vos, A.; Kwanten, L.; Van den Berg, J.; Battles, M.B.; McLellan, J.S.; et al. Discovery of 3-({5-Chloro-1-[3-(methylsulfonyl)propyl]-1H-indol-2-yl}methyl)-1-(2,2,2-trifluoroethyl)-1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (JNJ-53718678), a Potent and Orally Bioavailable Fusion Inhibitor of Respiratory Syncytial Virus. J. Med. Chem. 2020, 63, 8046–8058. [Google Scholar] [CrossRef] [PubMed]
- Francesconi, V.; Cichero, E.; Kanov, E.V.; Laurini, E.; Pricl, S.; Gainetdinov, R.R.; Tonelli, M. Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human Taar1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals 2020, 13, 391. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Espinoza, S.; Gainetdinov, R.R.; Cichero, E. Novel Biguanide-Based Derivatives Scouted as TAAR1 Agonists: Synthesis, Biological Evaluation, ADME Prediction and Molecular Docking Studies. Eur. J. Med. Chem. 2017, 127, 781–792. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.; Matter, H.; Hessler, G.; Czich, A. Predictive in silico off-target profiling in drug discovery. Future Med. Chem. 2014, 6, 295–317. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucl. Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [Green Version]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef]
- Molinspiration Cheminformatics Free Web Services. Slovensky Grob, Slovakia. Available online: https://www.molinspiration.com (accessed on 3 December 2021).
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol. Biol. 2017, 1607, 627–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.; Park, R.; Kim, D.S. Molecular surfaces on proteins via beta shapes. Comput. Aided Des. 2007, 39, 1042–1057. [Google Scholar] [CrossRef]
- Lee, B.; Richards, F.M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55, 397–400. [Google Scholar] [CrossRef]
- Richards, F.M. Areas, Volumes, Packing and Protein Structure. Annu. Rev. Biophys. Bioeng. 1977, 6, 151–176. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.L. Solvent-Accessible Surfaces of Proteins and Nucleic Acids. Science 1983, 221, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Rocchia, W.; Sridharan, S.; Nicholls, A.; Alexov, E.; Chiabrera, A.; Honig, B. Rapid Grid-Based Construction of the Molecular Surface and the Use of Induced Surface Charge to Calculate Reaction Field Energies: Applications to the Molecular Systems and Geometric Objects. J. Comput. Chem. 2002, 23, 128–137. [Google Scholar] [CrossRef]
- Bond, S.D.; Leimkuhler, B.J.; Laird, B.B. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics. J. Comput. Phys. 1999, 151, 114–134. [Google Scholar] [CrossRef] [Green Version]
- Sturgeon, J.B.; Laird, B.B. Symplectic Algorithm for Constant-Pressure Molecular Dynamics Using a Nosé-Poincaré Thermostat. J. Chem. Phys. 2000, 112, 3474–3482. [Google Scholar] [CrossRef] [Green Version]
- Righetti, G.; Tonelli, M.; Fossa, P.; Cichero, E. Exploring the Selectivity Profile of Sigma Receptor Ligands by Molecular Docking and Pharmacophore Analyses. Med. Chem. 2021, 17, 1151–1165. [Google Scholar] [CrossRef]
- Chaube, U.; Chhatbar, D.; Bhatt, H. 3D-QSAR, Molecular Dynamics Simulations and Molecular Docking Studies of Benzoxazepine Moiety as MTOR Inhibitor for the Treatment of Lung Cancer. Bioorganic Med. Chem. Lett. 2016, 26, 864–874. [Google Scholar] [CrossRef]
- Böhm, H.J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 1992, 6, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.J. The development of a simple empirical scoring function to estimate the binding constant for a protein–ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des. 1994, 8, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bichmann, L.; Wang, Y.T.; Fischer, W.B. Docking assay of small molecule antivirals to p7 of HCV. Comput. Biol. Chem. 2014, 53, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Reulecke, I.; Lange, G.; Albrecht, J.; Klein, R.; Rarey, M. Towards an integrated description of hydrogen bonding and dehydration: Decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem 2008, 3, 885–897. [Google Scholar] [CrossRef]
- Schneider, N.; Hindle, S.; Lange, G.; Klein, R.; Albrecht, J.; Briem, H.; Beyer, K.; Claußen, H.; Gastreich, M.; Lemmen, C.; et al. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J. Comput. Aided Mol. Des. 2012, 26, 701–723. [Google Scholar] [CrossRef] [PubMed]
- Advanced Chemistry Development, Inc. ACD/Percepta Platform; v14.0.0; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2015; Available online: www.acdlabs.com (accessed on 3 December 2021).
PDB Code | Inhibitor | Chemical Structure | Resolution | Reference |
---|---|---|---|---|
5KWW | JNJ-53718678 | 2.50 Å | [27] | |
5EA3 | JNJ-2408068 | 2.75 Å | [13] | |
7KQD | RV521 | 2.94 Å | [28] | |
5EA5 | TMC-353121 | 3.05 Å | [13] | |
5EA6 | BTA-9881 | 2.75 Å | [13] | |
5EA7 | BMS-433771 | 2.85 Å | [13] |
ID | Score | Radius (Å) | Expression |
---|---|---|---|
F1 | 83% | 1.54 | PiN |
F2 | 83% | 1.93 | PiN |
F3 | 100% | 1.21 | Aro/Hyd |
F4 | 83% | 1.31 | Hyd |
F5 | 83% | 1.35 | Aro/Hyd |
F6 | 83% | 1.43 | Aro/Hyd |
Comp. | cLogP a | MW b | HBA c | HBD d | nRot_bond e | TPSA f |
---|---|---|---|---|---|---|
118 | 4.77 | 400.52 | 6 | 0 | 4 | 51.77 |
120 | 3.41 | 354.84 | 6 | 0 | 5 | 51.77 |
126 | 5.75 | 448.99 | 6 | 0 | 5 | 51.77 |
157 | 3.08 | 334.82 | 6 | 0 | 5 | 51.77 |
158 | 5.56 | 428.57 | 6 | 0 | 5 | 51.77 |
141 | 5.56 | 414.55 | 6 | 0 | 5 | 51.77 |
148 | 5.98 | 448.99 | 6 | 0 | 5 | 51.77 |
BMS-433771 | 1.95 | 363.41 | 7 | 1 | 6 | 74.49 |
TMC-353121 | 3.45 | 574.84 | 9 | 5 | 13 | 106.84 |
JNJ-2408068 | 2.33 | 394.51 | 7 | 4 | 6 | 92.23 |
JNJ-53718678 | 3.36 | 500.92 | 7 | 0 | 8 | 83.89 |
GS-5806 | 1.66 | 532.06 | 10 | 3 | 5 | 134.30 |
RV521 | 3.35 | 446.44 | 5 | 2 | 7 | 64.15 |
Comp. | HIA (%) a | Vd (L/kg) b | %PPB c | LogKaHSA d | %F (oral) e |
---|---|---|---|---|---|
118 | 100 | 1.2 | 98.15 | 5.20 | 99.2 |
120 | 100 | 3.0 | 94.00 | 4.98 | 99.3 |
126 | 100 | 1.4 | 98.98 | 5.32 | 99.1 |
157 | 100 | 1.2 | 92.41 | 4.75 | 99.4 |
158 | 100 | 1.3 | 99.27 | 5.17 | 99.1 |
141 | 100 | 1.5 | 98.14 | 4.56 | 99.1 |
148 | 100 | 1.3 | 98.11 | 4.96 | 99.2 |
BMS-433771 | 100 | 1.2 | 94.63 | 4.04 | 99.4 |
TMC-353121 | 3 | 1.6 | 77.52 | 2.93 | 1.4 |
JNJ-2408068 | 71 | 1.2 | 87.61 | 3.39 | 47.1 |
JNJ-53718678 | 100 | 1.0 | 99.05 | 5.42 | 21.0 |
GS-5806 | 93 | 0.7 | 87.94 | 4.95 | 73.5 |
RV521 | 100 | 1.1 | 90.76 | 3.95 | 69.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichero, E.; Calautti, A.; Francesconi, V.; Tonelli, M.; Schenone, S.; Fossa, P. Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents. Pharmaceuticals 2021, 14, 1307. https://doi.org/10.3390/ph14121307
Cichero E, Calautti A, Francesconi V, Tonelli M, Schenone S, Fossa P. Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents. Pharmaceuticals. 2021; 14(12):1307. https://doi.org/10.3390/ph14121307
Chicago/Turabian StyleCichero, Elena, Alessio Calautti, Valeria Francesconi, Michele Tonelli, Silvia Schenone, and Paola Fossa. 2021. "Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents" Pharmaceuticals 14, no. 12: 1307. https://doi.org/10.3390/ph14121307
APA StyleCichero, E., Calautti, A., Francesconi, V., Tonelli, M., Schenone, S., & Fossa, P. (2021). Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents. Pharmaceuticals, 14(12), 1307. https://doi.org/10.3390/ph14121307