Stability of Rosmarinic Acid and Flavonoid Glycosides in Liquid Forms of Herbal Medicinal Products—A Preliminary Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sage Tincture (ST)
2.2. Sage and Thyme Liquid Extract (STE)
2.3. Peppermint Tincture (PT)
2.4. Thyme Syrup (TS)
2.5. Stability of Polyphenols and HMP Expiration Dates
3. Materials and Methods
3.1. Solvents and Chemicals
3.2. Reference Compounds and Standard Solutions
3.3. HMPs and Sample Preparation
3.4. HPLC-DAD Conditions and Quantification
3.5. Stability Tests and Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Medicines Agency. Guideline on Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products. 2011. Available online: https://www.ema.europa.eu/documents/scientific-guideline/guideline-quality-herbal-medicinal-products-traditional-herbal-medicinal-products-revision-2_en.pdf (accessed on 23 July 2021).
- Kumadoh, D.; Ofori-Kwakye, K. Dosage forms of herbal medicinal products and their stability considerations—An overview. J. Crit. Rev. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; ISBN 928-718-505-0. [Google Scholar]
- Bodalska, A.; Kowalczyk, A.; Fecka, I. Quality of herbal medicinal products based on sage and thyme preparations. Acta Pol. Pharm. 2021, 78, 539–561. [Google Scholar] [CrossRef]
- Luo, C.; Zou, L.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Jin, Y.; Sun, S. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front. Pharmacol. 2020, 11, 153. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, M.R.; Sajid, M.W.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.; Kim, M.-Y.; Cho, J. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef]
- Liu, J.; Huang, H.; Huang, Z.; Ma, Y.; Zhang, L.; He, Y.; Li, D.; Liu, W.; Goodin, S.; Zhang, K.; et al. Eriocitrin in combination with resveratrol ameliorates LPS-induced inflammation in RAW264.7 cells and relieves TPA-induced mouse ear edema. J. Funct. Food 2019, 56, 321–332. [Google Scholar] [CrossRef]
- Karpiński, T.; Adamczak, A.; Ożarowski, M. Antibacterial activity of apigenin, luteolin and their C-glucosides. In Proceedings of the 5th International Electronic Conference on Medicinal Chemistry, Online, 1–30 November 2019. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Ma, L.; Wang, H.; Wu, S.; Huang, H.; Gu, Z.; Jiang, J.; Li, Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J. Nat. Med. 2019, 73, 487–496. [Google Scholar] [CrossRef]
- Engelbertz, J.; Lechtenberg, M.; Studt, L.; Hensel, A.; Verspohl, E. Bioassay-guided fraction of a thymol-deprived hydrophilic thyme extract and its antispasmodic effect. J. Ethnopharmacol. 2012, 141, 848–853. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. J. Agric. Food Chem. 2021, 69, 1441–1454. [Google Scholar] [CrossRef]
- Cho, Y.-C.; Park, J.; Cho, S. Anti-Inflammatory and anti-oxidative effects of luteolin-7-O-glucuronide in LPS-stimulated murine macrophages through TAK1 inhibition and Nrf2 activation. Int. J. Mol. Sci. 2020, 21, 2007. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.; Manthey, J.; Nery, M.; Spolidorio, L.; Cesar, T. Low doses of eriocitrin attenuate metabolic impairment of glucose and lipids in ongoing obesogenic diet in mice. J. Nutr. Sci. 2020, 9, E59. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.; Manthey, J.; Nery, M.; Cesar, T. Pharmacokinetics and biodistribution of eriocitrin in rats. J. Agric. Food Chem. 2021, 69, 1796–1805. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Silva, S.; Santos-Buelga, C.; Henriques, M.; Ferreira, I. Antifungal activity against Candida species and phenolic characterization of decoction, infusion and hydroalcoholic extract of cultivated Salvia officinalis L. Planta Med. 2014, 80, P1L117. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Jiang, J.; Zhang, X.; Zhu, W. Identification of luteolin 7-O-β-d-glucuronide from Cirsium japonicum and its anti-inflammatory mechanism. J. Funct. Food 2018, 46, 521–528. [Google Scholar] [CrossRef]
- Walch, S.G.; Tinzoh, L.N.; Zimmermann, B.F.; Stühlinger, W.; Lachenmeier, D.W. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea). Front. Pharmacol. 2011, 2, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelbertz, J.; Schwenk, T.; Kinzinger, U.; Schierstedt, D.; Verspohl, E. Thyme extract, but not thymol, inhibits endothelin-induced contractions of isolated rat trachea. Planta Med. 2008, 74, 1436–1440. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem. 2014, 167, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Hammad, M.; Sallal, A.K.; Darmani, H. Inhibition of Streptococcus mutans adhesion to buccal epithelial cells by an aqueous extract of Thymus vulgaris. Int. J. Dent. Hyg. 2007, 5, 232–235. [Google Scholar] [CrossRef]
- Alolofi, H.; El-Sayed, M.; Taha, S. Clinical and radiographical evaluation of propolis and Thymus vulgaris extracts compared with formocresol pulpotomy in human primary molars. BDJ Open 2016, 2, 16005. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.; Tankhaeva, L.M. Quantitative determination of phenolic compounds in Mentha piperita leaves. Chem. Nat. Compd. 2010, 46, 22–27. [Google Scholar] [CrossRef]
- Myiake, Y.; Suzuki, E.; Ohya, E.; Fukumoto, S.; Hiramitsu, M.; Sakaida, K.; Osawa, T.; Furuichi, Y. Lipid-lowering effect of eriocitrin, the main flavonoid in lemon fruit, in rats on a high-fat and high-cholesterol diet. J. Food Sci. 2006, 71, 633–637. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Choi, M.-S. Eriocitrin improves adiposity and related metabolic disorders in high-fat diet-induced obese mice. J. Med. Food 2020, 23, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.; Jurgens, H. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.; Rietjens, I. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2011, 31, 869–881. [Google Scholar] [CrossRef]
- Razboršek, M. Stability studies on trans-rosmarinic acid and GC–MS analysis of its degradation product. J. Pharm. Biomed. Sci. 2011, 55, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef] [PubMed]
- Fecka, I.; Turek, S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from lamiaceae: Peppermint, melissa, and sage. Agric. Food Chem. 2007, 55, 10908–10917. [Google Scholar] [CrossRef] [PubMed]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef]
- Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of polyphenolic composition of a herbal medicinal product—peppermint tincture. Molecules 2020, 25, 69. [Google Scholar] [CrossRef] [Green Version]
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Validation of Analytical Procedures: Text and Methodology Q2 (R1). 1995. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 23 July 2021).
- European Medicines Agency. Guideline on Stability Testing: Stability Testing of Existing Active Substances and Related Finished Products. 2003. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-stability-testing-stability-testing-existing-active-substances-related-finished-products_en.pdf (accessed on 23 July 2021).
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Stability Testing of New Drug Substances and Products Q1A (R2). 2003. Available online: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf (accessed on 23 July 2021).
Acronym of the HMP | Form | Ingredients | Indications | Expiration Date (Months) |
---|---|---|---|---|
Preparations for External Use | ||||
ST | Sage tincture | Sage leaf tincture (S. officinalis L.) DER 1:5 | Inflammation of the mouth, gums and throat | 36 |
STE | Liquid spray | Sage leaf tincture (S. officinalis L.), Thyme herb liquid extract (T. vulgaris L. or T. zygis L.), | Inflammation of the mouth and throat | 24 |
Preparations For Internal Use | ||||
PT | Peppermint tincture | Peppermint tincture (M. x piperita L.) DER 1:19.7–21 | Mild digestive disorders, dyspepsia, flatulence, intestinal cramps | 24 |
TS | Thyme syrup | Thyme herb liquid extract (T. vulgaris or T. zygis L.) DER 1:3 | Cough with upper respiratory tract rhinitis, difficult expectoration | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodalska, A.; Kowalczyk, A.; Fecka, I. Stability of Rosmarinic Acid and Flavonoid Glycosides in Liquid Forms of Herbal Medicinal Products—A Preliminary Study. Pharmaceuticals 2021, 14, 1139. https://doi.org/10.3390/ph14111139
Bodalska A, Kowalczyk A, Fecka I. Stability of Rosmarinic Acid and Flavonoid Glycosides in Liquid Forms of Herbal Medicinal Products—A Preliminary Study. Pharmaceuticals. 2021; 14(11):1139. https://doi.org/10.3390/ph14111139
Chicago/Turabian StyleBodalska, Agnieszka, Adam Kowalczyk, and Izabela Fecka. 2021. "Stability of Rosmarinic Acid and Flavonoid Glycosides in Liquid Forms of Herbal Medicinal Products—A Preliminary Study" Pharmaceuticals 14, no. 11: 1139. https://doi.org/10.3390/ph14111139
APA StyleBodalska, A., Kowalczyk, A., & Fecka, I. (2021). Stability of Rosmarinic Acid and Flavonoid Glycosides in Liquid Forms of Herbal Medicinal Products—A Preliminary Study. Pharmaceuticals, 14(11), 1139. https://doi.org/10.3390/ph14111139