Antibacterials in Aquatic Environment and Their Toxicity to Fish
Abstract
:1. Introduction
2. The Presence of Antibacterials in Aquatic Environment
Group | Antibacterial Agents | Maximum Concentration | Sample Type/Source | Site/Region | Country | Reference |
---|---|---|---|---|---|---|
A | aminoglycosides | 10 µg/L ND | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
BL | β-lactams | 10 µg/L 8 µg/kg | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
D | diaminopyrimidines | <0.05 µg/L <5 µg/kg | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
D | trimethoprim | det 5.63 µg/kg 9.84 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
D | trimethoprim | ≈60 ng/L ≈50 ng/L | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
D | trimethoprim | 4.41 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
D | trimethoprim | 5.4 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
D | trimethoprim | 5.60 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
D | trimethoprim | 6.3 ng/L 22.1 ng/L 1.3 ng/L | Huangpu River Pearl River Estuary East China Sea | urban area from Dongjiang towards the open sea influenced by poultry and fish farming | China | Fisch et al. [34] |
D | trimethorpim | 380 ng/L | river water | Pearl River System | China | Yang et al. [35] |
F | ciprofloxacin | 32.8 µg/kg 1290 µg/kg 28.7 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
F | ciprofloxacin | 176.14 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
F | ciprofloxacin | 641.3 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
F | ciprofloxacin | 1.14 μg/L ND | wastewaters river water | different locations | Argentina | Teglia et al. [21] |
F | ciprofloxacin | 0.25 μg/L 592 µg/kg | pond effluents sediments | fish farm in the Mekong Delta | Vietnam | Andrieu et al. [28] |
F | difloxacin | 14.2 μg/L ND | wastewaters river water | different locations | Argentina | Teglia et al. [21] |
F | enoxacin | 22.1 μg/L ND | wastewaters river water | different locations | Argentina | Teglia et al. [21] |
F | enrofloxacin | ND 2.34 µg/kg ND | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
F | enrofloxacin | 19.33 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
F | enrofloxacin | 5681.9 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
F | enrofloxacin | 11.9 μg/L 0.97 μg/L | wastewaters river water | different locations | Argentina | Teglia et al. [21] |
F | enrofloxacin | 98.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
F | enrofloxacin | 0.86 μg/L 2590 µg/kg | pond effluents sediments | fish farm in the Mekong Delta | Vietnam | Andrieu et al. [28] |
F | enrofloxacin | 1.64 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
F | fluoroquinolones | <0.02 µg/L 6 µg/kg | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
F | lomefloxacin | ND 298 µg/kg 5.82 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
F | norfloxacin | 141 µg/kg 5770 µg/kg 176 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
F | norfloxacin | 48.39 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
F | norfloxacin | 1893.2 ng/L | river water | Beijing-Tianjin- Hebei region | China | Cheng et al. [18] |
F | norfloxacin | 1.43 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
F | norfloxacin | 174 ng/L | river water | Pearl River System | China | Yang et al. [35] |
F | ofloxacin | 123 µg/kg 653 µg/kg 50.5 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
F | ofloxacin | 18.95 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
F | ofloxacin | 11.2 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
F | ofloxacin | 1.78 μg/L ND | wastewaters river water | different locations | Argentina | Teglia et al. [21] |
F | ofloxacin | 4.3 µg/L | river water | main rivers of Hong Kong | China | Deng et al. [37] |
F | ofloxacin | 2.34 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
L | lincosamides | <0.02 µg/L ND | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
M | anhydro-erythromycin | 49 ng/L | groundwater | monitoring wells in Baden-Württemberg | Germany | Sacher et al. [23] |
M | azithromycin | ≈450 ng/L ND | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
M | azithromycin | 3776.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
M | erythromycin-H2O | 49.8 µg/kg 67.7 µg/kg 40.3 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
M | erythromycin-H2O | ≈120 ng/L ≈50 ng/L | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
M | erythromycin-H2O | 2009.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
M | erythromycin-H2O | 2070 ng/L | river water | Pearl River System | China | Yang et al. [35] |
M | macrolides | 5 µg/L 8 µg/kg | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
M | N-Desmethyl azithromycin | 5660.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
M | roxithromycin | 6.8 µg/kg 11.7 µg/kg 29.6 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
M | roxithromycin | ≈50 ng/L ND | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
M | roxithromycin | 2.35 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
M | roxithromycin | 1880 ng/L | river water | Pearl River System | China | Yang et al. [35] |
M | clarithromycin | ≈250 ng/L ND | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
P | pleuromutilins | <0.02 µg/L ND | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
Ph | chloramphenicol | 5.8 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
Ph | florfenicol | 1784.7 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
Ph | thiamphenicol | 13.1 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
S | sulfachloropyridazine | 3.49 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
S | sulfadiazine | 0.29 µg/L 1.00 µg/L 0.89 µg/L 17.0 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
S | sulfadiazine | 22.0 µg/kg 1.18 µg/kg 11 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
S | sulfadiazine | 20.82 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
S | sulfadiazine | 4.7 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
S | sulfadiazine | 20.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
S | sulfadiazine | 14.8 µg/L | river water | main rivers of Hong Kong | China | Deng et al. [37] |
S | sulfadiazine | 14.5 ng/L 3.0 ng/L 8.3 ng/L | Huangpu River Pearl River Estuary East China Sea | urban area from Dongjiang towards the open sea influenced by poultry and fish farming | China | Fisch et al. [34] |
S | sulfadiazine | 3.17 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
S | sulfadiazine | 103 ng/L | river water | Pearl River System | China | Yang et al. [35] |
S | sulfadimidine | 580.4 µg/L | river water | main rivers of Hong Kong | China | Deng et al. [37] |
S | sulfadoxine | 0.29 µg/L 0.46 µg/L 0.10 µg/L 0.63 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
S | sulfamerazine | ND 11.9 ng/L ND | Huangpu River Pearl River Estuary East China Sea | urban area from Dongjiang towards the open sea influenced by poultry and fish farming | China | Fisch et al. [34] |
S | sulfamethazine | 0.64 µg/L 4.66 µg/L 169 µg/L 211 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
S | sulfamethazine | ND 5.67 µg/kg ND | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
S | sulfamethazine | ND ≈350 ng/L | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
S | sulfamethazine | 9.60 µg/L 0.28 µg/kg | water sediments | Naerincheon River across Hongcheon, Gangwon province | Korea | Awad et al. [5] |
S | sulfamethazine | 14.50 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
S | sulfamethazine | 3.8 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
S | sulfamethazine | 231.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
S | sulfamethazine | 446 ng/L | river water | Pearl River System | China | Yang et al. [35] |
S | sulfamethoxazole | 0.19 µg/L 0.56 µg/L 0.57 µg/L 63.6 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
S | sulfamethoxazole | 410 ng/L | groundwater | monitoring wells in Baden-Württemberg | Germany | Sacher et al. [23] |
S | sulfamethoxazole | ≈40 ng/L ≈180 ng/L | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
S | sulfamethoxazole | 0.44 µg/L 0.73 µg/kg | water sediments | Naerincheon River across Hongcheon, Gangwon province | Korea | Awad et al. [5] |
S | sulfamethoxazole | 51.86 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
S | sulfamethoxazole | 11.6 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
S | sulfamethoxazole | 3.1 µg/L | river water | main rivers of Hong Kong | China | Deng et al. [37] |
S | sulfamethoxazole | 9.6 ng/L 13.9 ng/L 4.4 ng/L | Huangpu River Pearl River Estuary East China Sea | urban area from Dongjiang towards the open sea influenced by poultry and fish farming | China | Fisch et al. [34] |
S | sulfamethoxazole | 1.82 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
S | sulfamethoxazole | 418 ng/L | river water | Pearl River System | China | Yang et al. [35] |
S | sulfapyridine | ≈140 ng/L ND | Tamagawa River (water samples) Mekong Delta (water samples) | Tokyo metropolitan area suburbs and rural areas | Japan Vietnam | Managaki et al. [24] |
S | sulfapyridine | 3.2 µg/L | river water | main rivers of Hong Kong | China | Deng et al. [37] |
S | sulfapyrindine | 41.7 ng/L | river water | Pearl River System | China | Yang et al. [35] |
S | sulfaquinoxaline | ND det det 0.64 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
S | sulfathiazole | 10.57 µg/L 0.64 µg/kg | water sediments | Naerincheon River across Hongcheon, Gangwon province | Korea | Awad et al. [5] |
S | sulfonamides | <0.05 µg/L 5 µg/kg 10 µg/kg | fresh water sediments fish | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
S | sulfamerazine | 2.49 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
T | chlortetracycline | 49.3 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
T | chlortetracycline | 0.57 µg/L 2.42 µg/L 3.67 µg/L 1.10 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
T | chlortetracycline | ND 10.9 µg/kg 32.5 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
T | chlortetracycline | 44.42 µg/L 16.30 µg/kg | water sediments | Naerincheon River across Hongcheon, Gangwon province | Korea | Awad et al. [5] |
T | oxytetracycline | 6.87 µg/L 2.20 µg/L 11.1 µg/L 72.9 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
T | oxytetracycline | 184 µg/kg 422 µg/kg 652 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
T | oxytetracycline | 0.32 µg/L 1.43 µg/kg | water sediments | Naerincheon River across Hongcheon, Gangwon province | Korea | Awad et al. [5] |
T | oxytetracycline | 241.50 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
T | oxytetracycline | 51.5 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
T | oxytetracycline | 29.00 μg/L | effluents | pharmaceutical industries area | Croatia | Bielen et al. [25] |
T | tetracycline | 0.93 µg/L 0.81 µg/L 6.44 µg/L 10.3 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
T | tetracycline | 18.0 µg/kg 135 µg/kg 4.82 µg/kg | sediments sediments sediments | Yellow River Hai River Liao River | China | Zhou et al. [16] |
T | tetracycline | 254.82 µg/L 75.70 µg/kg | water sediments | Naerincheon River across Hongcheon, Gangwon province | Korea | Awad et al. [5] |
T | tetracycline | 94.66 ng/L | drinking water | Yangtze River delta | China | Cui et al. [17] |
T | tetracycline | 31.4 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
T | tetracycline | 26 ng/L | water samples | urban area of Beijing | China | Ma et al. [36] |
T | tetracyclines | 0.05 µg/L 5 µg/kg | fresh water sediments | 14 sampling points in Polish rivers and lakes | Poland | Gbylik-Sikorska et al. [22] |
T | doxycycline | ND ND ND 39.5 µg/L | pond water river water farm effluents animal wastewater | 27 large-scale animal farms (Jiangsu Province) | China | Wei et al. [15] |
T | doxycycline | ND 7.0 µg/kg 2.8 µg/kg | sediments sediments sediments | Yellow RiverHai RiverLiao River | China | Zhou et al. [16] |
T | doxycycline | 43.3 ng/L | river water | Beijing-Tianjin-Hebei region | China | Cheng et al. [18] |
T | doxycycline | 82.2 µg/L | river water | main rivers of Hong Kong | China | Deng et al. [37] |
3. Antibiotic Resistance in Aquatic Environment
4. Toxic Effects of Antibacterials on Fish Organisms
4.1. Hematological and Blood Biochemical Changes
Antibacterial Agents | Dose | Exposure Time (days) | Species | Hematological or Blood Biochemical Alterations | Reference | |
---|---|---|---|---|---|---|
Increase | Decrease | |||||
florfenicol | 5 mg/kg body weight | 84 | Oreochromis niloticus | Lysoz, Urea | AST, Creat | Reda et al. [89] |
gentamicin | 36 mg/kg (injection) | Oreochromis niloticus | ALT, AST, Glu | Bicarb, Ca, Chol, CK Cl, Fe, Mg, Na, RBC, TIBC, TP | Chen et al. [90] | |
oxytetracycline | 75 mg/kg body weight per day (dietary) | 29 | Cyprinus carpio | Ht | Glu, Lym, Mono, WBC | Dobsikova et al. [82] |
oxytetracycline | 75 mg/kg body weight per day (dietary) | 50 | Cyprinus carpio | Alb, Cl, Na, P, TP | Dobsikova et al. [82] | |
oxytetracycline | 500 mg/kg of diet | 14 | Oreochromis niloticus | ALT, AST, Creat, PLT, Urea | El-Adawy et al. [83] | |
oxytetracycline | 2.5 g/kg of diet | 14 | Oncorhynchus mykiss | ALT, AST, Cort, Glu | Lysoz, Neu, WBC | Hoseini and Yousefi [84] |
oxytetracycline | 100 mg/kg body weight per day (dietary) | 14 | Oncorhynchus kisutch | ALT, GSH | Nakano et al. [88] | |
oxytetracycline | 0.63% of wet weight (dietary) | 56 | Oreochromis niloticus | Hb | Hb, PLT, RBC, WBC | Omoregie and Oyebanji [85] |
oxytetracycline | 1.25–5.00% of wet weight (dietary) | 56 | Oreochromis niloticus | Hb, Ht, PLT, RBC, WBC | Omoregie and Oyebanji [85] | |
oxytetracycline | 100 mg/kg diet | 84 | Oreochromis niloticus | AST, Lysoz, Urea | ALT, Creat, IgM | Reda et al. [89] |
oxytetracycline | 0.5 g/kg | 60 | Oreochromis niloticus | PLT | Ht | Reda et al. [86] |
oxytetracycline | 75 mg/kg body weight | 10 | Sparus aurata | WBC | Serezli et al. [87] |
4.2. Oxidative Stress Parameters
4.3. Histopathological Alterations
4.4. Other Toxic Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment (Review). Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.M.; Zhou, L.; Sun, S.; Zhang, M.; Du, Z. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotis cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ. Int. 2018, 115, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Pub. Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulin, G.; Cavalie, P.; Pellanne, I.; Chevance, A.; Laval, A.; Millemann, Y.; Colin, P.; Chauvin, C. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J. Antimicrob. Chemother. 2008, 62, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Awad, Y.M.; Kim, S.C.; El-Azeem, A.M.; Kim, K.H.; Kim, K.R.; Kim, K.; Jeon, C.; Lee, S.S.; Ok, Y.S. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ. Earth. Sci. 2014, 71, 1433–1440. [Google Scholar] [CrossRef]
- Letsinger, S.; Kay, P. Comparison of prioritisation schemes for human pharmaceuticals in the aquatic environment. Environ. Sci. Pollut. Res. 2019, 26, 3479–3491. [Google Scholar] [CrossRef] [Green Version]
- Baquero, F.; Martίnez, J.L.; Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opinion Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014, 22, 536–545. [Google Scholar] [CrossRef]
- Kim, K.R.; Owens, G.; Kwon, S.I.; So, K.H.; Lee, D.B.; Ok, Y.S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011, 214, 163–174. [Google Scholar] [CrossRef]
- Martinez-Carballo, E.; Gonzalez-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indicat. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef]
- Wei, R.; Ge, F.; Huang, S.; Chen, M.; Wang, R. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 2011, 82, 1408–1414. [Google Scholar] [CrossRef]
- Zhou, L.J.; Ying, G.G.; Zhao, J.L.; Yang, J.F.; Wang, L.; Yang, B.; Liu, S. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 2011, 159, 1877–1885. [Google Scholar] [CrossRef]
- Cui, C.; Han, Q.; Jiang, L.; Ma, L.; Jin, L.; Zhang, D.; Lin, K.; Zhang, T. Occurrence, distribution, and seasonal variation of antibiotics in an artificial water source reservoir in the Yangtze River delta, East China. Environ. Sci. Pollut. Res. 2018, 25, 19393–19402. [Google Scholar] [CrossRef]
- Cheng, J.; Jiang, L.; Sun, T.; Du, Z.; Lee, L.; Zhao, Q. Occurrence, seasonal variation and risk assessment of antibiotics in the surface water of North China. Arch. Environ. Contam. Toxicol. 2019, 77, 88–97. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Liu, W.; Li, H.; Zhang, W.; Hu, J.; Ke, Y.; Sun, W.; Ni, J. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Teglia, C.M.; Perez, F.A.; Michlig, N.; Repetti, M.R.; Goicoechea, H.C.; Culzoni, M.J. Occurence, distribution and ecological risk of fluoroquinolones in rivers and wastewaters. Environ. Toxicol. Chem. 2019, 38, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Gbylik-Sikorska, M.; Posyniak, A.; Mitrowska, K.; Gajda, A.; Błądek, T.; Śniegocki, T.; Żmudzki, J. Occurrence of veterinary antibiotics and chemotherapeutics in fresh water, sediment, and fish of the rivers and lakes in Poland. Bull. Vet. Inst. Pulawy 2014, 58, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Sacher, F.; Lange, F.T.; Brauch, H.J.; Blankenhorn, I. Pharmaceuticals in groundwaters Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J. Chromatogr. A 2001, 938, 199–210. [Google Scholar] [CrossRef]
- Managaki, S.; Murata, A.; Takada, H.; Tuyen, B.C.; Chiem, N.H. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ. Sci. Technol. 2007, 41, 8004–8010. [Google Scholar] [CrossRef] [PubMed]
- Bielen, A.; Simatovic, A.; Kosic-Vuksic, J.; Senta, I.; Ahel, M.; Babic, S.; Jurina, T.; Gonzalez Plaza, J.J.; Milakovic, M.; Udikovic-Kolic, N. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Wat. Res. 2017, 126, 79–87. [Google Scholar] [CrossRef]
- Alderman, D.J.; Hastings, T.S. Antibiotic use in aquaculture: Development of antibiotic resistance – potential for consumer health risks. Int. J. Food Sci. Technol. 1998, 33, 139–155. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Andrieu, M.; Rico, A.; Phu, T.M.; Huong, D.T.T.; Phuong, N.T.; Van den Brink, P.J. Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere 2015, 119, 407–414. [Google Scholar] [CrossRef]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Holmstrom, K.; Graslund, S.; Wahlstrom, A.; Poungshompoo, S.; Bengtsson, B.E.; Kautsky, N. Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int. J. Food Sci. Technol. 2003, 38, 255–266. [Google Scholar] [CrossRef]
- Monteiro, S.H.; Moura Andrade, G.C.R.; Garcia, F.; Pilarski, F. Antibiotic residues and resistant bacteria in aquaculture. Pharmaceut. Chem. J. 2018, 5, 127–147. [Google Scholar]
- Liu, S.; Bekele, T.-G.; Zhao, H.; Cai, X.; Chen, J. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China. Sci. Total. Environ. 2018, 631–632, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Conti, G.A.; Copat, C.; Wang, Z.; D Agati, P.; Cristaldi, A.; Ferrante, M. Determination of illegal antimicrobials in aquaculture feed and fish: An ELISA study. Food Control 2015, 50, 937–941. [Google Scholar] [CrossRef]
- Fisch, K.; Waniek, J.J.; Zhou, M.; Xia, Z.; Schulz-Bull, D.E. Antibiotics in three Chinese coastal systems: Huangpu River, East China Sea, Pearl River Estuary. J. Aquat. Pollut. Toxicol. 2017, 1, 13. [Google Scholar]
- Yang, J.F.; Ying, G.G.; Zhao, J.L.; Tao, R.; Su, H.C.; Liu, Y.S. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. J. Environ. Sci. Health Part B 2011, 46, 272–280. [Google Scholar] [CrossRef]
- Ma, H.T.; Gao, K.; Yang, Y.S.; Meng, X.F.; Zhang, H.F.; Lang, C.; Wang, C.Y.; Guo, Y.; Dong, J.Z.; Song, X.M. Analysis of pollution levels of 7 antibiotics in the Wenyu river water of Beiyun River water system in Beijing after the pollution control: A preliminary study. Earth Environ. Sci. 2018, 186, 012068. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Li, N.; Zheng, H.; Lin, H. Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicol. Environ. Safety 2016, 125, 121–127. [Google Scholar] [CrossRef]
- Tacic, A.; Nikolic, V.; Nikolic, L.; Savic, I. Antimicrobial sulfonamide drugs. Adv. Technol. 2017, 6, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Hruska, K.; Franek, M. Sulfonamides in the environment: A review and a case report. Vet. Med. 2012, 57, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone antibacterials: A review on chemistry, microbiology and therapeutic prospects. Acta. Pol. Pharmac-Drug Res. 2009, 66, 587–604. [Google Scholar]
- Sarkozy, G. Quinolones: A class of antimicrobial agents. Vet. Med. 2011, 46, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Samuelsen, O.B. Pharmacokinetics of quinolones in fish: A review. Aquaculture 2006, 255, 55–75. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Molecul. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalova, E.; Novotna, P.; Schlegelova, J. Tetracyclines in veterinary medicine and bacterial resistance to them. Vet. Med. 2004, 49, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Jelic, D.; Antolovic, L. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics 2016, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, A.; Maliszewski, D.; Baradyn, M.; Drozdowska, D. Trimethoprim: An old antibacterial drug as a template to search for new targets. Synthesis, biological activity and molecular modeling study of novel trimethoprim analogs. Molecules 2020, 25, 116. [Google Scholar] [CrossRef] [Green Version]
- Kolar, B.; Arnus, L.; Jeretin, B.; Gutmaher, A.; Drobne, D.; Kos Durjava, D. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere 2014, 115, 75–80. [Google Scholar] [CrossRef]
- Birdane, Y.O.; Birdane, F.M. Pharmacokinetics of florfenicol following intravenous and intramuscular administration in dogs. Vet. Med. 2015, 60, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Dinos, G.P.; Athanassopoulos, C.M.; Missiri, D.A.; Giannopoulou, P.C.; Vlachogiannis, I.A.; Papadopoulos, G.E.; Papaioannou, D.; Kalpaxis, D.L. Chloramphenicol derivatives as antibacterial and anticancer agents: Historic problems and current solutions. Antibiotics 2016, 5, 20. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [Green Version]
- Hari, R.; Taherunnisa, S.; Raut, S.Y.; Mutalik, S.; Koteshwara, K.B. Challenges in the development of analytical test procedure for aminoglycosides: A critical review. J. Appl. Pharmac. Sci. 2019, 9, 145–152. [Google Scholar]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, a025247. [Google Scholar] [CrossRef] [PubMed]
- Rezanka, T.; Spizek, J.; Sigler, K. Medicinal use of lincosamides and microbial resistance to them. Anti-Infective Agents Med. Chem. 2007, 6, 133–144. [Google Scholar] [CrossRef]
- Pyorala, S.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Greko, C.; Moreno, M.A.; Matias Ferreira Pomba, M.C.; Rantala, M.; Ruzauskas, M.; Sanders, S. Macrolides and lincosamides in cattle and pigs: Use and development of antimicrobial resistance. Vet. J. 2014, 200, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Brenner Michael, G.; Feßler, A.T.; Vester, B. Lincosamides, streptogramins, phenicols, and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, R.; Shlaes, D.M. The pleuromutilin antibiotics: A new class for human use. Curr. Opin. Investig. Drugs 2010, 11, 182–191. [Google Scholar]
- Dixon, B.A. Antibiotic resistance of bacterial fish pathogens. J. World Aquacult. Soc. 1994, 25, 60–63. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dolz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Rath, S.; Patra, B.K. Dispersal of antibiotic resistant bacteria into aquatic environment—An overview. J. Water Pollut. Control 2018, 1, 2. [Google Scholar]
- Martínez, J.L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef]
- Baquero, F.; Alvarez-Ortega, C.; Martinez, J.L. Ecology and evolution of antibiotic resistance. Environ. Microbiol. Rep. 2009, 1, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Le Bris, H.; Dhaouadi, R.; Naviner, M.; Giraud, E.; Mangion, C.; Armand, F.; De La Cotte, N.; Thorin, C.; Ganiere, J.-P.; Pouliquen, H. Experimental approach on the selection and persistence of antimicrobial-resistant Aeromonads in faecal matter of rainbow trout during and after an oxolinic acid treatment. Aquaculture 2007, 273, 416–422. [Google Scholar] [CrossRef]
- Linares, J.F.; Gustafsson, I.; Baquero, F.; Martinez, J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA 2006, 103, 19484–19489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.A.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Cesare, A.; Luna, G.M.; Vignaroli, C.; Pasquaroli, S.; Tota, S.; Paroncini, P.; Biavasco, F. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments. PLoS ONE 2013, 8, e62838. [Google Scholar] [CrossRef] [Green Version]
- Manage, P.M. Heavy use of antibiotics in aquaculture: Emerging human and animal health problems—A review. Sri. Lanka J. Aquat. Sci. 2018, 23, 13–27. [Google Scholar] [CrossRef]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and the fate of antibiotic-resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Balcazar, J.; Subirats, J.; Borrego, C. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Crossman, L.C.; Gould, V.C.; Dow, J.M.; Vernikos, G.S.; Okazaki, A.; Sebaihia, M.; Saunders, D.; Arrowsmith, C.; Carver, T.; Peters, N. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008, 9, R74. [Google Scholar] [CrossRef] [Green Version]
- Wiens, G.D.; Rockey, D.D.; Wu, Z.; Chang, J.; Levy, R.; Crane, S.; Chen, D.S.; Capri, G.R.; Burnett, J.R.; Sudheesh, P.S. Genome sequence of the fish pathogen Renibacterium salmoninarum suggests reductive evolution away from an environmental Arthrobacter ancestor. J. Bacteriol. 2008, 190, 6970–6982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, J.F.; Santos, E.B.H.; Esteves, V.I. Oxytetracycline in intensive aquaculture: Water quality during and after its administration, environmental fate, toxicity and bacterial resistance. Rev. Aquacult. 2019, 11, 1176–1194. [Google Scholar] [CrossRef]
- Seyfried, E.E.; Newton, R.J.; Rubert, K.F.; Pedersen, J.A.; McMahon, K.D. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb. Ecol. 2010, 59, 799–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamminen, M.; Karkman, A.; Lohmus, A.; Muziasari, W.I.; Takasu, H.; Wada, S.; Suzuki, S.; Virta, M. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ. Sci. Technol. 2010, 45, 386–391. [Google Scholar] [CrossRef]
- Sorum, H. Antimicrobial drug resistance in fish pathogens. In Antimicrobial Resistance in Bacteria of Animal Origin; Aarestrup, F.M., Ed.; Am Soc Microbiol Press: Washington DC, USA, 2006; pp. 213–238. [Google Scholar]
- Vincent, A.T.; Tanaka, K.H.; Trudel, M.V.; Frenette, M.; Derome, N.; Charette, S.J. Draft genome sequences of two Aeromonas salmonicida subsp. salmonicida isolates harboring plasmids conferring antibiotic resistance. FEMS Microbiol. Lett. 2015, 362, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Akinbowale, O.L.; Peng, H.; Barton, M.D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl. Microbiol. 2006, 100, 1103–1113. [Google Scholar] [CrossRef]
- Schmidt, A.S.; Bruun, M.S.; Dalsgaard, I.; Pedersen, K.; Larsen, J.L. Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Appl. Environ. Microbiol. 2000, 66, 4908–4915. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Burgos-Aceves, M.A.; Lionetti, L.; Faggio, C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci. Total Environ. 2019, 670, 1170–1183. [Google Scholar] [CrossRef]
- Bojarski, B.; Witeska, M. Blood biomarkers of herbicide, insecticide, and fungicide toxicity to fish—A review. Environ. Sci. Pollut. Res. 2020, 27, 19236–19250. [Google Scholar] [CrossRef]
- Dobsikova, R.; Blahova, J.; Mikulikova, I.; Modra, H.; Praskova, E.; Svobodova, Z.; Skoric, M.; Jarkovsky, J.; Siwicki, A.K. The effect of oyster mushroom b-1.3/1.6-D-glucan and oxytetracycline antibiotic on biometrical, haematological, biochemical, and immunological indices, and histopathological changes in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2013, 35, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- El-Adawy, M.; Abd El-Aziz, M.; El-Shazly, K.; Ali, N.G.; Abu El-Magd, M. Dietary propionic acid enhances antibacterial and immunomodulatory effects of oxytetracycline on Nile tilapia, Oreochromis niloticus. Environ. Sci. Pollut. Res. 2018, 25, 34200–34211. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.M.; Yousefi, M. Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracyclineinduced stress response, immunosuppression, oxidative stress and enzymatic changes in rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr. 2019, 25, 298–309. [Google Scholar] [CrossRef]
- Omoregie, E.; Oyebani, S.M. Oxytetracycline-induced blood disorder in juvenile Nile tilapia Oreochromis niloticus (Trewavas). J. World Aquacult. Soc. 2002, 33, 377–382. [Google Scholar] [CrossRef]
- Reda, R.M.; Mahmoud, R.; Selim, K.M.; El-Araby, I.E. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 50, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Serezli, R.; Cagirgan, H. The effect of oxytetracycline on non-specific immune response in sea bream (Sparus aurata L. 1758). Turk. J. Vet. Anim. Sci. 2005, 29, 31–35. [Google Scholar]
- Nakano, T.; Hayashi, S.; Nagamine, N. Effect of excessive doses of oxytetracycline on stress-related biomarker expression in coho salmon. Environ. Sci. Pollut. Res. 2018, 25, 7121–7128. [Google Scholar] [CrossRef]
- Reda, R.M.; Ibrahim, R.E.; Ahmed, E.-N.G.; El-Bouhy, Z.M. Effect of oxytetracycline and florfenicol as growth promoters on the health status of cultured Oreochromis niloticus. Egypt J. Aquat. Res. 2013, 39, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Wooster, G.A.; Bowser, P.R. Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate. Aquaculture 2004, 239, 421–443. [Google Scholar] [CrossRef]
- Ni, H.; Peng, L.; Gao, X.; Ji, H.; Ma, J.; Li, Y.; Jiang, S. Effects of maduramicin on adult zebrafish (Danio rerio): Acute toxicity, tissue damage and oxidative stress. Ecotoxicol. Environ. Saf. 2019, 168, 249–259. [Google Scholar] [CrossRef]
- Elia, A.C.; Ciccotelli, V.; Pacini, N.; Dorr, A.J.M.; Gili, M.; Natali, M.; Gasco, L.; Prearo, M.; Abete, M.C. Transferability of oxytetracycline (OTC) from feed to carp muscle and evaluation of the antibiotic effects on antioxidant systems in liver and kidney. Fish Physiol. Biochem. 2014, 40, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.M.; Zhang, H.; Luo, Y.; Chen, L.-Q.; Zhang, M. High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Environ. Pollut. 2020, 256, 113508. [Google Scholar] [CrossRef] [PubMed]
- Bojarski, B.; Jakubiak, M.; Bień, M.; Batoryna, M.; Formicki, G.; Socha, M.; Drąg-Kozak, E.; Tombarkiewicz, B. Assessment of gentamicin effect on oxidoreductive balance and microstructure of trunk kidney in Prussian carp (Carassius gibelio). Ann. Warsaw Univ. Life Sci. SGGW Anim. Sci. 2019, 58, 115–123. [Google Scholar] [CrossRef]
- Jones, J.; Kinnel, M.; Christenson, R.; Reimschuessel, R. Gentamicin concentrations in toadfish and goldfish serum. J Aquat. Anim. Health 1997, 9, 211–215. [Google Scholar] [CrossRef]
- Silva de Oliveira, R.C.; Oliveira, R.; Carvalho Rodrigues, M.A.; Oliveira de Farias, N.; Sousa-Moura, D.; Almeida Nunes, N.; Andrade, T.S.; Koppe Grisola, C. Lethal and sub-lethal effects of nitrofurantoin on zebrafish early-life stages. Water Air Soil Pollut. 2020, 231, 54. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Pinto, G.; Correia, B.; Nunes, B. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs. Environ. Toxicol. 2019, 34, 1177–1190. [Google Scholar] [CrossRef]
- Bojarski, B.; Jakubiak, M.; Witeska, M. Physiological and histological effects of herbicides in fish. Ann. Warsaw Univ. Life Sci. SGGW 2018, 57, 207–217. [Google Scholar] [CrossRef]
- Rodrigues, S.; Antunes, S.C.; Nunes, B.; Correia, A.T. Histological alterations in gills and liver of rainbow trout (Oncorhynchus mykiss) after exposure to the antibiotic oxytetracycline. Environ. Toxicol. Pharmacol. 2017, 53, 164–176. [Google Scholar] [CrossRef]
- Islam, M.J.; Rasul, M.G.; Kashem, M.A.; Hossain, M.M.; Liza, A.A.; Sayeed, M.A.; Motaher Hossain, M. Effect of oxytetracycline on Thai silver barb (Barbonymus gonionotus) and on it’s culture environment. J. Fish Aquat. Sci. 2015, 10, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.; Antunes, S.C.; Nunes, B.; Correia, A.T. Histopathological effects of the antibiotic erythromycin on the freshwater fish species Oncorhynchus mykiss. Ecotoxicol. Environ. Saf. 2019, 181, 1–10. [Google Scholar] [CrossRef]
- Augusto, J.; Smith, B.; Smith, S.; Robertson, J.; Reimschuessel, R. Gentamicin-induced nephrotoxicity and nephroneogenesis in Oreochromis nilotica, a tilapian fish. Dis. Aquat. Org. 1996, 26, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Reimschuessel, R.; Chamie, S.J.; Kinnel, M. Evaluation of gentamicin-induced nephrotoxicosis in toadfish. J. Am. Vet. Med. Assoc. 1996, 209, 137–139. [Google Scholar] [PubMed]
- Reimschuessel, R.; Williams, D. Development of new nephrons in adult kidneys following gentamicin-induced nephrotoxicity. Renal Failure 1995, 17, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Salice, C.J.; Rokous, J.S.; Kane, A.S.; Reimschuessel, R. New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis. Comp. Med. 2001, 51, 56–59. [Google Scholar]
- Marking, L.L.; Howe, G.E.; Crowther, J.R. Toxicity of erythromycin, oxytetracycline and tetracycline administered to lake trout in water baths, by injection, or by feeding. Prog. Fish-Cult. 1988, 50, 197–201. [Google Scholar] [CrossRef]
- Robinson, A.A.; Belden, J.B.; Lydy, M.J. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ. Toxicol. Chem. 2005, 24, 423–430. [Google Scholar] [CrossRef]
- Carraschi, S.P.; Shiogiri, N.S.; Venturini, F.P.; da Cruz, C.; Girio, A.C.F.; Machado Neto, J.G. Acute toxicity and environmental risk of oxytetracycline and florfenicol antibiotics to pacu (Piaractus mesopotamicus). Biol. Inst. Pesca Sao Paulo 2011, 37, 115–122. [Google Scholar]
- Martins, N.; Pereira, R.; Abrantes, N.; Pereira, J.; Goncalves, F.; Marques, C.R. Ecotoxicological effects of ciprofloxacin on freshwater species: Data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicology 2012, 21, 1167–1176. [Google Scholar] [CrossRef]
- Almeida, A.R.; Tacao, M.; Machado, A.L.; Golovko, O.; Zlabek, V.; Domingues, I.; Henriques, I. Long-term effects of oxytetracycline exposure in zebrafish: A multi-level perspective. Chemosphere 2019, 222, 333–344. [Google Scholar] [CrossRef]
- Botelho, R.G.; Christofoletti, C.A.; Correia, J.E.; Ansoar, Y.; Olinda, R.A.; Tornisielo, V.L. Genotoxic responses of juvenile tilapia (Oreochromis niloticus) exposed to florfenicol and oxytetracycline. Chemosphere 2015, 132, 206–212. [Google Scholar] [CrossRef]
- Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Nunes, B. Oxytetracycline effects in specific biochemical pathways of detoxification, neurotransmission and energy production in Oncorhynchus mykiss. Ecotoxicol. Environ. Saf. 2018, 164, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Limbu, S.M.; Shen, M.; Zhai, W.; Qiao, F.; He, A.; Du, Z.-Y.; Zhang, M. Environmental concentrations of antibiotics impair zebrafish gut health. Environ. Pollut. 2018, 235, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Y.; Liu, J.; Yin, X.; Zhang, Z.; Wang, C.; Li, Y.; Wang, H. Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2017, 141, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Grondel, J.L.; Gloudermans, A.G.M.; van Muiswinkel, W.B. The influence of antibiotics on the immune system. II. Modulation of fish leukocyte response in culture. Vet. Immunol. Immunopathol. 1985, 9, 251–260. [Google Scholar] [CrossRef]
- Rijkers, G.T.; Teunissen, A.G.; van Oosterom, R.; van Muiswinkel, W.B. The immune system of cyprinid fish. The immunosuppressive effect of the antibiotic oxytetracycline in carp (Cyprinus carpio L.). Aquaculture 1980, 19, 177–189. [Google Scholar] [CrossRef]
- Maklakova, M.E.; Kondratieva, I.A.; Mikhailova, E.S.; Stupin, R.V.; Khapchaev, S.Y.; Kasumyan, A.O. Effect of antibiotics on immunophysiological status and their taste attractiveness for rainbow trout Parasalmo (=Oncorhynchus) mykiss (Salmoniformes, Salmonidae). J. Ichthyol. 2011, 51, 1133–1142. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Ryu, B.; Kim, U.; Lee, J.M.; Jung, C.-R.; Kim, C.-Y.; Park, J.-H. Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio). Environ. Pollut. 2018, 236, 304–312. [Google Scholar] [CrossRef]
- Yan, Z.; Huang, X.; Xie, Y.; Song, M.; Zhu, K.; Ding, S. Macrolides induce severe cardiotoxicity and developmental toxicity in zabrafish embryos. Sci. Total Environ. 2019, 649, 1414–1421. [Google Scholar] [CrossRef]
- Shen, R.; Yu, Y.; Lan, R.; Yu, R.; Yuan, Z.; Xia, Z. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environ. Pollut. 2019, 254, 112861. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals 2020, 13, 189. https://doi.org/10.3390/ph13080189
Bojarski B, Kot B, Witeska M. Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals. 2020; 13(8):189. https://doi.org/10.3390/ph13080189
Chicago/Turabian StyleBojarski, Bartosz, Barbara Kot, and Małgorzata Witeska. 2020. "Antibacterials in Aquatic Environment and Their Toxicity to Fish" Pharmaceuticals 13, no. 8: 189. https://doi.org/10.3390/ph13080189
APA StyleBojarski, B., Kot, B., & Witeska, M. (2020). Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals, 13(8), 189. https://doi.org/10.3390/ph13080189