Layered Silicate-Alginate Composite Particles for the pH-Mediated Release of Theophylline
Abstract
:1. Introduction
2. Results and Discussion
2.1. Uptake of Theophylline by Laponite®
2.2. Characterisation
2.3. In Vitro Drug Release from LP-TP and LP-TP-SA
3. Materials and Methods
3.1. Materials
3.2. Calibration Curve Preparation
3.3. Theophylline Intercalation and Drug Uptake Kinetics
3.4. Preparation of LP-TP-SA Composite Beads
3.5. Characterisation
3.6. In Vitro Release of Theophylline
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, H.; Hsu, P.; Lin, S. Theophylline-citric acid co-crystals easily induced by DSC-FTIR microspectroscopy or different storage conditions. Asian J. Pharm. Sci. 2013, 8, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Cushley, M.J.; Tattersfield, A.E.; Holgate, S.T. Adenosine-induced bronchoconstriction in asthma: Antagonism by inhaled theophylline. Am. Rev. Respir. Dis. 1984, 129, 380–384. [Google Scholar]
- Polosa, R.; Blackburn, M.R. Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharmacol. Sci. 2009, 30, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Takanashi, S.; Hasegawa, Y.; Kanehira, Y.; Yamamoto, K.; Fujimoto, K.; Satoh, K.; Okamura, K. Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur Respir J. 1999, 14, 309–314. [Google Scholar] [CrossRef]
- Weinberger, M.; Hendeles, L. Theophylline in asthma. N. Engl. J. Med. 1996, 334, 1380–1388. [Google Scholar] [CrossRef]
- Jung, H.; Kim, H.; Bin, Y.; Hwang, S.; Choy, J. Itraconazole—Laponite: Kinetics and mechanism of drug release. Appl. Clay Sci. 2008, 40, 99–107. [Google Scholar] [CrossRef]
- Li, Y.; Maciel, D.; Tomás, H.; Rodrigues, J.; Ma, H.; Shi, X. pH sensitive Laponite/alginate hybrid hydrogels: Swelling behaviour and release mechanism. Soft Matter. 2011, 7, 6231–6238. [Google Scholar] [CrossRef]
- Jaber, M. A New Nanocomposite: L-DOPA/Laponite. J. Phys. Chem. Lett. 2010, 1, 85–88. [Google Scholar] [CrossRef]
- Perotti, G.F.; Tronto, J.; Bizeto, M.A.; Izumi, C.; Temperini, M.L.; Lugão, A.B.; Parra, D.F.; Constantino, V.R. Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. J. Braz. Chem. Soc. 2014, 25, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Jatav, S.; Joshi, M.Y. Chemical stability of Laponite in aqueous media. Appl Clay Sci. 2014, 97–98, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Neumann, B.S.; Sansom, K.G. The rheological properties of dispersions of laponite, a synthetic hectorite-like clay, in electrolyte solutions. Clay Miner. 1971, 9, 231–243. [Google Scholar] [CrossRef]
- Lebeau, B. Laponite and hybrid surfactant/laponite particles processed as spheres by spray-drying. New J. Chem. 2009, 33, 1116–1126. [Google Scholar]
- Martin, C.; Pignon, F.; Piau, J.M.; Magnin, A.; Lindner, P.; Cabane, B. Dissociation of thixotropic clay gels. Phys. Rev. E. 2002, 66, 21401. [Google Scholar] [CrossRef]
- Kosmulski, M. Chemical Properties of Material Surfaces; CRC Press: New York, NY, USA, 2001; Volume 102. [Google Scholar]
- Ghadiri, M.; Hau, H.; Chrzanowski, W.; Agus, H.; Rohanizadeh, R. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Adv. 2013, 3, 20193–20201. [Google Scholar] [CrossRef]
- Bispo, M.S.; Veloso, M.C.C.; Pinheiro, H.L.C.; De Oliveira, R.F.S.; Reis, J.O.N.; De Andrade, J.B. Simultaneous determination of caffeine, theobromine, and theophylline by high-performance liquid chromatography. J. Chromatogr. Sci. 2002, 40, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Manilo, M.; Lebovka, N.; Barany, S. Mechanism of Methylene Blue adsorption on hybrid laponite-multi-walled carbon nanotube particles. J. Environ. Sci. 2015, 42, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, V.; Nandi, U.; Maniruzzaman, M.; Coleman, N.J. Intercalated theophylline-smectite hybrid for pH-mediated delivery. Drug Deliv. Transl. Res. 2018, 8, 1781–1789. [Google Scholar] [CrossRef]
- Fugetsu, B.; Satoh, S.; Shiba, T.; Mizutani, T.; Lin, Y.B.; Terui, N.; Nodasaka, Y.; Sasa, K.; Shimizu, K.; Akasaka, T.; et al. Caged Multiwalled Carbon Nanotubes as the Adsorbents for Affinity-Based Elimination of Ionic Dyes. Environ. Sci. Technol. 2004, 38, 6890–6896. [Google Scholar] [CrossRef]
- Jung, H.; Kim, H.; Bin, Y.; Hwang, S.; Choy, J. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int. J. Pharm. 2008, 349, 283–290. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Guo, R.; Huang, Y.; Wen, S.; Shen, M.; Wang, J.; Shi, X. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 2013, 29, 5030–5036. [Google Scholar] [CrossRef]
- Jiang, F.; Li, C.; Guo, X.; Fu, H.; Wu, G.; Chen, S. Crystallization and temperature-dependent structure deflection of C 6 mimBr ionic liquid intercalated in LAPONITE®. RSC Adv. 2016, 6, 98018–98025. [Google Scholar] [CrossRef]
- Fan, Q.; Shan, D.; Xue, H.; He, Y.; Cosnier, S. Amperometric phenol biosensor based on laponite clay–chitosan nanocomposite matrix. Biosens Bioelectron. 2007, 22, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Fertah, M.; Belfkira, A.; Dahmane, E.; Taourirte, M.; Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef] [Green Version]
- Perotti, G.F.; Barud, H.S.; Messaddeq, Y.; Ribeiro, S.J.L.; Constantino, V.R.L. Bacterial cellulose–laponite clay nanocomposites. Polymer (Guildf) 2011, 52, 157–163. [Google Scholar] [CrossRef]
- Cunha, V.R.R.; Lima, F.C.D.A.; Sakai, V.Y.; Veras, L.M.C.; Leite, J.R.S.A.; Petrilli, H.M.; Constantino, V.R.L. LAPONITE®-pilocarpine hybrid material: Experimental and theoretical evaluation of pilocarpine conformation. RSC Adv. 2017, 7, 27290–27298. [Google Scholar] [CrossRef]
- Mahlin, D.; Bergström, C.A.S. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur. J. Pharm. Sci. 2013, 49, 323–332. [Google Scholar] [CrossRef]
- Abulateefeh, S.R.; Taha, M.O. Enhanced drug encapsulation and extended release profiles of calcium–alginate nanoparticles by using tannic acid as a bridging cross-linking agent. J. Microencapsul. 2015, 32, 96–105. [Google Scholar] [CrossRef]
- Segale, L.; Giovannelli, L.; Bonda, A.F.; Pattarino, F.; Rinaldi, M. Effect of self-emulsifying phase composition on the characteristics of venlafaxine loaded alginate beads. J. Drug Deliv. Sci. Tec. 2020, 55, 101483. [Google Scholar] [CrossRef]
- Almeida-Prieto, S.; Blanco-Mendez, J.; Otero-Espinar, F. Image Analysis of the Shape of Granulated Powder Grains. J. Pharm. Sci. 2004, 93, 621–634. [Google Scholar] [CrossRef]
- Nesic, A.R.; Seslija, S.I. The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging. In Food Packaging, 1st ed.; Grumezescu, A.M., Ed.; Academic Press: London, UK, 2007; Volume 7, pp. 637–697. [Google Scholar]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Controlled Release 2006, 114, 1–14. [Google Scholar] [CrossRef]
- El-Zatahry, A.A.; Soliman, E.A.; Hassan, E.A.; Eldin, M.M. Preparation and in vitro release of theophylline loaded sodium alginate microspheres. In Proceedings of the ASTF—Scientific Research Outlook 2006 Conference, Alexandria, Egypt, 22–25 April 2006. [Google Scholar]
- Reza, M.; Hossein, A.; Mohammad, A.M. Preparation and Characterization of Theophylline-Chitosan Beads as an Aapproach to Colon Delivery. Iran J. Pharm. Res. 2004, 2, 73–80. [Google Scholar]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Antibiotic eluting clay mineral (Laponite®) for wound healing application: An in vitro study. J Mater. Sci. Mater. Med. 2014, 25, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
- Luther, S.M.; Dudas, M.J.; Fedorak, P.M. Sorption of sulfolane and diisopropanolamine by soils, clays and aquifer materials. J. Contam. Hydrol. 1998, 32, 159–176. [Google Scholar] [CrossRef]
- Khan, M.S.; Sridhar, B.K.; Srinatha, A. Development and Evaluation of pH-Dependent Micro Beads for Colon Targeting. Indian J. Pharm. Sci. 2010, 72, 18–23. [Google Scholar]
- United States Pharmacopeial Convention. U.S. Pharmacopeial guidelines Dissolution. USP Dissolution 2011, 1, 1–8. [Google Scholar]
- Stippler, E.; Kopp, S.; Dressman, J.B. Comparison of US pharmacopeia simulated intestinal fluid TS (without pancreatin) and phosphate standard buffer pH 6.8, TS of the international pharmacopoeia with respect to their Use in in vitro dissolution testing. Dissolution Technol. 2004, 11, 6–10. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandi, U.; Trivedi, V.; Douroumis, D.; Mendham, A.P.; Coleman, N.J. Layered Silicate-Alginate Composite Particles for the pH-Mediated Release of Theophylline. Pharmaceuticals 2020, 13, 182. https://doi.org/10.3390/ph13080182
Nandi U, Trivedi V, Douroumis D, Mendham AP, Coleman NJ. Layered Silicate-Alginate Composite Particles for the pH-Mediated Release of Theophylline. Pharmaceuticals. 2020; 13(8):182. https://doi.org/10.3390/ph13080182
Chicago/Turabian StyleNandi, Uttom, Vivek Trivedi, Dennis Douroumis, Andrew P. Mendham, and Nichola J. Coleman. 2020. "Layered Silicate-Alginate Composite Particles for the pH-Mediated Release of Theophylline" Pharmaceuticals 13, no. 8: 182. https://doi.org/10.3390/ph13080182
APA StyleNandi, U., Trivedi, V., Douroumis, D., Mendham, A. P., & Coleman, N. J. (2020). Layered Silicate-Alginate Composite Particles for the pH-Mediated Release of Theophylline. Pharmaceuticals, 13(8), 182. https://doi.org/10.3390/ph13080182